Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-24 11:42 -0400 (Mon, 24 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" 4779
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" 4550
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4578
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" 4530
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4461
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 989/2313HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.13.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-03-23 13:40 -0400 (Sun, 23 Mar 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 65e718f
git_last_commit_date: 2024-10-29 11:04:11 -0400 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino7

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.13.0
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz
StartedAt: 2025-03-24 02:23:44 -0400 (Mon, 24 Mar 2025)
EndedAt: 2025-03-24 02:30:18 -0400 (Mon, 24 Mar 2025)
EllapsedTime: 394.4 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck'
* using R Under development (unstable) (2025-03-01 r87860 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.13.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      35.12   1.70   37.06
var_imp       35.41   1.09   36.51
corr_plot     33.13   1.66   34.81
pred_ensembel 13.42   0.30   12.41
enrichfindP    0.55   0.20   14.60
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library'
* installing *source* package 'HPiP' ...
** this is package 'HPiP' version '1.13.0'
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.121130 
final  value 93.922222 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.760952 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.320456 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.584083 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.408799 
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.926767 
iter  10 value 94.371902
iter  20 value 87.842785
iter  30 value 84.901741
iter  40 value 84.845436
final  value 84.842568 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.695309 
iter  10 value 94.458391
final  value 94.457914 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.188675 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.559687 
iter  10 value 90.384232
iter  20 value 89.271983
iter  30 value 88.419121
iter  40 value 88.419075
iter  50 value 87.313169
final  value 87.308431 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.882369 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.944728 
iter  10 value 94.483183
final  value 94.448053 
converged
Fitting Repeat 2 

# weights:  507
initial  value 108.398440 
iter  10 value 94.484221
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.849650 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.040314 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.355692 
iter  10 value 94.285114
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  103
initial  value 105.791166 
iter  10 value 94.488473
iter  20 value 93.520197
iter  30 value 87.973094
iter  40 value 84.088241
iter  50 value 83.313237
iter  60 value 82.478741
iter  70 value 82.116197
iter  80 value 82.016901
iter  90 value 81.992166
iter 100 value 81.990337
final  value 81.990337 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 99.485766 
iter  10 value 94.489301
iter  20 value 93.408443
iter  30 value 86.026997
iter  40 value 85.395480
iter  50 value 85.217855
iter  60 value 84.829478
iter  70 value 84.553858
iter  80 value 82.950722
iter  90 value 82.439025
iter 100 value 82.315786
final  value 82.315786 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.445627 
iter  10 value 88.549680
iter  20 value 84.371567
iter  30 value 83.625818
iter  40 value 83.375286
iter  50 value 82.795194
iter  60 value 82.401685
iter  70 value 82.290430
iter  80 value 82.237642
final  value 82.235217 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.086033 
iter  10 value 94.455435
iter  20 value 94.095308
iter  30 value 93.963591
iter  40 value 86.835488
iter  50 value 84.186142
iter  60 value 83.452255
iter  70 value 83.355294
iter  80 value 82.328222
iter  90 value 82.237389
final  value 82.235217 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.888803 
iter  10 value 94.488526
iter  20 value 94.378184
iter  30 value 94.333748
iter  40 value 94.329406
iter  50 value 94.066200
iter  60 value 94.017705
iter  70 value 90.845299
iter  80 value 88.662941
iter  90 value 86.525374
iter 100 value 83.383594
final  value 83.383594 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.481135 
iter  10 value 94.129264
iter  20 value 93.974777
iter  30 value 87.556863
iter  40 value 86.589425
iter  50 value 84.933413
iter  60 value 84.557470
iter  70 value 84.269891
iter  80 value 82.946316
iter  90 value 82.334932
iter 100 value 81.758516
final  value 81.758516 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.809940 
iter  10 value 94.522087
iter  20 value 93.274336
iter  30 value 86.532797
iter  40 value 84.844625
iter  50 value 84.300647
iter  60 value 84.260256
iter  70 value 83.984058
iter  80 value 83.024151
iter  90 value 82.776241
iter 100 value 82.631018
final  value 82.631018 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 118.561786 
iter  10 value 95.959742
iter  20 value 94.491359
iter  30 value 94.232898
iter  40 value 84.780648
iter  50 value 83.974837
iter  60 value 83.357541
iter  70 value 83.037914
iter  80 value 82.603607
iter  90 value 82.456735
iter 100 value 82.191462
final  value 82.191462 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 114.533332 
iter  10 value 90.558400
iter  20 value 87.298723
iter  30 value 86.154228
iter  40 value 83.564226
iter  50 value 82.848754
iter  60 value 82.531194
iter  70 value 82.060919
iter  80 value 81.735929
iter  90 value 81.436200
iter 100 value 81.342537
final  value 81.342537 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.646632 
iter  10 value 94.570106
iter  20 value 90.029685
iter  30 value 85.570899
iter  40 value 85.153156
iter  50 value 85.045503
iter  60 value 84.928469
iter  70 value 83.222361
iter  80 value 81.777341
iter  90 value 81.475439
iter 100 value 81.210769
final  value 81.210769 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.224120 
iter  10 value 94.361237
iter  20 value 91.809608
iter  30 value 83.559705
iter  40 value 83.075938
iter  50 value 82.942808
iter  60 value 82.479662
iter  70 value 82.116144
iter  80 value 81.817768
iter  90 value 81.729305
iter 100 value 81.559630
final  value 81.559630 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.721094 
iter  10 value 92.670902
iter  20 value 87.598739
iter  30 value 85.544876
iter  40 value 83.737859
iter  50 value 81.989372
iter  60 value 81.808624
iter  70 value 81.690103
iter  80 value 81.577803
iter  90 value 81.410824
iter 100 value 81.130329
final  value 81.130329 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 105.923528 
iter  10 value 94.632648
iter  20 value 94.355428
iter  30 value 92.812096
iter  40 value 89.890191
iter  50 value 86.443630
iter  60 value 86.130599
iter  70 value 85.370558
iter  80 value 84.036024
iter  90 value 83.271572
iter 100 value 81.682537
final  value 81.682537 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.324100 
iter  10 value 94.730061
iter  20 value 86.442092
iter  30 value 84.030139
iter  40 value 83.210149
iter  50 value 82.901581
iter  60 value 82.656543
iter  70 value 82.471400
iter  80 value 82.389521
iter  90 value 82.282585
iter 100 value 81.894683
final  value 81.894683 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.643477 
iter  10 value 94.540516
iter  20 value 93.737590
iter  30 value 91.797458
iter  40 value 86.197646
iter  50 value 83.656590
iter  60 value 82.985557
iter  70 value 82.538847
iter  80 value 82.471494
iter  90 value 82.427155
iter 100 value 82.337420
final  value 82.337420 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.231665 
iter  10 value 92.106447
iter  20 value 91.726825
iter  30 value 91.724263
iter  40 value 91.724094
iter  50 value 91.723356
iter  60 value 91.721027
iter  70 value 91.400423
final  value 91.383374 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.919984 
iter  10 value 94.479799
iter  20 value 94.452628
final  value 94.276850 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.507396 
iter  10 value 94.485713
iter  20 value 94.484217
final  value 94.484215 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.544601 
final  value 94.485922 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.457567 
iter  10 value 94.485901
iter  20 value 92.856345
iter  30 value 85.672381
iter  40 value 85.216067
iter  50 value 85.211244
iter  60 value 85.210745
final  value 85.209951 
converged
Fitting Repeat 1 

# weights:  305
initial  value 112.164490 
iter  10 value 94.489766
iter  20 value 94.485060
iter  20 value 94.485059
iter  20 value 94.485059
final  value 94.485059 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.996447 
iter  10 value 93.893645
iter  20 value 93.892743
iter  30 value 93.834245
iter  40 value 93.831418
final  value 93.831416 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.230909 
iter  10 value 94.489511
iter  20 value 94.484632
iter  30 value 93.466820
iter  40 value 93.427204
iter  50 value 92.334636
iter  60 value 90.660454
iter  70 value 89.022783
iter  80 value 85.016044
iter  90 value 85.014394
iter 100 value 83.256846
final  value 83.256846 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 118.342363 
iter  10 value 92.707749
iter  20 value 91.017479
iter  30 value 90.602675
iter  40 value 90.598253
iter  50 value 90.566803
iter  60 value 90.537625
iter  70 value 90.535206
iter  80 value 86.883082
iter  90 value 85.861984
iter 100 value 85.790020
final  value 85.790020 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.515235 
iter  10 value 94.489379
iter  20 value 94.484249
iter  30 value 94.280724
iter  40 value 89.033956
iter  50 value 87.884283
iter  60 value 86.810730
iter  70 value 84.535335
iter  80 value 84.365169
final  value 84.347719 
converged
Fitting Repeat 1 

# weights:  507
initial  value 120.103801 
iter  10 value 94.211354
iter  20 value 94.121569
iter  30 value 94.116953
iter  40 value 93.925921
iter  50 value 93.866855
iter  60 value 93.865915
iter  70 value 86.801817
iter  80 value 83.811809
iter  90 value 82.969047
iter 100 value 82.851411
final  value 82.851411 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 101.008219 
iter  10 value 94.042471
iter  20 value 94.040543
iter  30 value 94.034359
final  value 94.034310 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.798230 
iter  10 value 94.495828
iter  20 value 94.462468
iter  30 value 86.002812
iter  40 value 85.686926
iter  50 value 84.165873
iter  60 value 83.671866
iter  70 value 83.671399
iter  80 value 83.668816
final  value 83.668141 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.339437 
iter  10 value 94.121725
iter  20 value 94.106699
iter  30 value 93.885931
iter  40 value 93.867479
iter  50 value 93.708059
iter  60 value 84.632411
iter  70 value 83.847257
iter  80 value 83.621777
iter  90 value 81.880345
iter 100 value 80.564566
final  value 80.564566 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 98.855153 
iter  10 value 91.347301
iter  20 value 84.805076
iter  30 value 84.783902
iter  40 value 84.780640
iter  50 value 84.776176
iter  60 value 83.106391
iter  70 value 80.968554
iter  80 value 80.897189
iter  90 value 80.792498
iter 100 value 80.789441
final  value 80.789441 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 111.503506 
final  value 94.026542 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.246971 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.443145 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.498237 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.682575 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.275337 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.665010 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.813462 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 110.588250 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.770229 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.206350 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.888412 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.604464 
iter  10 value 86.054862
iter  20 value 82.833801
final  value 82.824676 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.102485 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.858628 
iter  10 value 94.026543
iter  10 value 94.026542
iter  10 value 94.026542
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.840588 
iter  10 value 94.493304
iter  20 value 92.931351
iter  30 value 88.943257
iter  40 value 87.398152
iter  50 value 86.851433
iter  60 value 86.752886
iter  70 value 86.640981
iter  80 value 86.483395
final  value 86.483390 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.268347 
iter  10 value 92.699326
iter  20 value 87.678702
iter  30 value 85.585726
iter  40 value 84.420967
iter  50 value 84.111439
iter  60 value 83.981051
iter  70 value 83.973340
final  value 83.973337 
converged
Fitting Repeat 3 

# weights:  103
initial  value 118.801185 
iter  10 value 94.489654
iter  20 value 93.781923
iter  30 value 92.812961
iter  40 value 92.568385
iter  50 value 84.172308
iter  60 value 84.064198
iter  70 value 84.030295
iter  80 value 83.977577
final  value 83.977459 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.592150 
iter  10 value 94.492430
iter  20 value 94.428345
iter  30 value 94.128493
iter  40 value 94.052626
iter  50 value 90.110808
iter  60 value 85.716698
iter  70 value 84.398380
iter  80 value 83.837447
iter  90 value 83.372936
iter 100 value 83.117562
final  value 83.117562 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 103.229265 
iter  10 value 94.502630
iter  20 value 94.487823
iter  30 value 94.129808
iter  40 value 94.087849
iter  50 value 93.949223
iter  60 value 92.302738
iter  70 value 89.982121
iter  80 value 89.803896
iter  90 value 89.739104
iter 100 value 86.663944
final  value 86.663944 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 111.201512 
iter  10 value 94.545066
iter  20 value 93.317650
iter  30 value 92.242475
iter  40 value 92.063252
iter  50 value 90.348148
iter  60 value 84.458900
iter  70 value 82.542563
iter  80 value 81.916832
iter  90 value 81.548365
iter 100 value 81.445202
final  value 81.445202 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.792115 
iter  10 value 89.738568
iter  20 value 84.707133
iter  30 value 83.605640
iter  40 value 81.950550
iter  50 value 81.134937
iter  60 value 80.957399
iter  70 value 80.909819
iter  80 value 80.907589
iter  90 value 80.906330
iter 100 value 80.905898
final  value 80.905898 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.441206 
iter  10 value 94.513950
iter  20 value 85.604417
iter  30 value 85.251884
iter  40 value 84.917290
iter  50 value 84.235049
iter  60 value 84.051428
iter  70 value 83.814035
iter  80 value 83.742475
iter  90 value 83.708214
iter 100 value 83.678300
final  value 83.678300 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.578073 
iter  10 value 93.773133
iter  20 value 86.647629
iter  30 value 84.541440
iter  40 value 83.826370
iter  50 value 83.204278
iter  60 value 82.793858
iter  70 value 82.749655
iter  80 value 82.718740
iter  90 value 82.389427
iter 100 value 81.705557
final  value 81.705557 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.838878 
iter  10 value 94.903629
iter  20 value 94.250333
iter  30 value 86.934980
iter  40 value 85.534987
iter  50 value 85.461109
iter  60 value 84.804105
iter  70 value 83.371872
iter  80 value 81.546305
iter  90 value 81.333082
iter 100 value 81.243184
final  value 81.243184 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 126.096516 
iter  10 value 94.149509
iter  20 value 93.743687
iter  30 value 91.800675
iter  40 value 89.765176
iter  50 value 87.157233
iter  60 value 84.198965
iter  70 value 83.325369
iter  80 value 82.091427
iter  90 value 81.629912
iter 100 value 81.564342
final  value 81.564342 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 111.423476 
iter  10 value 94.588151
iter  20 value 90.686747
iter  30 value 86.903118
iter  40 value 86.279856
iter  50 value 83.886439
iter  60 value 81.755802
iter  70 value 81.387630
iter  80 value 81.312940
iter  90 value 81.208642
iter 100 value 81.142458
final  value 81.142458 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 122.018553 
iter  10 value 91.039951
iter  20 value 85.100808
iter  30 value 84.021708
iter  40 value 83.790852
iter  50 value 83.076649
iter  60 value 81.665907
iter  70 value 81.242626
iter  80 value 81.083180
iter  90 value 80.942322
iter 100 value 80.893106
final  value 80.893106 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.519284 
iter  10 value 93.607541
iter  20 value 88.344298
iter  30 value 85.584295
iter  40 value 85.405079
iter  50 value 85.040779
iter  60 value 84.702206
iter  70 value 84.502979
iter  80 value 84.133231
iter  90 value 83.327486
iter 100 value 81.390971
final  value 81.390971 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 133.135939 
iter  10 value 95.063372
iter  20 value 94.307073
iter  30 value 92.199445
iter  40 value 90.046547
iter  50 value 85.302590
iter  60 value 83.782167
iter  70 value 83.484985
iter  80 value 83.260158
iter  90 value 83.217050
iter 100 value 82.920509
final  value 82.920509 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.051779 
final  value 94.485993 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.322955 
final  value 94.485635 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.754495 
final  value 94.493104 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.950653 
final  value 94.485989 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.320849 
final  value 94.485883 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.621748 
iter  10 value 94.478026
iter  20 value 94.475440
iter  30 value 94.473790
final  value 94.473744 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.645767 
iter  10 value 94.488815
iter  20 value 94.482427
iter  30 value 94.027218
final  value 94.027143 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.370164 
iter  10 value 94.416870
iter  20 value 94.303583
iter  30 value 94.298926
iter  40 value 94.297713
iter  50 value 94.294797
iter  60 value 94.283120
final  value 94.262739 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.999303 
iter  10 value 94.488973
iter  20 value 94.484378
iter  30 value 89.272295
iter  40 value 89.261784
iter  50 value 89.259284
iter  60 value 89.258445
final  value 89.258062 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.965709 
iter  10 value 94.031742
iter  20 value 93.838235
iter  30 value 87.117329
iter  40 value 86.698500
final  value 86.697215 
converged
Fitting Repeat 1 

# weights:  507
initial  value 120.576629 
iter  10 value 94.470005
iter  20 value 93.655347
iter  30 value 91.896389
iter  40 value 91.856316
final  value 91.856219 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.542227 
iter  10 value 94.491974
iter  20 value 94.440596
iter  30 value 92.428160
iter  40 value 88.279155
iter  50 value 88.144010
final  value 88.140742 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.863737 
iter  10 value 94.330615
iter  20 value 94.329525
iter  30 value 94.324167
iter  40 value 93.961044
iter  50 value 93.858161
iter  60 value 93.844423
iter  70 value 87.740499
iter  80 value 87.736350
iter  90 value 87.725120
iter 100 value 86.785810
final  value 86.785810 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 94.939395 
iter  10 value 94.492563
iter  20 value 94.478376
final  value 94.253142 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.761172 
iter  10 value 94.489304
iter  20 value 94.484242
final  value 94.484234 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.365608 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.796709 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 111.834495 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.395269 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.552471 
final  value 94.032967 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.705695 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.456813 
final  value 94.032967 
converged
Fitting Repeat 3 

# weights:  305
initial  value 116.396541 
iter  10 value 93.455031
final  value 93.455030 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.476013 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.430724 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.209395 
final  value 94.032967 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.290532 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.082379 
final  value 94.032967 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.908277 
final  value 94.032967 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.948707 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.918650 
iter  10 value 94.057571
iter  20 value 93.910330
iter  30 value 93.322434
iter  40 value 93.220094
iter  50 value 93.130495
iter  60 value 89.314259
iter  70 value 85.286899
iter  80 value 83.270292
iter  90 value 82.489149
iter 100 value 82.451562
final  value 82.451562 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 99.250478 
iter  10 value 94.053453
iter  20 value 91.432533
iter  30 value 85.283076
iter  40 value 83.433214
iter  50 value 81.310004
iter  60 value 81.042604
iter  70 value 80.783977
final  value 80.782446 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.681900 
iter  10 value 94.054242
iter  20 value 93.642279
iter  30 value 93.531963
iter  40 value 93.214868
iter  50 value 83.927468
iter  60 value 82.740688
iter  70 value 81.314131
iter  80 value 80.702747
iter  90 value 80.695731
final  value 80.693330 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.357571 
iter  10 value 94.056468
iter  20 value 94.055238
iter  30 value 87.962647
iter  40 value 85.697854
iter  50 value 84.257503
iter  60 value 81.868346
iter  70 value 80.585929
iter  80 value 80.204563
iter  90 value 80.193486
final  value 80.193446 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.526846 
iter  10 value 94.073650
iter  20 value 94.050774
iter  30 value 93.540570
iter  40 value 93.491482
iter  50 value 89.154464
iter  60 value 86.071614
iter  70 value 85.962452
iter  80 value 85.766881
iter  90 value 85.352955
iter 100 value 84.729582
final  value 84.729582 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.597554 
iter  10 value 94.190170
iter  20 value 93.536344
iter  30 value 89.999363
iter  40 value 86.328077
iter  50 value 84.131445
iter  60 value 82.235883
iter  70 value 80.979434
iter  80 value 80.738789
iter  90 value 80.642342
iter 100 value 80.608238
final  value 80.608238 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.534554 
iter  10 value 94.200570
iter  20 value 94.018850
iter  30 value 93.507083
iter  40 value 89.054080
iter  50 value 82.498908
iter  60 value 80.653049
iter  70 value 79.945996
iter  80 value 79.712956
iter  90 value 79.463184
iter 100 value 79.314397
final  value 79.314397 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 118.524392 
iter  10 value 94.055267
iter  20 value 93.270400
iter  30 value 83.684064
iter  40 value 82.914930
iter  50 value 82.143267
iter  60 value 82.085136
iter  70 value 81.939675
iter  80 value 81.852545
iter  90 value 80.984740
iter 100 value 80.191481
final  value 80.191481 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 118.587775 
iter  10 value 103.606785
iter  20 value 94.094417
iter  30 value 94.037676
iter  40 value 88.269203
iter  50 value 86.099578
iter  60 value 83.543224
iter  70 value 83.080043
iter  80 value 82.767807
iter  90 value 82.700595
iter 100 value 82.604815
final  value 82.604815 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 111.942889 
iter  10 value 95.005074
iter  20 value 88.166488
iter  30 value 84.221030
iter  40 value 82.933964
iter  50 value 82.741099
iter  60 value 82.530485
iter  70 value 81.144609
iter  80 value 80.718747
iter  90 value 80.374644
iter 100 value 80.214382
final  value 80.214382 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 118.568169 
iter  10 value 94.184623
iter  20 value 93.605289
iter  30 value 93.293495
iter  40 value 86.856766
iter  50 value 85.261782
iter  60 value 82.976965
iter  70 value 81.933582
iter  80 value 81.647168
iter  90 value 81.374055
iter 100 value 79.592752
final  value 79.592752 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.562833 
iter  10 value 94.276178
iter  20 value 91.879072
iter  30 value 89.950465
iter  40 value 86.610702
iter  50 value 83.289869
iter  60 value 81.606008
iter  70 value 80.251317
iter  80 value 79.794526
iter  90 value 79.388111
iter 100 value 79.213939
final  value 79.213939 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.177063 
iter  10 value 97.390098
iter  20 value 89.504805
iter  30 value 84.591271
iter  40 value 83.923116
iter  50 value 82.787837
iter  60 value 82.722878
iter  70 value 82.299546
iter  80 value 81.452724
iter  90 value 79.493772
iter 100 value 79.251393
final  value 79.251393 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 118.006171 
iter  10 value 94.857339
iter  20 value 94.130837
iter  30 value 93.708000
iter  40 value 88.639152
iter  50 value 83.657332
iter  60 value 83.012221
iter  70 value 81.596832
iter  80 value 80.223343
iter  90 value 79.841383
iter 100 value 79.517139
final  value 79.517139 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.715636 
iter  10 value 92.991656
iter  20 value 87.228097
iter  30 value 86.738512
iter  40 value 85.541577
iter  50 value 84.197756
iter  60 value 82.534497
iter  70 value 80.662112
iter  80 value 79.051764
iter  90 value 78.619688
iter 100 value 78.452344
final  value 78.452344 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.046697 
final  value 94.054639 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.498962 
iter  10 value 94.035943
iter  20 value 94.034607
iter  30 value 94.001300
iter  40 value 83.786063
iter  50 value 83.750139
final  value 83.631999 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.756404 
final  value 94.054592 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.441459 
final  value 93.698931 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.422519 
final  value 94.054982 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.941183 
iter  10 value 94.037763
iter  20 value 94.033423
iter  30 value 93.829379
iter  40 value 90.261141
iter  50 value 84.414506
iter  60 value 84.266660
final  value 84.265996 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.566359 
iter  10 value 94.057592
iter  20 value 94.045715
iter  30 value 93.155863
iter  40 value 86.827820
iter  50 value 84.944719
iter  60 value 84.448196
iter  70 value 84.059909
iter  80 value 83.212741
iter  90 value 80.148053
iter 100 value 79.744678
final  value 79.744678 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 97.837904 
iter  10 value 94.059194
iter  20 value 94.052200
iter  30 value 93.653444
iter  40 value 86.390489
iter  50 value 86.385794
iter  60 value 86.261012
iter  70 value 86.256578
iter  80 value 83.198327
iter  90 value 82.027675
iter 100 value 82.024235
final  value 82.024235 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 94.243961 
iter  10 value 94.037554
iter  20 value 92.858310
iter  30 value 89.378712
iter  40 value 88.084543
iter  50 value 88.049172
iter  60 value 88.048060
iter  70 value 88.047124
iter  80 value 88.046722
iter  90 value 86.577320
iter 100 value 85.637488
final  value 85.637488 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.882896 
iter  10 value 88.331355
iter  20 value 85.625751
iter  30 value 82.165840
iter  40 value 81.621569
final  value 81.610640 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.455537 
iter  10 value 94.060801
iter  20 value 93.186205
iter  30 value 93.101295
iter  40 value 91.507204
iter  50 value 90.372659
iter  60 value 90.367199
iter  70 value 90.364013
final  value 90.363509 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.250626 
iter  10 value 94.061380
iter  20 value 93.128513
iter  30 value 85.715571
iter  40 value 85.695700
iter  50 value 85.689993
iter  60 value 85.465171
iter  70 value 85.442128
final  value 85.441740 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.251918 
iter  10 value 94.060328
iter  20 value 93.619643
iter  30 value 90.268789
iter  40 value 80.126455
iter  50 value 79.487870
iter  60 value 79.342197
iter  70 value 79.340866
final  value 79.340307 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.167481 
iter  10 value 94.041676
iter  20 value 94.033892
final  value 94.033314 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.366120 
iter  10 value 94.041355
iter  20 value 94.034211
iter  30 value 85.684441
iter  40 value 83.784080
iter  50 value 82.208250
iter  60 value 80.868332
iter  70 value 80.824154
iter  80 value 80.821114
final  value 80.820300 
converged
Fitting Repeat 1 

# weights:  103
initial  value 94.593596 
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.678505 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.744552 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.565559 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.906188 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.847066 
iter  10 value 90.107956
iter  20 value 83.277574
iter  30 value 83.233966
final  value 83.233856 
converged
Fitting Repeat 2 

# weights:  305
initial  value 111.226480 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.011095 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.137905 
iter  10 value 93.662297
final  value 93.662011 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.946330 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 107.116228 
iter  10 value 94.038251
iter  10 value 94.038251
iter  10 value 94.038251
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 127.601526 
iter  10 value 95.235301
iter  20 value 88.469220
iter  30 value 87.939980
iter  40 value 84.649890
iter  50 value 83.247683
iter  60 value 83.064853
iter  70 value 83.052810
iter  80 value 83.048483
final  value 83.048473 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.052867 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.123270 
final  value 94.052874 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.309915 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.388918 
iter  10 value 94.020839
iter  20 value 85.643945
iter  30 value 84.735486
iter  40 value 82.658275
iter  50 value 81.531576
iter  60 value 81.475076
iter  70 value 81.002433
iter  80 value 80.948136
iter  90 value 80.928630
iter 100 value 80.925508
final  value 80.925508 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 103.508526 
iter  10 value 94.042688
iter  20 value 91.187716
iter  30 value 86.399171
iter  40 value 85.165421
iter  50 value 83.038348
iter  60 value 82.499137
iter  70 value 82.457058
iter  80 value 82.340370
iter  90 value 82.285977
final  value 82.283144 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.239808 
iter  10 value 93.979136
iter  20 value 91.284316
iter  30 value 91.036279
iter  40 value 89.966091
iter  50 value 89.838783
iter  60 value 89.833473
final  value 89.833469 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.723008 
iter  10 value 94.061000
iter  20 value 93.529703
iter  30 value 88.403805
iter  40 value 87.461883
iter  50 value 87.172700
iter  60 value 85.988445
iter  70 value 84.636705
iter  80 value 83.714474
iter  90 value 82.536568
iter 100 value 82.294797
final  value 82.294797 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.488349 
iter  10 value 94.056968
iter  20 value 89.413737
iter  30 value 88.071592
iter  40 value 83.352190
iter  50 value 82.354471
iter  60 value 81.155807
iter  70 value 81.008428
iter  80 value 80.161284
iter  90 value 79.192091
iter 100 value 79.176387
final  value 79.176387 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 123.927300 
iter  10 value 94.067333
iter  20 value 87.500449
iter  30 value 83.741968
iter  40 value 82.894438
iter  50 value 82.597663
iter  60 value 82.124722
iter  70 value 81.626914
iter  80 value 81.251469
iter  90 value 80.381805
iter 100 value 78.919310
final  value 78.919310 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.307560 
iter  10 value 93.358600
iter  20 value 87.440553
iter  30 value 84.625362
iter  40 value 82.472075
iter  50 value 81.812532
iter  60 value 79.822282
iter  70 value 78.476972
iter  80 value 78.099199
iter  90 value 77.968205
iter 100 value 77.853751
final  value 77.853751 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.557212 
iter  10 value 93.355046
iter  20 value 83.094415
iter  30 value 81.873998
iter  40 value 80.928333
iter  50 value 79.781982
iter  60 value 79.656827
iter  70 value 79.509714
iter  80 value 79.469666
iter  90 value 79.398113
iter 100 value 79.233372
final  value 79.233372 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.414980 
iter  10 value 94.020699
iter  20 value 87.389980
iter  30 value 84.973701
iter  40 value 81.924665
iter  50 value 80.476128
iter  60 value 80.228912
iter  70 value 79.874929
iter  80 value 79.712110
iter  90 value 79.158495
iter 100 value 78.994223
final  value 78.994223 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.862287 
iter  10 value 90.579685
iter  20 value 86.140593
iter  30 value 83.013420
iter  40 value 81.491076
iter  50 value 80.701377
iter  60 value 80.247587
iter  70 value 79.937336
iter  80 value 79.691979
iter  90 value 79.221303
iter 100 value 78.515303
final  value 78.515303 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.420674 
iter  10 value 94.226276
iter  20 value 94.042657
iter  30 value 85.250549
iter  40 value 81.582069
iter  50 value 80.044290
iter  60 value 79.148509
iter  70 value 78.185450
iter  80 value 77.942187
iter  90 value 77.799006
iter 100 value 77.656396
final  value 77.656396 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 120.093561 
iter  10 value 94.111764
iter  20 value 89.631139
iter  30 value 84.428464
iter  40 value 80.552492
iter  50 value 79.132481
iter  60 value 78.904332
iter  70 value 78.768848
iter  80 value 78.604420
iter  90 value 78.494931
iter 100 value 78.366944
final  value 78.366944 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.853269 
iter  10 value 95.723669
iter  20 value 85.445136
iter  30 value 83.915961
iter  40 value 81.780426
iter  50 value 80.463648
iter  60 value 80.047845
iter  70 value 79.471023
iter  80 value 79.057612
iter  90 value 78.573232
iter 100 value 78.244479
final  value 78.244479 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.954414 
iter  10 value 94.088840
iter  20 value 88.544330
iter  30 value 85.509294
iter  40 value 81.949128
iter  50 value 80.816651
iter  60 value 78.604698
iter  70 value 78.182883
iter  80 value 77.796720
iter  90 value 77.598242
iter 100 value 77.452624
final  value 77.452624 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.893191 
iter  10 value 94.727986
iter  20 value 92.840539
iter  30 value 83.984327
iter  40 value 82.365733
iter  50 value 81.671068
iter  60 value 81.383063
iter  70 value 80.940440
iter  80 value 80.650348
iter  90 value 80.336274
iter 100 value 80.168965
final  value 80.168965 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.565025 
final  value 94.054493 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.676956 
final  value 94.054634 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.510870 
final  value 94.054544 
converged
Fitting Repeat 4 

# weights:  103
initial  value 110.034877 
final  value 94.054424 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.605146 
iter  10 value 84.209122
iter  20 value 83.867257
iter  30 value 83.859714
final  value 83.859595 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.802658 
iter  10 value 94.059131
iter  20 value 92.801168
iter  30 value 84.514582
iter  40 value 83.081645
iter  50 value 83.061533
iter  60 value 80.675769
iter  70 value 78.346880
iter  80 value 77.196137
iter  90 value 77.014831
iter 100 value 76.765570
final  value 76.765570 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.523338 
iter  10 value 94.058504
iter  20 value 93.553707
iter  30 value 89.712033
iter  40 value 89.457250
iter  50 value 89.421352
iter  60 value 89.362190
iter  70 value 89.342848
iter  80 value 89.335186
iter  90 value 89.334046
iter 100 value 89.316263
final  value 89.316263 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.601397 
iter  10 value 94.042996
iter  20 value 94.014683
iter  30 value 91.916474
iter  40 value 82.197744
iter  50 value 81.157971
iter  60 value 81.085071
final  value 81.084924 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.970707 
iter  10 value 94.057698
iter  20 value 94.044634
iter  30 value 81.723457
iter  40 value 81.425125
iter  50 value 81.320456
iter  60 value 80.560318
iter  70 value 80.040468
iter  80 value 80.016798
final  value 80.016687 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.424336 
iter  10 value 94.057995
iter  20 value 94.052921
iter  20 value 94.052921
final  value 94.052921 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.288850 
iter  10 value 94.046756
iter  20 value 93.304756
iter  30 value 87.830186
iter  40 value 86.295803
iter  50 value 86.293902
iter  60 value 86.292612
final  value 86.292415 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.033081 
iter  10 value 93.093417
iter  20 value 92.190384
iter  30 value 92.141232
iter  40 value 90.847950
iter  50 value 90.762408
iter  60 value 90.762065
iter  70 value 90.760466
iter  70 value 90.760465
iter  70 value 90.760465
final  value 90.760465 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.954100 
iter  10 value 87.039724
iter  20 value 83.754081
iter  30 value 82.936784
iter  40 value 82.924116
iter  50 value 82.072069
iter  60 value 81.409494
iter  70 value 81.391103
iter  80 value 81.389641
iter  90 value 81.387906
iter 100 value 81.363322
final  value 81.363322 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.517570 
iter  10 value 85.649288
iter  20 value 81.972072
iter  30 value 81.884165
iter  40 value 81.751425
iter  50 value 81.720738
iter  60 value 81.720119
iter  70 value 81.719055
iter  80 value 81.718288
iter  90 value 81.717598
final  value 81.717049 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.940788 
iter  10 value 94.046599
iter  20 value 94.038959
iter  30 value 93.102292
iter  40 value 81.173044
iter  50 value 80.637587
iter  60 value 79.975924
iter  70 value 79.750842
iter  80 value 79.749296
iter  90 value 78.661926
iter 100 value 77.725010
final  value 77.725010 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.521110 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.525853 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.482119 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.427901 
iter  10 value 89.915592
iter  20 value 89.069068
iter  20 value 89.069068
iter  20 value 89.069068
final  value 89.069068 
converged
Fitting Repeat 5 

# weights:  103
initial  value 113.170685 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.698889 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.033846 
iter  10 value 88.969431
iter  20 value 88.810615
iter  30 value 88.804664
final  value 88.804661 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.603830 
iter  10 value 94.052435
iter  10 value 94.052434
iter  10 value 94.052434
final  value 94.052434 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.146257 
iter  10 value 94.055937
iter  20 value 94.052437
final  value 94.052435 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.872016 
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  507
initial  value 108.359103 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 109.691336 
iter  10 value 93.030766
iter  20 value 89.854505
iter  30 value 87.052669
iter  40 value 86.923320
iter  50 value 86.269119
iter  60 value 85.692001
final  value 85.691980 
converged
Fitting Repeat 3 

# weights:  507
initial  value 122.222666 
final  value 94.483810 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.140803 
final  value 94.483810 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.685960 
iter  10 value 94.276113
final  value 94.275345 
converged
Fitting Repeat 1 

# weights:  103
initial  value 114.085850 
iter  10 value 94.422813
iter  20 value 88.676319
iter  30 value 88.372174
iter  40 value 86.393920
iter  50 value 85.989557
iter  60 value 85.000784
iter  70 value 84.325756
iter  80 value 83.441459
iter  90 value 83.374017
iter 100 value 83.291935
final  value 83.291935 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 98.783242 
iter  10 value 94.487770
iter  20 value 94.369869
iter  30 value 94.322662
iter  40 value 90.869563
iter  50 value 87.128618
iter  60 value 85.949676
iter  70 value 85.504203
iter  80 value 85.282306
iter  90 value 85.208150
final  value 85.208017 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.875068 
iter  10 value 94.498434
iter  20 value 94.349754
iter  30 value 92.733812
iter  40 value 91.475322
iter  50 value 87.185664
iter  60 value 86.115809
iter  70 value 86.091916
iter  80 value 84.722320
iter  90 value 83.472695
iter 100 value 83.393406
final  value 83.393406 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 111.572436 
iter  10 value 94.547401
iter  20 value 94.392465
iter  30 value 92.794732
iter  40 value 88.744208
iter  50 value 88.119058
iter  60 value 87.474896
iter  70 value 86.310782
iter  80 value 85.999879
iter  90 value 85.895177
iter 100 value 85.260513
final  value 85.260513 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.023041 
iter  10 value 94.237627
iter  20 value 87.845044
iter  30 value 86.002016
iter  40 value 85.567764
iter  50 value 84.627319
iter  60 value 83.890141
iter  70 value 83.424961
iter  80 value 83.407255
iter  90 value 83.384466
iter 100 value 83.272952
final  value 83.272952 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.182511 
iter  10 value 94.456785
iter  20 value 91.787127
iter  30 value 89.737505
iter  40 value 87.950066
iter  50 value 86.782570
iter  60 value 85.749000
iter  70 value 83.578638
iter  80 value 82.818004
iter  90 value 82.690345
iter 100 value 82.400252
final  value 82.400252 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 114.975819 
iter  10 value 95.882939
iter  20 value 94.482345
iter  30 value 90.299015
iter  40 value 89.065565
iter  50 value 88.088109
iter  60 value 83.826055
iter  70 value 83.348663
iter  80 value 82.975779
iter  90 value 82.435598
iter 100 value 82.085931
final  value 82.085931 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 111.859592 
iter  10 value 94.214721
iter  20 value 93.946852
iter  30 value 89.956070
iter  40 value 88.240090
iter  50 value 87.366799
iter  60 value 86.376014
iter  70 value 86.232835
iter  80 value 85.722097
iter  90 value 85.452666
iter 100 value 84.775609
final  value 84.775609 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.960897 
iter  10 value 94.841612
iter  20 value 94.629924
iter  30 value 88.607073
iter  40 value 86.010522
iter  50 value 84.960221
iter  60 value 84.067176
iter  70 value 83.340801
iter  80 value 82.667604
iter  90 value 82.309020
iter 100 value 82.233801
final  value 82.233801 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.068482 
iter  10 value 93.191647
iter  20 value 89.886820
iter  30 value 86.624076
iter  40 value 86.337704
iter  50 value 86.257874
iter  60 value 85.728179
iter  70 value 83.144079
iter  80 value 82.585799
iter  90 value 82.412744
iter 100 value 82.329777
final  value 82.329777 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 111.624360 
iter  10 value 94.620750
iter  20 value 94.470760
iter  30 value 89.439568
iter  40 value 87.179445
iter  50 value 86.302166
iter  60 value 84.618915
iter  70 value 83.015189
iter  80 value 82.225195
iter  90 value 82.097115
iter 100 value 82.012053
final  value 82.012053 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 147.905695 
iter  10 value 95.367517
iter  20 value 94.987540
iter  30 value 94.519470
iter  40 value 87.646918
iter  50 value 86.986144
iter  60 value 86.638125
iter  70 value 86.383657
iter  80 value 85.632570
iter  90 value 83.767269
iter 100 value 83.174653
final  value 83.174653 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 133.912692 
iter  10 value 94.984467
iter  20 value 92.385236
iter  30 value 87.658585
iter  40 value 86.835338
iter  50 value 85.425852
iter  60 value 83.563930
iter  70 value 83.037628
iter  80 value 82.880507
iter  90 value 82.725120
iter 100 value 82.633037
final  value 82.633037 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.415502 
iter  10 value 95.824973
iter  20 value 93.842152
iter  30 value 91.612533
iter  40 value 88.788821
iter  50 value 87.150807
iter  60 value 83.974565
iter  70 value 82.951056
iter  80 value 82.045368
iter  90 value 81.635251
iter 100 value 81.479574
final  value 81.479574 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.075682 
iter  10 value 94.378343
iter  20 value 88.085679
iter  30 value 86.317730
iter  40 value 85.781040
iter  50 value 85.384199
iter  60 value 85.152591
iter  70 value 84.056477
iter  80 value 82.531637
iter  90 value 81.991076
iter 100 value 81.742820
final  value 81.742820 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.513844 
iter  10 value 94.485521
final  value 94.484266 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.479748 
final  value 94.485872 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.677334 
final  value 94.486099 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.821034 
iter  10 value 90.945885
iter  20 value 90.884191
iter  30 value 90.708143
iter  40 value 90.522969
iter  50 value 90.521857
final  value 90.521842 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.017175 
final  value 94.485849 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.945190 
iter  10 value 94.488384
iter  20 value 94.276494
iter  20 value 94.276493
iter  20 value 94.276493
final  value 94.276493 
converged
Fitting Repeat 2 

# weights:  305
initial  value 110.373904 
iter  10 value 94.489229
iter  20 value 94.484343
iter  30 value 94.325253
iter  40 value 92.344183
iter  50 value 89.144841
iter  60 value 87.864736
iter  70 value 87.022110
iter  80 value 86.907541
iter  90 value 86.657321
iter 100 value 86.586395
final  value 86.586395 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.032338 
iter  10 value 94.489302
iter  20 value 94.483876
iter  30 value 93.747173
iter  40 value 88.390979
iter  50 value 88.390384
iter  60 value 88.333604
iter  70 value 88.314243
iter  80 value 88.307768
iter  90 value 87.424959
iter 100 value 86.929096
final  value 86.929096 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 110.182662 
iter  10 value 94.488893
iter  20 value 94.483582
iter  30 value 91.520188
iter  40 value 86.558861
iter  50 value 83.869008
iter  60 value 83.665769
final  value 83.662436 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.637107 
iter  10 value 94.280599
iter  20 value 94.276004
final  value 94.275679 
converged
Fitting Repeat 1 

# weights:  507
initial  value 103.306285 
iter  10 value 86.665685
iter  20 value 86.661499
iter  30 value 85.708024
iter  40 value 85.658765
iter  50 value 85.482816
iter  60 value 85.481332
iter  70 value 85.449068
iter  80 value 85.348290
iter  90 value 85.116774
iter 100 value 85.114650
final  value 85.114650 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 100.274756 
iter  10 value 94.492835
iter  20 value 93.610824
iter  30 value 88.806333
final  value 88.805964 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.052294 
iter  10 value 93.912077
iter  20 value 92.221365
iter  30 value 86.657981
iter  40 value 86.349771
iter  50 value 85.438157
iter  60 value 85.030817
iter  70 value 85.029044
final  value 85.029008 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.202679 
iter  10 value 94.296772
iter  20 value 94.291212
iter  30 value 87.198152
iter  40 value 83.636549
iter  50 value 81.578866
iter  60 value 81.357742
iter  70 value 81.279322
iter  80 value 81.262929
iter  90 value 81.261179
iter 100 value 81.246379
final  value 81.246379 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 122.896732 
iter  10 value 94.283615
iter  20 value 94.276025
iter  30 value 93.443377
iter  40 value 92.051163
iter  50 value 91.632995
iter  60 value 86.379618
iter  70 value 85.582981
iter  80 value 85.161951
iter  90 value 84.018874
iter 100 value 83.778156
final  value 83.778156 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 119.697242 
iter  10 value 117.895790
iter  20 value 117.884436
iter  30 value 117.555753
final  value 117.550892 
converged
Fitting Repeat 2 

# weights:  305
initial  value 132.460022 
iter  10 value 117.923235
iter  20 value 117.902035
iter  30 value 111.612734
iter  40 value 107.029359
iter  50 value 106.918178
iter  60 value 106.734884
iter  70 value 106.670187
iter  80 value 106.667102
iter  90 value 105.150796
iter 100 value 105.067854
final  value 105.067854 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 122.337886 
iter  10 value 117.895350
iter  20 value 117.890423
iter  30 value 117.611502
final  value 117.607897 
converged
Fitting Repeat 4 

# weights:  305
initial  value 123.119745 
iter  10 value 117.764306
iter  20 value 117.759758
final  value 117.758942 
converged
Fitting Repeat 5 

# weights:  305
initial  value 133.448158 
iter  10 value 117.893581
iter  20 value 117.761234
iter  30 value 117.759994
iter  40 value 117.729683
iter  40 value 117.729682
iter  40 value 117.729682
final  value 117.729682 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Mon Mar 24 02:30:09 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  43.03    1.34  132.12 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod35.12 1.7037.06
FreqInteractors0.330.010.43
calculateAAC0.060.000.08
calculateAutocor0.420.100.56
calculateCTDC0.110.000.11
calculateCTDD0.910.041.00
calculateCTDT0.390.020.40
calculateCTriad0.50.00.5
calculateDC0.090.030.13
calculateF0.390.020.44
calculateKSAAP0.140.000.14
calculateQD_Sm2.450.122.58
calculateTC2.100.062.15
calculateTC_Sm0.290.000.30
corr_plot33.13 1.6634.81
enrichfindP 0.55 0.2014.60
enrichfind_hp0.040.031.07
enrichplot0.490.000.49
filter_missing_values000
getFASTA0.030.002.06
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.080.000.07
pred_ensembel13.42 0.3012.41
var_imp35.41 1.0936.51