Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-03-24 11:42 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" | 4779 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" | 4550 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4578 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4530 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4461 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2313 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-03-24 02:23:44 -0400 (Mon, 24 Mar 2025) |
EndedAt: 2025-03-24 02:30:18 -0400 (Mon, 24 Mar 2025) |
EllapsedTime: 394.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck' * using R Under development (unstable) (2025-03-01 r87860 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.13.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 35.12 1.70 37.06 var_imp 35.41 1.09 36.51 corr_plot 33.13 1.66 34.81 pred_ensembel 13.42 0.30 12.41 enrichfindP 0.55 0.20 14.60 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library' * installing *source* package 'HPiP' ... ** this is package 'HPiP' version '1.13.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.121130 final value 93.922222 converged Fitting Repeat 2 # weights: 103 initial value 96.760952 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.320456 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 108.584083 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.408799 final value 94.275362 converged Fitting Repeat 1 # weights: 305 initial value 102.926767 iter 10 value 94.371902 iter 20 value 87.842785 iter 30 value 84.901741 iter 40 value 84.845436 final value 84.842568 converged Fitting Repeat 2 # weights: 305 initial value 102.695309 iter 10 value 94.458391 final value 94.457914 converged Fitting Repeat 3 # weights: 305 initial value 98.188675 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 108.559687 iter 10 value 90.384232 iter 20 value 89.271983 iter 30 value 88.419121 iter 40 value 88.419075 iter 50 value 87.313169 final value 87.308431 converged Fitting Repeat 5 # weights: 305 initial value 95.882369 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 108.944728 iter 10 value 94.483183 final value 94.448053 converged Fitting Repeat 2 # weights: 507 initial value 108.398440 iter 10 value 94.484221 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.849650 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 101.040314 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 101.355692 iter 10 value 94.285114 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 105.791166 iter 10 value 94.488473 iter 20 value 93.520197 iter 30 value 87.973094 iter 40 value 84.088241 iter 50 value 83.313237 iter 60 value 82.478741 iter 70 value 82.116197 iter 80 value 82.016901 iter 90 value 81.992166 iter 100 value 81.990337 final value 81.990337 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.485766 iter 10 value 94.489301 iter 20 value 93.408443 iter 30 value 86.026997 iter 40 value 85.395480 iter 50 value 85.217855 iter 60 value 84.829478 iter 70 value 84.553858 iter 80 value 82.950722 iter 90 value 82.439025 iter 100 value 82.315786 final value 82.315786 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.445627 iter 10 value 88.549680 iter 20 value 84.371567 iter 30 value 83.625818 iter 40 value 83.375286 iter 50 value 82.795194 iter 60 value 82.401685 iter 70 value 82.290430 iter 80 value 82.237642 final value 82.235217 converged Fitting Repeat 4 # weights: 103 initial value 106.086033 iter 10 value 94.455435 iter 20 value 94.095308 iter 30 value 93.963591 iter 40 value 86.835488 iter 50 value 84.186142 iter 60 value 83.452255 iter 70 value 83.355294 iter 80 value 82.328222 iter 90 value 82.237389 final value 82.235217 converged Fitting Repeat 5 # weights: 103 initial value 103.888803 iter 10 value 94.488526 iter 20 value 94.378184 iter 30 value 94.333748 iter 40 value 94.329406 iter 50 value 94.066200 iter 60 value 94.017705 iter 70 value 90.845299 iter 80 value 88.662941 iter 90 value 86.525374 iter 100 value 83.383594 final value 83.383594 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.481135 iter 10 value 94.129264 iter 20 value 93.974777 iter 30 value 87.556863 iter 40 value 86.589425 iter 50 value 84.933413 iter 60 value 84.557470 iter 70 value 84.269891 iter 80 value 82.946316 iter 90 value 82.334932 iter 100 value 81.758516 final value 81.758516 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.809940 iter 10 value 94.522087 iter 20 value 93.274336 iter 30 value 86.532797 iter 40 value 84.844625 iter 50 value 84.300647 iter 60 value 84.260256 iter 70 value 83.984058 iter 80 value 83.024151 iter 90 value 82.776241 iter 100 value 82.631018 final value 82.631018 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.561786 iter 10 value 95.959742 iter 20 value 94.491359 iter 30 value 94.232898 iter 40 value 84.780648 iter 50 value 83.974837 iter 60 value 83.357541 iter 70 value 83.037914 iter 80 value 82.603607 iter 90 value 82.456735 iter 100 value 82.191462 final value 82.191462 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.533332 iter 10 value 90.558400 iter 20 value 87.298723 iter 30 value 86.154228 iter 40 value 83.564226 iter 50 value 82.848754 iter 60 value 82.531194 iter 70 value 82.060919 iter 80 value 81.735929 iter 90 value 81.436200 iter 100 value 81.342537 final value 81.342537 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.646632 iter 10 value 94.570106 iter 20 value 90.029685 iter 30 value 85.570899 iter 40 value 85.153156 iter 50 value 85.045503 iter 60 value 84.928469 iter 70 value 83.222361 iter 80 value 81.777341 iter 90 value 81.475439 iter 100 value 81.210769 final value 81.210769 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.224120 iter 10 value 94.361237 iter 20 value 91.809608 iter 30 value 83.559705 iter 40 value 83.075938 iter 50 value 82.942808 iter 60 value 82.479662 iter 70 value 82.116144 iter 80 value 81.817768 iter 90 value 81.729305 iter 100 value 81.559630 final value 81.559630 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.721094 iter 10 value 92.670902 iter 20 value 87.598739 iter 30 value 85.544876 iter 40 value 83.737859 iter 50 value 81.989372 iter 60 value 81.808624 iter 70 value 81.690103 iter 80 value 81.577803 iter 90 value 81.410824 iter 100 value 81.130329 final value 81.130329 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.923528 iter 10 value 94.632648 iter 20 value 94.355428 iter 30 value 92.812096 iter 40 value 89.890191 iter 50 value 86.443630 iter 60 value 86.130599 iter 70 value 85.370558 iter 80 value 84.036024 iter 90 value 83.271572 iter 100 value 81.682537 final value 81.682537 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.324100 iter 10 value 94.730061 iter 20 value 86.442092 iter 30 value 84.030139 iter 40 value 83.210149 iter 50 value 82.901581 iter 60 value 82.656543 iter 70 value 82.471400 iter 80 value 82.389521 iter 90 value 82.282585 iter 100 value 81.894683 final value 81.894683 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.643477 iter 10 value 94.540516 iter 20 value 93.737590 iter 30 value 91.797458 iter 40 value 86.197646 iter 50 value 83.656590 iter 60 value 82.985557 iter 70 value 82.538847 iter 80 value 82.471494 iter 90 value 82.427155 iter 100 value 82.337420 final value 82.337420 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.231665 iter 10 value 92.106447 iter 20 value 91.726825 iter 30 value 91.724263 iter 40 value 91.724094 iter 50 value 91.723356 iter 60 value 91.721027 iter 70 value 91.400423 final value 91.383374 converged Fitting Repeat 2 # weights: 103 initial value 96.919984 iter 10 value 94.479799 iter 20 value 94.452628 final value 94.276850 converged Fitting Repeat 3 # weights: 103 initial value 99.507396 iter 10 value 94.485713 iter 20 value 94.484217 final value 94.484215 converged Fitting Repeat 4 # weights: 103 initial value 96.544601 final value 94.485922 converged Fitting Repeat 5 # weights: 103 initial value 105.457567 iter 10 value 94.485901 iter 20 value 92.856345 iter 30 value 85.672381 iter 40 value 85.216067 iter 50 value 85.211244 iter 60 value 85.210745 final value 85.209951 converged Fitting Repeat 1 # weights: 305 initial value 112.164490 iter 10 value 94.489766 iter 20 value 94.485060 iter 20 value 94.485059 iter 20 value 94.485059 final value 94.485059 converged Fitting Repeat 2 # weights: 305 initial value 94.996447 iter 10 value 93.893645 iter 20 value 93.892743 iter 30 value 93.834245 iter 40 value 93.831418 final value 93.831416 converged Fitting Repeat 3 # weights: 305 initial value 101.230909 iter 10 value 94.489511 iter 20 value 94.484632 iter 30 value 93.466820 iter 40 value 93.427204 iter 50 value 92.334636 iter 60 value 90.660454 iter 70 value 89.022783 iter 80 value 85.016044 iter 90 value 85.014394 iter 100 value 83.256846 final value 83.256846 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.342363 iter 10 value 92.707749 iter 20 value 91.017479 iter 30 value 90.602675 iter 40 value 90.598253 iter 50 value 90.566803 iter 60 value 90.537625 iter 70 value 90.535206 iter 80 value 86.883082 iter 90 value 85.861984 iter 100 value 85.790020 final value 85.790020 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.515235 iter 10 value 94.489379 iter 20 value 94.484249 iter 30 value 94.280724 iter 40 value 89.033956 iter 50 value 87.884283 iter 60 value 86.810730 iter 70 value 84.535335 iter 80 value 84.365169 final value 84.347719 converged Fitting Repeat 1 # weights: 507 initial value 120.103801 iter 10 value 94.211354 iter 20 value 94.121569 iter 30 value 94.116953 iter 40 value 93.925921 iter 50 value 93.866855 iter 60 value 93.865915 iter 70 value 86.801817 iter 80 value 83.811809 iter 90 value 82.969047 iter 100 value 82.851411 final value 82.851411 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.008219 iter 10 value 94.042471 iter 20 value 94.040543 iter 30 value 94.034359 final value 94.034310 converged Fitting Repeat 3 # weights: 507 initial value 102.798230 iter 10 value 94.495828 iter 20 value 94.462468 iter 30 value 86.002812 iter 40 value 85.686926 iter 50 value 84.165873 iter 60 value 83.671866 iter 70 value 83.671399 iter 80 value 83.668816 final value 83.668141 converged Fitting Repeat 4 # weights: 507 initial value 103.339437 iter 10 value 94.121725 iter 20 value 94.106699 iter 30 value 93.885931 iter 40 value 93.867479 iter 50 value 93.708059 iter 60 value 84.632411 iter 70 value 83.847257 iter 80 value 83.621777 iter 90 value 81.880345 iter 100 value 80.564566 final value 80.564566 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.855153 iter 10 value 91.347301 iter 20 value 84.805076 iter 30 value 84.783902 iter 40 value 84.780640 iter 50 value 84.776176 iter 60 value 83.106391 iter 70 value 80.968554 iter 80 value 80.897189 iter 90 value 80.792498 iter 100 value 80.789441 final value 80.789441 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 111.503506 final value 94.026542 converged Fitting Repeat 2 # weights: 103 initial value 101.246971 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.443145 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.498237 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.682575 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.275337 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.665010 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.813462 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 110.588250 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.770229 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.206350 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 105.888412 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 97.604464 iter 10 value 86.054862 iter 20 value 82.833801 final value 82.824676 converged Fitting Repeat 4 # weights: 507 initial value 105.102485 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 100.858628 iter 10 value 94.026543 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 97.840588 iter 10 value 94.493304 iter 20 value 92.931351 iter 30 value 88.943257 iter 40 value 87.398152 iter 50 value 86.851433 iter 60 value 86.752886 iter 70 value 86.640981 iter 80 value 86.483395 final value 86.483390 converged Fitting Repeat 2 # weights: 103 initial value 97.268347 iter 10 value 92.699326 iter 20 value 87.678702 iter 30 value 85.585726 iter 40 value 84.420967 iter 50 value 84.111439 iter 60 value 83.981051 iter 70 value 83.973340 final value 83.973337 converged Fitting Repeat 3 # weights: 103 initial value 118.801185 iter 10 value 94.489654 iter 20 value 93.781923 iter 30 value 92.812961 iter 40 value 92.568385 iter 50 value 84.172308 iter 60 value 84.064198 iter 70 value 84.030295 iter 80 value 83.977577 final value 83.977459 converged Fitting Repeat 4 # weights: 103 initial value 106.592150 iter 10 value 94.492430 iter 20 value 94.428345 iter 30 value 94.128493 iter 40 value 94.052626 iter 50 value 90.110808 iter 60 value 85.716698 iter 70 value 84.398380 iter 80 value 83.837447 iter 90 value 83.372936 iter 100 value 83.117562 final value 83.117562 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.229265 iter 10 value 94.502630 iter 20 value 94.487823 iter 30 value 94.129808 iter 40 value 94.087849 iter 50 value 93.949223 iter 60 value 92.302738 iter 70 value 89.982121 iter 80 value 89.803896 iter 90 value 89.739104 iter 100 value 86.663944 final value 86.663944 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 111.201512 iter 10 value 94.545066 iter 20 value 93.317650 iter 30 value 92.242475 iter 40 value 92.063252 iter 50 value 90.348148 iter 60 value 84.458900 iter 70 value 82.542563 iter 80 value 81.916832 iter 90 value 81.548365 iter 100 value 81.445202 final value 81.445202 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.792115 iter 10 value 89.738568 iter 20 value 84.707133 iter 30 value 83.605640 iter 40 value 81.950550 iter 50 value 81.134937 iter 60 value 80.957399 iter 70 value 80.909819 iter 80 value 80.907589 iter 90 value 80.906330 iter 100 value 80.905898 final value 80.905898 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.441206 iter 10 value 94.513950 iter 20 value 85.604417 iter 30 value 85.251884 iter 40 value 84.917290 iter 50 value 84.235049 iter 60 value 84.051428 iter 70 value 83.814035 iter 80 value 83.742475 iter 90 value 83.708214 iter 100 value 83.678300 final value 83.678300 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.578073 iter 10 value 93.773133 iter 20 value 86.647629 iter 30 value 84.541440 iter 40 value 83.826370 iter 50 value 83.204278 iter 60 value 82.793858 iter 70 value 82.749655 iter 80 value 82.718740 iter 90 value 82.389427 iter 100 value 81.705557 final value 81.705557 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.838878 iter 10 value 94.903629 iter 20 value 94.250333 iter 30 value 86.934980 iter 40 value 85.534987 iter 50 value 85.461109 iter 60 value 84.804105 iter 70 value 83.371872 iter 80 value 81.546305 iter 90 value 81.333082 iter 100 value 81.243184 final value 81.243184 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.096516 iter 10 value 94.149509 iter 20 value 93.743687 iter 30 value 91.800675 iter 40 value 89.765176 iter 50 value 87.157233 iter 60 value 84.198965 iter 70 value 83.325369 iter 80 value 82.091427 iter 90 value 81.629912 iter 100 value 81.564342 final value 81.564342 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.423476 iter 10 value 94.588151 iter 20 value 90.686747 iter 30 value 86.903118 iter 40 value 86.279856 iter 50 value 83.886439 iter 60 value 81.755802 iter 70 value 81.387630 iter 80 value 81.312940 iter 90 value 81.208642 iter 100 value 81.142458 final value 81.142458 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.018553 iter 10 value 91.039951 iter 20 value 85.100808 iter 30 value 84.021708 iter 40 value 83.790852 iter 50 value 83.076649 iter 60 value 81.665907 iter 70 value 81.242626 iter 80 value 81.083180 iter 90 value 80.942322 iter 100 value 80.893106 final value 80.893106 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.519284 iter 10 value 93.607541 iter 20 value 88.344298 iter 30 value 85.584295 iter 40 value 85.405079 iter 50 value 85.040779 iter 60 value 84.702206 iter 70 value 84.502979 iter 80 value 84.133231 iter 90 value 83.327486 iter 100 value 81.390971 final value 81.390971 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 133.135939 iter 10 value 95.063372 iter 20 value 94.307073 iter 30 value 92.199445 iter 40 value 90.046547 iter 50 value 85.302590 iter 60 value 83.782167 iter 70 value 83.484985 iter 80 value 83.260158 iter 90 value 83.217050 iter 100 value 82.920509 final value 82.920509 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.051779 final value 94.485993 converged Fitting Repeat 2 # weights: 103 initial value 95.322955 final value 94.485635 converged Fitting Repeat 3 # weights: 103 initial value 97.754495 final value 94.493104 converged Fitting Repeat 4 # weights: 103 initial value 94.950653 final value 94.485989 converged Fitting Repeat 5 # weights: 103 initial value 95.320849 final value 94.485883 converged Fitting Repeat 1 # weights: 305 initial value 94.621748 iter 10 value 94.478026 iter 20 value 94.475440 iter 30 value 94.473790 final value 94.473744 converged Fitting Repeat 2 # weights: 305 initial value 102.645767 iter 10 value 94.488815 iter 20 value 94.482427 iter 30 value 94.027218 final value 94.027143 converged Fitting Repeat 3 # weights: 305 initial value 100.370164 iter 10 value 94.416870 iter 20 value 94.303583 iter 30 value 94.298926 iter 40 value 94.297713 iter 50 value 94.294797 iter 60 value 94.283120 final value 94.262739 converged Fitting Repeat 4 # weights: 305 initial value 105.999303 iter 10 value 94.488973 iter 20 value 94.484378 iter 30 value 89.272295 iter 40 value 89.261784 iter 50 value 89.259284 iter 60 value 89.258445 final value 89.258062 converged Fitting Repeat 5 # weights: 305 initial value 96.965709 iter 10 value 94.031742 iter 20 value 93.838235 iter 30 value 87.117329 iter 40 value 86.698500 final value 86.697215 converged Fitting Repeat 1 # weights: 507 initial value 120.576629 iter 10 value 94.470005 iter 20 value 93.655347 iter 30 value 91.896389 iter 40 value 91.856316 final value 91.856219 converged Fitting Repeat 2 # weights: 507 initial value 105.542227 iter 10 value 94.491974 iter 20 value 94.440596 iter 30 value 92.428160 iter 40 value 88.279155 iter 50 value 88.144010 final value 88.140742 converged Fitting Repeat 3 # weights: 507 initial value 106.863737 iter 10 value 94.330615 iter 20 value 94.329525 iter 30 value 94.324167 iter 40 value 93.961044 iter 50 value 93.858161 iter 60 value 93.844423 iter 70 value 87.740499 iter 80 value 87.736350 iter 90 value 87.725120 iter 100 value 86.785810 final value 86.785810 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.939395 iter 10 value 94.492563 iter 20 value 94.478376 final value 94.253142 converged Fitting Repeat 5 # weights: 507 initial value 95.761172 iter 10 value 94.489304 iter 20 value 94.484242 final value 94.484234 converged Fitting Repeat 1 # weights: 103 initial value 103.365608 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.796709 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 111.834495 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.395269 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.552471 final value 94.032967 converged Fitting Repeat 1 # weights: 305 initial value 95.705695 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.456813 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 116.396541 iter 10 value 93.455031 final value 93.455030 converged Fitting Repeat 4 # weights: 305 initial value 103.476013 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 102.430724 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 104.209395 final value 94.032967 converged Fitting Repeat 2 # weights: 507 initial value 99.290532 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 102.082379 final value 94.032967 converged Fitting Repeat 4 # weights: 507 initial value 95.908277 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 111.948707 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.918650 iter 10 value 94.057571 iter 20 value 93.910330 iter 30 value 93.322434 iter 40 value 93.220094 iter 50 value 93.130495 iter 60 value 89.314259 iter 70 value 85.286899 iter 80 value 83.270292 iter 90 value 82.489149 iter 100 value 82.451562 final value 82.451562 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.250478 iter 10 value 94.053453 iter 20 value 91.432533 iter 30 value 85.283076 iter 40 value 83.433214 iter 50 value 81.310004 iter 60 value 81.042604 iter 70 value 80.783977 final value 80.782446 converged Fitting Repeat 3 # weights: 103 initial value 101.681900 iter 10 value 94.054242 iter 20 value 93.642279 iter 30 value 93.531963 iter 40 value 93.214868 iter 50 value 83.927468 iter 60 value 82.740688 iter 70 value 81.314131 iter 80 value 80.702747 iter 90 value 80.695731 final value 80.693330 converged Fitting Repeat 4 # weights: 103 initial value 102.357571 iter 10 value 94.056468 iter 20 value 94.055238 iter 30 value 87.962647 iter 40 value 85.697854 iter 50 value 84.257503 iter 60 value 81.868346 iter 70 value 80.585929 iter 80 value 80.204563 iter 90 value 80.193486 final value 80.193446 converged Fitting Repeat 5 # weights: 103 initial value 96.526846 iter 10 value 94.073650 iter 20 value 94.050774 iter 30 value 93.540570 iter 40 value 93.491482 iter 50 value 89.154464 iter 60 value 86.071614 iter 70 value 85.962452 iter 80 value 85.766881 iter 90 value 85.352955 iter 100 value 84.729582 final value 84.729582 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.597554 iter 10 value 94.190170 iter 20 value 93.536344 iter 30 value 89.999363 iter 40 value 86.328077 iter 50 value 84.131445 iter 60 value 82.235883 iter 70 value 80.979434 iter 80 value 80.738789 iter 90 value 80.642342 iter 100 value 80.608238 final value 80.608238 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.534554 iter 10 value 94.200570 iter 20 value 94.018850 iter 30 value 93.507083 iter 40 value 89.054080 iter 50 value 82.498908 iter 60 value 80.653049 iter 70 value 79.945996 iter 80 value 79.712956 iter 90 value 79.463184 iter 100 value 79.314397 final value 79.314397 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.524392 iter 10 value 94.055267 iter 20 value 93.270400 iter 30 value 83.684064 iter 40 value 82.914930 iter 50 value 82.143267 iter 60 value 82.085136 iter 70 value 81.939675 iter 80 value 81.852545 iter 90 value 80.984740 iter 100 value 80.191481 final value 80.191481 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.587775 iter 10 value 103.606785 iter 20 value 94.094417 iter 30 value 94.037676 iter 40 value 88.269203 iter 50 value 86.099578 iter 60 value 83.543224 iter 70 value 83.080043 iter 80 value 82.767807 iter 90 value 82.700595 iter 100 value 82.604815 final value 82.604815 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.942889 iter 10 value 95.005074 iter 20 value 88.166488 iter 30 value 84.221030 iter 40 value 82.933964 iter 50 value 82.741099 iter 60 value 82.530485 iter 70 value 81.144609 iter 80 value 80.718747 iter 90 value 80.374644 iter 100 value 80.214382 final value 80.214382 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.568169 iter 10 value 94.184623 iter 20 value 93.605289 iter 30 value 93.293495 iter 40 value 86.856766 iter 50 value 85.261782 iter 60 value 82.976965 iter 70 value 81.933582 iter 80 value 81.647168 iter 90 value 81.374055 iter 100 value 79.592752 final value 79.592752 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.562833 iter 10 value 94.276178 iter 20 value 91.879072 iter 30 value 89.950465 iter 40 value 86.610702 iter 50 value 83.289869 iter 60 value 81.606008 iter 70 value 80.251317 iter 80 value 79.794526 iter 90 value 79.388111 iter 100 value 79.213939 final value 79.213939 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.177063 iter 10 value 97.390098 iter 20 value 89.504805 iter 30 value 84.591271 iter 40 value 83.923116 iter 50 value 82.787837 iter 60 value 82.722878 iter 70 value 82.299546 iter 80 value 81.452724 iter 90 value 79.493772 iter 100 value 79.251393 final value 79.251393 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.006171 iter 10 value 94.857339 iter 20 value 94.130837 iter 30 value 93.708000 iter 40 value 88.639152 iter 50 value 83.657332 iter 60 value 83.012221 iter 70 value 81.596832 iter 80 value 80.223343 iter 90 value 79.841383 iter 100 value 79.517139 final value 79.517139 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.715636 iter 10 value 92.991656 iter 20 value 87.228097 iter 30 value 86.738512 iter 40 value 85.541577 iter 50 value 84.197756 iter 60 value 82.534497 iter 70 value 80.662112 iter 80 value 79.051764 iter 90 value 78.619688 iter 100 value 78.452344 final value 78.452344 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.046697 final value 94.054639 converged Fitting Repeat 2 # weights: 103 initial value 97.498962 iter 10 value 94.035943 iter 20 value 94.034607 iter 30 value 94.001300 iter 40 value 83.786063 iter 50 value 83.750139 final value 83.631999 converged Fitting Repeat 3 # weights: 103 initial value 97.756404 final value 94.054592 converged Fitting Repeat 4 # weights: 103 initial value 96.441459 final value 93.698931 converged Fitting Repeat 5 # weights: 103 initial value 103.422519 final value 94.054982 converged Fitting Repeat 1 # weights: 305 initial value 110.941183 iter 10 value 94.037763 iter 20 value 94.033423 iter 30 value 93.829379 iter 40 value 90.261141 iter 50 value 84.414506 iter 60 value 84.266660 final value 84.265996 converged Fitting Repeat 2 # weights: 305 initial value 98.566359 iter 10 value 94.057592 iter 20 value 94.045715 iter 30 value 93.155863 iter 40 value 86.827820 iter 50 value 84.944719 iter 60 value 84.448196 iter 70 value 84.059909 iter 80 value 83.212741 iter 90 value 80.148053 iter 100 value 79.744678 final value 79.744678 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.837904 iter 10 value 94.059194 iter 20 value 94.052200 iter 30 value 93.653444 iter 40 value 86.390489 iter 50 value 86.385794 iter 60 value 86.261012 iter 70 value 86.256578 iter 80 value 83.198327 iter 90 value 82.027675 iter 100 value 82.024235 final value 82.024235 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 94.243961 iter 10 value 94.037554 iter 20 value 92.858310 iter 30 value 89.378712 iter 40 value 88.084543 iter 50 value 88.049172 iter 60 value 88.048060 iter 70 value 88.047124 iter 80 value 88.046722 iter 90 value 86.577320 iter 100 value 85.637488 final value 85.637488 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.882896 iter 10 value 88.331355 iter 20 value 85.625751 iter 30 value 82.165840 iter 40 value 81.621569 final value 81.610640 converged Fitting Repeat 1 # weights: 507 initial value 98.455537 iter 10 value 94.060801 iter 20 value 93.186205 iter 30 value 93.101295 iter 40 value 91.507204 iter 50 value 90.372659 iter 60 value 90.367199 iter 70 value 90.364013 final value 90.363509 converged Fitting Repeat 2 # weights: 507 initial value 95.250626 iter 10 value 94.061380 iter 20 value 93.128513 iter 30 value 85.715571 iter 40 value 85.695700 iter 50 value 85.689993 iter 60 value 85.465171 iter 70 value 85.442128 final value 85.441740 converged Fitting Repeat 3 # weights: 507 initial value 99.251918 iter 10 value 94.060328 iter 20 value 93.619643 iter 30 value 90.268789 iter 40 value 80.126455 iter 50 value 79.487870 iter 60 value 79.342197 iter 70 value 79.340866 final value 79.340307 converged Fitting Repeat 4 # weights: 507 initial value 104.167481 iter 10 value 94.041676 iter 20 value 94.033892 final value 94.033314 converged Fitting Repeat 5 # weights: 507 initial value 95.366120 iter 10 value 94.041355 iter 20 value 94.034211 iter 30 value 85.684441 iter 40 value 83.784080 iter 50 value 82.208250 iter 60 value 80.868332 iter 70 value 80.824154 iter 80 value 80.821114 final value 80.820300 converged Fitting Repeat 1 # weights: 103 initial value 94.593596 final value 94.038251 converged Fitting Repeat 2 # weights: 103 initial value 98.678505 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.744552 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.565559 final value 94.038251 converged Fitting Repeat 5 # weights: 103 initial value 98.906188 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.847066 iter 10 value 90.107956 iter 20 value 83.277574 iter 30 value 83.233966 final value 83.233856 converged Fitting Repeat 2 # weights: 305 initial value 111.226480 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.011095 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 99.137905 iter 10 value 93.662297 final value 93.662011 converged Fitting Repeat 5 # weights: 305 initial value 100.946330 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 107.116228 iter 10 value 94.038251 iter 10 value 94.038251 iter 10 value 94.038251 final value 94.038251 converged Fitting Repeat 2 # weights: 507 initial value 127.601526 iter 10 value 95.235301 iter 20 value 88.469220 iter 30 value 87.939980 iter 40 value 84.649890 iter 50 value 83.247683 iter 60 value 83.064853 iter 70 value 83.052810 iter 80 value 83.048483 final value 83.048473 converged Fitting Repeat 3 # weights: 507 initial value 102.052867 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 96.123270 final value 94.052874 converged Fitting Repeat 5 # weights: 507 initial value 114.309915 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.388918 iter 10 value 94.020839 iter 20 value 85.643945 iter 30 value 84.735486 iter 40 value 82.658275 iter 50 value 81.531576 iter 60 value 81.475076 iter 70 value 81.002433 iter 80 value 80.948136 iter 90 value 80.928630 iter 100 value 80.925508 final value 80.925508 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.508526 iter 10 value 94.042688 iter 20 value 91.187716 iter 30 value 86.399171 iter 40 value 85.165421 iter 50 value 83.038348 iter 60 value 82.499137 iter 70 value 82.457058 iter 80 value 82.340370 iter 90 value 82.285977 final value 82.283144 converged Fitting Repeat 3 # weights: 103 initial value 98.239808 iter 10 value 93.979136 iter 20 value 91.284316 iter 30 value 91.036279 iter 40 value 89.966091 iter 50 value 89.838783 iter 60 value 89.833473 final value 89.833469 converged Fitting Repeat 4 # weights: 103 initial value 104.723008 iter 10 value 94.061000 iter 20 value 93.529703 iter 30 value 88.403805 iter 40 value 87.461883 iter 50 value 87.172700 iter 60 value 85.988445 iter 70 value 84.636705 iter 80 value 83.714474 iter 90 value 82.536568 iter 100 value 82.294797 final value 82.294797 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.488349 iter 10 value 94.056968 iter 20 value 89.413737 iter 30 value 88.071592 iter 40 value 83.352190 iter 50 value 82.354471 iter 60 value 81.155807 iter 70 value 81.008428 iter 80 value 80.161284 iter 90 value 79.192091 iter 100 value 79.176387 final value 79.176387 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 123.927300 iter 10 value 94.067333 iter 20 value 87.500449 iter 30 value 83.741968 iter 40 value 82.894438 iter 50 value 82.597663 iter 60 value 82.124722 iter 70 value 81.626914 iter 80 value 81.251469 iter 90 value 80.381805 iter 100 value 78.919310 final value 78.919310 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.307560 iter 10 value 93.358600 iter 20 value 87.440553 iter 30 value 84.625362 iter 40 value 82.472075 iter 50 value 81.812532 iter 60 value 79.822282 iter 70 value 78.476972 iter 80 value 78.099199 iter 90 value 77.968205 iter 100 value 77.853751 final value 77.853751 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.557212 iter 10 value 93.355046 iter 20 value 83.094415 iter 30 value 81.873998 iter 40 value 80.928333 iter 50 value 79.781982 iter 60 value 79.656827 iter 70 value 79.509714 iter 80 value 79.469666 iter 90 value 79.398113 iter 100 value 79.233372 final value 79.233372 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.414980 iter 10 value 94.020699 iter 20 value 87.389980 iter 30 value 84.973701 iter 40 value 81.924665 iter 50 value 80.476128 iter 60 value 80.228912 iter 70 value 79.874929 iter 80 value 79.712110 iter 90 value 79.158495 iter 100 value 78.994223 final value 78.994223 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.862287 iter 10 value 90.579685 iter 20 value 86.140593 iter 30 value 83.013420 iter 40 value 81.491076 iter 50 value 80.701377 iter 60 value 80.247587 iter 70 value 79.937336 iter 80 value 79.691979 iter 90 value 79.221303 iter 100 value 78.515303 final value 78.515303 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.420674 iter 10 value 94.226276 iter 20 value 94.042657 iter 30 value 85.250549 iter 40 value 81.582069 iter 50 value 80.044290 iter 60 value 79.148509 iter 70 value 78.185450 iter 80 value 77.942187 iter 90 value 77.799006 iter 100 value 77.656396 final value 77.656396 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.093561 iter 10 value 94.111764 iter 20 value 89.631139 iter 30 value 84.428464 iter 40 value 80.552492 iter 50 value 79.132481 iter 60 value 78.904332 iter 70 value 78.768848 iter 80 value 78.604420 iter 90 value 78.494931 iter 100 value 78.366944 final value 78.366944 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.853269 iter 10 value 95.723669 iter 20 value 85.445136 iter 30 value 83.915961 iter 40 value 81.780426 iter 50 value 80.463648 iter 60 value 80.047845 iter 70 value 79.471023 iter 80 value 79.057612 iter 90 value 78.573232 iter 100 value 78.244479 final value 78.244479 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.954414 iter 10 value 94.088840 iter 20 value 88.544330 iter 30 value 85.509294 iter 40 value 81.949128 iter 50 value 80.816651 iter 60 value 78.604698 iter 70 value 78.182883 iter 80 value 77.796720 iter 90 value 77.598242 iter 100 value 77.452624 final value 77.452624 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.893191 iter 10 value 94.727986 iter 20 value 92.840539 iter 30 value 83.984327 iter 40 value 82.365733 iter 50 value 81.671068 iter 60 value 81.383063 iter 70 value 80.940440 iter 80 value 80.650348 iter 90 value 80.336274 iter 100 value 80.168965 final value 80.168965 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.565025 final value 94.054493 converged Fitting Repeat 2 # weights: 103 initial value 98.676956 final value 94.054634 converged Fitting Repeat 3 # weights: 103 initial value 94.510870 final value 94.054544 converged Fitting Repeat 4 # weights: 103 initial value 110.034877 final value 94.054424 converged Fitting Repeat 5 # weights: 103 initial value 94.605146 iter 10 value 84.209122 iter 20 value 83.867257 iter 30 value 83.859714 final value 83.859595 converged Fitting Repeat 1 # weights: 305 initial value 104.802658 iter 10 value 94.059131 iter 20 value 92.801168 iter 30 value 84.514582 iter 40 value 83.081645 iter 50 value 83.061533 iter 60 value 80.675769 iter 70 value 78.346880 iter 80 value 77.196137 iter 90 value 77.014831 iter 100 value 76.765570 final value 76.765570 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.523338 iter 10 value 94.058504 iter 20 value 93.553707 iter 30 value 89.712033 iter 40 value 89.457250 iter 50 value 89.421352 iter 60 value 89.362190 iter 70 value 89.342848 iter 80 value 89.335186 iter 90 value 89.334046 iter 100 value 89.316263 final value 89.316263 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.601397 iter 10 value 94.042996 iter 20 value 94.014683 iter 30 value 91.916474 iter 40 value 82.197744 iter 50 value 81.157971 iter 60 value 81.085071 final value 81.084924 converged Fitting Repeat 4 # weights: 305 initial value 98.970707 iter 10 value 94.057698 iter 20 value 94.044634 iter 30 value 81.723457 iter 40 value 81.425125 iter 50 value 81.320456 iter 60 value 80.560318 iter 70 value 80.040468 iter 80 value 80.016798 final value 80.016687 converged Fitting Repeat 5 # weights: 305 initial value 99.424336 iter 10 value 94.057995 iter 20 value 94.052921 iter 20 value 94.052921 final value 94.052921 converged Fitting Repeat 1 # weights: 507 initial value 102.288850 iter 10 value 94.046756 iter 20 value 93.304756 iter 30 value 87.830186 iter 40 value 86.295803 iter 50 value 86.293902 iter 60 value 86.292612 final value 86.292415 converged Fitting Repeat 2 # weights: 507 initial value 102.033081 iter 10 value 93.093417 iter 20 value 92.190384 iter 30 value 92.141232 iter 40 value 90.847950 iter 50 value 90.762408 iter 60 value 90.762065 iter 70 value 90.760466 iter 70 value 90.760465 iter 70 value 90.760465 final value 90.760465 converged Fitting Repeat 3 # weights: 507 initial value 95.954100 iter 10 value 87.039724 iter 20 value 83.754081 iter 30 value 82.936784 iter 40 value 82.924116 iter 50 value 82.072069 iter 60 value 81.409494 iter 70 value 81.391103 iter 80 value 81.389641 iter 90 value 81.387906 iter 100 value 81.363322 final value 81.363322 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.517570 iter 10 value 85.649288 iter 20 value 81.972072 iter 30 value 81.884165 iter 40 value 81.751425 iter 50 value 81.720738 iter 60 value 81.720119 iter 70 value 81.719055 iter 80 value 81.718288 iter 90 value 81.717598 final value 81.717049 converged Fitting Repeat 5 # weights: 507 initial value 103.940788 iter 10 value 94.046599 iter 20 value 94.038959 iter 30 value 93.102292 iter 40 value 81.173044 iter 50 value 80.637587 iter 60 value 79.975924 iter 70 value 79.750842 iter 80 value 79.749296 iter 90 value 78.661926 iter 100 value 77.725010 final value 77.725010 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.521110 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.525853 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.482119 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.427901 iter 10 value 89.915592 iter 20 value 89.069068 iter 20 value 89.069068 iter 20 value 89.069068 final value 89.069068 converged Fitting Repeat 5 # weights: 103 initial value 113.170685 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.698889 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.033846 iter 10 value 88.969431 iter 20 value 88.810615 iter 30 value 88.804664 final value 88.804661 converged Fitting Repeat 3 # weights: 305 initial value 106.603830 iter 10 value 94.052435 iter 10 value 94.052434 iter 10 value 94.052434 final value 94.052434 converged Fitting Repeat 4 # weights: 305 initial value 101.146257 iter 10 value 94.055937 iter 20 value 94.052437 final value 94.052435 converged Fitting Repeat 5 # weights: 305 initial value 101.872016 final value 94.275362 converged Fitting Repeat 1 # weights: 507 initial value 108.359103 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 109.691336 iter 10 value 93.030766 iter 20 value 89.854505 iter 30 value 87.052669 iter 40 value 86.923320 iter 50 value 86.269119 iter 60 value 85.692001 final value 85.691980 converged Fitting Repeat 3 # weights: 507 initial value 122.222666 final value 94.483810 converged Fitting Repeat 4 # weights: 507 initial value 97.140803 final value 94.483810 converged Fitting Repeat 5 # weights: 507 initial value 114.685960 iter 10 value 94.276113 final value 94.275345 converged Fitting Repeat 1 # weights: 103 initial value 114.085850 iter 10 value 94.422813 iter 20 value 88.676319 iter 30 value 88.372174 iter 40 value 86.393920 iter 50 value 85.989557 iter 60 value 85.000784 iter 70 value 84.325756 iter 80 value 83.441459 iter 90 value 83.374017 iter 100 value 83.291935 final value 83.291935 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.783242 iter 10 value 94.487770 iter 20 value 94.369869 iter 30 value 94.322662 iter 40 value 90.869563 iter 50 value 87.128618 iter 60 value 85.949676 iter 70 value 85.504203 iter 80 value 85.282306 iter 90 value 85.208150 final value 85.208017 converged Fitting Repeat 3 # weights: 103 initial value 101.875068 iter 10 value 94.498434 iter 20 value 94.349754 iter 30 value 92.733812 iter 40 value 91.475322 iter 50 value 87.185664 iter 60 value 86.115809 iter 70 value 86.091916 iter 80 value 84.722320 iter 90 value 83.472695 iter 100 value 83.393406 final value 83.393406 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 111.572436 iter 10 value 94.547401 iter 20 value 94.392465 iter 30 value 92.794732 iter 40 value 88.744208 iter 50 value 88.119058 iter 60 value 87.474896 iter 70 value 86.310782 iter 80 value 85.999879 iter 90 value 85.895177 iter 100 value 85.260513 final value 85.260513 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.023041 iter 10 value 94.237627 iter 20 value 87.845044 iter 30 value 86.002016 iter 40 value 85.567764 iter 50 value 84.627319 iter 60 value 83.890141 iter 70 value 83.424961 iter 80 value 83.407255 iter 90 value 83.384466 iter 100 value 83.272952 final value 83.272952 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.182511 iter 10 value 94.456785 iter 20 value 91.787127 iter 30 value 89.737505 iter 40 value 87.950066 iter 50 value 86.782570 iter 60 value 85.749000 iter 70 value 83.578638 iter 80 value 82.818004 iter 90 value 82.690345 iter 100 value 82.400252 final value 82.400252 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.975819 iter 10 value 95.882939 iter 20 value 94.482345 iter 30 value 90.299015 iter 40 value 89.065565 iter 50 value 88.088109 iter 60 value 83.826055 iter 70 value 83.348663 iter 80 value 82.975779 iter 90 value 82.435598 iter 100 value 82.085931 final value 82.085931 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.859592 iter 10 value 94.214721 iter 20 value 93.946852 iter 30 value 89.956070 iter 40 value 88.240090 iter 50 value 87.366799 iter 60 value 86.376014 iter 70 value 86.232835 iter 80 value 85.722097 iter 90 value 85.452666 iter 100 value 84.775609 final value 84.775609 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.960897 iter 10 value 94.841612 iter 20 value 94.629924 iter 30 value 88.607073 iter 40 value 86.010522 iter 50 value 84.960221 iter 60 value 84.067176 iter 70 value 83.340801 iter 80 value 82.667604 iter 90 value 82.309020 iter 100 value 82.233801 final value 82.233801 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.068482 iter 10 value 93.191647 iter 20 value 89.886820 iter 30 value 86.624076 iter 40 value 86.337704 iter 50 value 86.257874 iter 60 value 85.728179 iter 70 value 83.144079 iter 80 value 82.585799 iter 90 value 82.412744 iter 100 value 82.329777 final value 82.329777 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.624360 iter 10 value 94.620750 iter 20 value 94.470760 iter 30 value 89.439568 iter 40 value 87.179445 iter 50 value 86.302166 iter 60 value 84.618915 iter 70 value 83.015189 iter 80 value 82.225195 iter 90 value 82.097115 iter 100 value 82.012053 final value 82.012053 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 147.905695 iter 10 value 95.367517 iter 20 value 94.987540 iter 30 value 94.519470 iter 40 value 87.646918 iter 50 value 86.986144 iter 60 value 86.638125 iter 70 value 86.383657 iter 80 value 85.632570 iter 90 value 83.767269 iter 100 value 83.174653 final value 83.174653 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 133.912692 iter 10 value 94.984467 iter 20 value 92.385236 iter 30 value 87.658585 iter 40 value 86.835338 iter 50 value 85.425852 iter 60 value 83.563930 iter 70 value 83.037628 iter 80 value 82.880507 iter 90 value 82.725120 iter 100 value 82.633037 final value 82.633037 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.415502 iter 10 value 95.824973 iter 20 value 93.842152 iter 30 value 91.612533 iter 40 value 88.788821 iter 50 value 87.150807 iter 60 value 83.974565 iter 70 value 82.951056 iter 80 value 82.045368 iter 90 value 81.635251 iter 100 value 81.479574 final value 81.479574 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.075682 iter 10 value 94.378343 iter 20 value 88.085679 iter 30 value 86.317730 iter 40 value 85.781040 iter 50 value 85.384199 iter 60 value 85.152591 iter 70 value 84.056477 iter 80 value 82.531637 iter 90 value 81.991076 iter 100 value 81.742820 final value 81.742820 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.513844 iter 10 value 94.485521 final value 94.484266 converged Fitting Repeat 2 # weights: 103 initial value 100.479748 final value 94.485872 converged Fitting Repeat 3 # weights: 103 initial value 99.677334 final value 94.486099 converged Fitting Repeat 4 # weights: 103 initial value 96.821034 iter 10 value 90.945885 iter 20 value 90.884191 iter 30 value 90.708143 iter 40 value 90.522969 iter 50 value 90.521857 final value 90.521842 converged Fitting Repeat 5 # weights: 103 initial value 95.017175 final value 94.485849 converged Fitting Repeat 1 # weights: 305 initial value 102.945190 iter 10 value 94.488384 iter 20 value 94.276494 iter 20 value 94.276493 iter 20 value 94.276493 final value 94.276493 converged Fitting Repeat 2 # weights: 305 initial value 110.373904 iter 10 value 94.489229 iter 20 value 94.484343 iter 30 value 94.325253 iter 40 value 92.344183 iter 50 value 89.144841 iter 60 value 87.864736 iter 70 value 87.022110 iter 80 value 86.907541 iter 90 value 86.657321 iter 100 value 86.586395 final value 86.586395 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.032338 iter 10 value 94.489302 iter 20 value 94.483876 iter 30 value 93.747173 iter 40 value 88.390979 iter 50 value 88.390384 iter 60 value 88.333604 iter 70 value 88.314243 iter 80 value 88.307768 iter 90 value 87.424959 iter 100 value 86.929096 final value 86.929096 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.182662 iter 10 value 94.488893 iter 20 value 94.483582 iter 30 value 91.520188 iter 40 value 86.558861 iter 50 value 83.869008 iter 60 value 83.665769 final value 83.662436 converged Fitting Repeat 5 # weights: 305 initial value 106.637107 iter 10 value 94.280599 iter 20 value 94.276004 final value 94.275679 converged Fitting Repeat 1 # weights: 507 initial value 103.306285 iter 10 value 86.665685 iter 20 value 86.661499 iter 30 value 85.708024 iter 40 value 85.658765 iter 50 value 85.482816 iter 60 value 85.481332 iter 70 value 85.449068 iter 80 value 85.348290 iter 90 value 85.116774 iter 100 value 85.114650 final value 85.114650 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.274756 iter 10 value 94.492835 iter 20 value 93.610824 iter 30 value 88.806333 final value 88.805964 converged Fitting Repeat 3 # weights: 507 initial value 108.052294 iter 10 value 93.912077 iter 20 value 92.221365 iter 30 value 86.657981 iter 40 value 86.349771 iter 50 value 85.438157 iter 60 value 85.030817 iter 70 value 85.029044 final value 85.029008 converged Fitting Repeat 4 # weights: 507 initial value 103.202679 iter 10 value 94.296772 iter 20 value 94.291212 iter 30 value 87.198152 iter 40 value 83.636549 iter 50 value 81.578866 iter 60 value 81.357742 iter 70 value 81.279322 iter 80 value 81.262929 iter 90 value 81.261179 iter 100 value 81.246379 final value 81.246379 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.896732 iter 10 value 94.283615 iter 20 value 94.276025 iter 30 value 93.443377 iter 40 value 92.051163 iter 50 value 91.632995 iter 60 value 86.379618 iter 70 value 85.582981 iter 80 value 85.161951 iter 90 value 84.018874 iter 100 value 83.778156 final value 83.778156 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 119.697242 iter 10 value 117.895790 iter 20 value 117.884436 iter 30 value 117.555753 final value 117.550892 converged Fitting Repeat 2 # weights: 305 initial value 132.460022 iter 10 value 117.923235 iter 20 value 117.902035 iter 30 value 111.612734 iter 40 value 107.029359 iter 50 value 106.918178 iter 60 value 106.734884 iter 70 value 106.670187 iter 80 value 106.667102 iter 90 value 105.150796 iter 100 value 105.067854 final value 105.067854 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 122.337886 iter 10 value 117.895350 iter 20 value 117.890423 iter 30 value 117.611502 final value 117.607897 converged Fitting Repeat 4 # weights: 305 initial value 123.119745 iter 10 value 117.764306 iter 20 value 117.759758 final value 117.758942 converged Fitting Repeat 5 # weights: 305 initial value 133.448158 iter 10 value 117.893581 iter 20 value 117.761234 iter 30 value 117.759994 iter 40 value 117.729683 iter 40 value 117.729682 iter 40 value 117.729682 final value 117.729682 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Mar 24 02:30:09 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 43.03 1.34 132.12
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.12 | 1.70 | 37.06 | |
FreqInteractors | 0.33 | 0.01 | 0.43 | |
calculateAAC | 0.06 | 0.00 | 0.08 | |
calculateAutocor | 0.42 | 0.10 | 0.56 | |
calculateCTDC | 0.11 | 0.00 | 0.11 | |
calculateCTDD | 0.91 | 0.04 | 1.00 | |
calculateCTDT | 0.39 | 0.02 | 0.40 | |
calculateCTriad | 0.5 | 0.0 | 0.5 | |
calculateDC | 0.09 | 0.03 | 0.13 | |
calculateF | 0.39 | 0.02 | 0.44 | |
calculateKSAAP | 0.14 | 0.00 | 0.14 | |
calculateQD_Sm | 2.45 | 0.12 | 2.58 | |
calculateTC | 2.10 | 0.06 | 2.15 | |
calculateTC_Sm | 0.29 | 0.00 | 0.30 | |
corr_plot | 33.13 | 1.66 | 34.81 | |
enrichfindP | 0.55 | 0.20 | 14.60 | |
enrichfind_hp | 0.04 | 0.03 | 1.07 | |
enrichplot | 0.49 | 0.00 | 0.49 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.03 | 0.00 | 2.06 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.08 | 0.00 | 0.07 | |
pred_ensembel | 13.42 | 0.30 | 12.41 | |
var_imp | 35.41 | 1.09 | 36.51 | |