Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-03-24 11:47 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" | 4779 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" | 4550 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4578 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4530 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4461 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2313 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.13.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-03-24 07:28:26 -0000 (Mon, 24 Mar 2025) |
EndedAt: 2025-03-24 07:35:44 -0000 (Mon, 24 Mar 2025) |
EllapsedTime: 438.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-02-19 r87757) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS-SP1) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 39.998 0.870 40.936 FSmethod 38.136 0.208 38.407 corr_plot 37.515 0.388 37.964 pred_ensembel 18.483 0.575 17.864 enrichfindP 0.509 0.032 21.349 getFASTA 0.125 0.008 7.672 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.460937 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 107.859001 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.932297 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.571647 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.836243 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.790707 iter 10 value 94.452716 final value 94.449438 converged Fitting Repeat 2 # weights: 305 initial value 100.784676 final value 94.088890 converged Fitting Repeat 3 # weights: 305 initial value 113.210787 final value 94.275362 converged Fitting Repeat 4 # weights: 305 initial value 96.060335 iter 10 value 94.357526 iter 20 value 86.691998 iter 30 value 86.666539 final value 86.665542 converged Fitting Repeat 5 # weights: 305 initial value 102.937823 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 112.430243 iter 10 value 94.083951 iter 10 value 94.083951 iter 10 value 94.083951 final value 94.083951 converged Fitting Repeat 2 # weights: 507 initial value 115.550304 final value 94.400000 converged Fitting Repeat 3 # weights: 507 initial value 105.908280 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 151.195123 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 102.609819 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 95.916233 iter 10 value 90.525693 iter 20 value 86.116631 iter 30 value 85.389476 iter 40 value 84.582881 iter 50 value 84.370753 iter 60 value 84.310571 final value 84.310554 converged Fitting Repeat 2 # weights: 103 initial value 98.183377 iter 10 value 94.421485 iter 20 value 92.273784 iter 30 value 91.847986 iter 40 value 91.816662 iter 50 value 91.759753 iter 60 value 91.677975 iter 70 value 85.387069 iter 80 value 84.049427 iter 90 value 83.423537 iter 100 value 83.145135 final value 83.145135 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 110.445947 iter 10 value 94.461858 iter 20 value 92.967586 iter 30 value 91.730611 iter 40 value 85.876519 iter 50 value 84.166138 iter 60 value 83.698836 iter 70 value 83.344413 iter 80 value 82.870738 iter 90 value 82.709399 iter 100 value 82.610473 final value 82.610473 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.994466 iter 10 value 94.222124 iter 20 value 86.811301 iter 30 value 85.672104 iter 40 value 85.620304 iter 50 value 84.970748 iter 60 value 84.501090 iter 70 value 84.378528 iter 80 value 84.310934 final value 84.310548 converged Fitting Repeat 5 # weights: 103 initial value 98.914167 iter 10 value 94.486551 iter 20 value 94.424052 iter 30 value 92.746567 iter 40 value 92.538492 iter 50 value 87.325939 iter 60 value 85.844861 iter 70 value 85.095159 iter 80 value 84.853798 iter 90 value 84.714067 final value 84.713594 converged Fitting Repeat 1 # weights: 305 initial value 109.607338 iter 10 value 94.542208 iter 20 value 94.358096 iter 30 value 94.326298 iter 40 value 94.281888 iter 50 value 92.901583 iter 60 value 88.430436 iter 70 value 85.452801 iter 80 value 84.500010 iter 90 value 82.904805 iter 100 value 81.932296 final value 81.932296 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.278307 iter 10 value 95.223283 iter 20 value 93.140343 iter 30 value 85.395472 iter 40 value 82.996192 iter 50 value 81.607704 iter 60 value 81.446236 iter 70 value 81.241626 iter 80 value 81.202279 iter 90 value 81.110124 iter 100 value 81.034696 final value 81.034696 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.626258 iter 10 value 94.544833 iter 20 value 94.374661 iter 30 value 92.852207 iter 40 value 87.207602 iter 50 value 83.144014 iter 60 value 81.952554 iter 70 value 81.519143 iter 80 value 81.253807 iter 90 value 81.029393 iter 100 value 80.785908 final value 80.785908 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.566022 iter 10 value 92.898276 iter 20 value 87.928695 iter 30 value 87.484453 iter 40 value 87.220927 iter 50 value 85.097876 iter 60 value 83.352810 iter 70 value 82.678388 iter 80 value 81.661407 iter 90 value 81.299329 iter 100 value 81.216283 final value 81.216283 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.364762 iter 10 value 94.109205 iter 20 value 87.555127 iter 30 value 85.282874 iter 40 value 85.169663 iter 50 value 84.769463 iter 60 value 82.254365 iter 70 value 81.538876 iter 80 value 81.273713 iter 90 value 81.066116 iter 100 value 81.038007 final value 81.038007 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.322607 iter 10 value 95.733290 iter 20 value 87.946492 iter 30 value 85.150739 iter 40 value 84.421988 iter 50 value 83.913382 iter 60 value 83.454621 iter 70 value 83.112975 iter 80 value 82.903560 iter 90 value 82.725531 iter 100 value 82.352147 final value 82.352147 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.653881 iter 10 value 94.566565 iter 20 value 86.326857 iter 30 value 84.530981 iter 40 value 83.383859 iter 50 value 82.931484 iter 60 value 82.040674 iter 70 value 81.828377 iter 80 value 81.631530 iter 90 value 81.212072 iter 100 value 80.840076 final value 80.840076 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.207753 iter 10 value 93.583953 iter 20 value 86.524716 iter 30 value 86.269311 iter 40 value 85.732064 iter 50 value 83.925181 iter 60 value 83.262272 iter 70 value 81.486060 iter 80 value 80.991481 iter 90 value 80.950083 iter 100 value 80.934297 final value 80.934297 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.525273 iter 10 value 94.492768 iter 20 value 87.421001 iter 30 value 86.660245 iter 40 value 84.432057 iter 50 value 82.827666 iter 60 value 82.715492 iter 70 value 82.339042 iter 80 value 82.154568 iter 90 value 82.036721 iter 100 value 81.571553 final value 81.571553 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.432054 iter 10 value 94.852330 iter 20 value 88.607990 iter 30 value 85.647786 iter 40 value 84.554141 iter 50 value 83.329341 iter 60 value 81.720479 iter 70 value 80.888535 iter 80 value 80.654541 iter 90 value 80.571249 iter 100 value 80.506173 final value 80.506173 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.942202 iter 10 value 94.277063 iter 20 value 94.275925 iter 30 value 94.212424 iter 40 value 89.838584 iter 50 value 89.537254 iter 60 value 87.926197 final value 87.922897 converged Fitting Repeat 2 # weights: 103 initial value 107.037147 final value 94.486322 converged Fitting Repeat 3 # weights: 103 initial value 95.208306 final value 94.485710 converged Fitting Repeat 4 # weights: 103 initial value 95.035022 iter 10 value 88.952050 iter 20 value 87.080588 iter 30 value 86.146700 final value 86.146351 converged Fitting Repeat 5 # weights: 103 initial value 98.994443 final value 94.485760 converged Fitting Repeat 1 # weights: 305 initial value 94.749614 iter 10 value 91.954672 iter 20 value 91.671100 iter 30 value 91.669861 iter 40 value 91.667969 iter 40 value 91.667969 final value 91.667969 converged Fitting Repeat 2 # weights: 305 initial value 99.747702 iter 10 value 94.489005 iter 20 value 93.959215 iter 30 value 91.932184 iter 40 value 91.931709 iter 50 value 91.705389 iter 60 value 91.514338 iter 70 value 91.502268 iter 80 value 91.448177 final value 91.445674 converged Fitting Repeat 3 # weights: 305 initial value 106.703266 iter 10 value 94.144693 iter 20 value 86.393013 iter 30 value 86.371873 iter 40 value 86.276023 iter 50 value 86.273954 iter 60 value 86.270885 final value 86.269377 converged Fitting Repeat 4 # weights: 305 initial value 104.867323 iter 10 value 94.489584 iter 20 value 94.474317 iter 30 value 87.599554 iter 40 value 85.965949 iter 50 value 85.654998 iter 60 value 85.106516 iter 70 value 82.419120 iter 80 value 80.506650 iter 90 value 80.369792 final value 80.369231 converged Fitting Repeat 5 # weights: 305 initial value 95.665316 iter 10 value 94.280642 iter 20 value 94.275668 iter 30 value 94.272558 iter 40 value 93.573874 iter 50 value 93.348833 iter 60 value 89.768250 iter 70 value 87.609582 iter 80 value 83.598722 iter 90 value 83.444115 iter 100 value 83.306582 final value 83.306582 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.633431 iter 10 value 88.169352 iter 20 value 87.476377 iter 30 value 87.033592 iter 40 value 83.489304 iter 50 value 82.829641 iter 60 value 82.567596 iter 70 value 82.514257 iter 80 value 82.511028 iter 90 value 82.510854 final value 82.510849 converged Fitting Repeat 2 # weights: 507 initial value 115.654551 iter 10 value 94.422717 iter 20 value 94.283856 iter 30 value 94.281183 iter 40 value 94.098415 iter 50 value 88.262291 iter 60 value 87.720896 iter 70 value 87.719152 iter 80 value 87.694026 final value 87.693999 converged Fitting Repeat 3 # weights: 507 initial value 121.170944 iter 10 value 94.492165 iter 20 value 89.770505 iter 30 value 83.688946 iter 40 value 83.354100 iter 50 value 82.116546 iter 60 value 80.274981 iter 70 value 79.919561 iter 80 value 79.906052 iter 90 value 79.902397 final value 79.902065 converged Fitting Repeat 4 # weights: 507 initial value 103.757062 iter 10 value 94.054947 iter 20 value 89.780838 iter 30 value 85.940505 iter 40 value 85.628736 iter 50 value 85.621398 iter 60 value 84.927507 iter 70 value 84.912410 iter 80 value 84.639553 iter 90 value 84.143984 iter 100 value 84.137072 final value 84.137072 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.983133 iter 10 value 94.284109 iter 20 value 94.276323 final value 94.276132 converged Fitting Repeat 1 # weights: 103 initial value 98.252050 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.062487 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.597110 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.527148 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 103.443104 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.286825 final value 93.356725 converged Fitting Repeat 2 # weights: 305 initial value 98.973055 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 100.275875 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 102.389779 iter 10 value 93.328441 final value 93.328261 converged Fitting Repeat 5 # weights: 305 initial value 101.375560 iter 10 value 93.383430 iter 20 value 93.154725 final value 93.154174 converged Fitting Repeat 1 # weights: 507 initial value 109.006905 iter 10 value 93.296135 final value 93.296118 converged Fitting Repeat 2 # weights: 507 initial value 101.006728 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 109.967914 final value 94.052911 converged Fitting Repeat 4 # weights: 507 initial value 109.732855 iter 10 value 93.630117 iter 20 value 93.161988 final value 93.110571 converged Fitting Repeat 5 # weights: 507 initial value 102.226432 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.224770 iter 10 value 94.028586 iter 20 value 92.545243 iter 30 value 85.484238 iter 40 value 85.173998 iter 50 value 85.042983 iter 60 value 84.489616 iter 70 value 84.210621 iter 80 value 84.192097 final value 84.192032 converged Fitting Repeat 2 # weights: 103 initial value 98.881515 iter 10 value 93.381672 iter 20 value 85.688606 iter 30 value 84.928130 iter 40 value 84.831555 iter 50 value 84.140413 iter 60 value 84.082895 final value 84.082658 converged Fitting Repeat 3 # weights: 103 initial value 96.396620 iter 10 value 94.072337 iter 20 value 88.099573 iter 30 value 86.959026 iter 40 value 85.951553 iter 50 value 84.962525 iter 60 value 84.569099 final value 84.567333 converged Fitting Repeat 4 # weights: 103 initial value 105.845440 iter 10 value 93.788203 iter 20 value 91.974041 iter 30 value 89.112231 iter 40 value 89.062736 iter 50 value 88.435237 iter 60 value 83.693515 iter 70 value 82.621337 iter 80 value 81.988497 iter 90 value 81.366342 iter 100 value 81.114048 final value 81.114048 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.755459 iter 10 value 94.688824 iter 20 value 94.045437 iter 30 value 93.459402 iter 40 value 90.203620 iter 50 value 85.695814 iter 60 value 85.187129 iter 70 value 83.506897 iter 80 value 81.851088 iter 90 value 81.152905 iter 100 value 80.981958 final value 80.981958 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 116.764422 iter 10 value 97.131769 iter 20 value 90.477114 iter 30 value 82.811671 iter 40 value 81.862197 iter 50 value 81.271619 iter 60 value 80.846602 iter 70 value 80.805832 iter 80 value 80.669421 iter 90 value 80.175012 iter 100 value 79.913945 final value 79.913945 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.785832 iter 10 value 94.596670 iter 20 value 89.521535 iter 30 value 83.502562 iter 40 value 81.258169 iter 50 value 79.622836 iter 60 value 79.494154 iter 70 value 79.290282 iter 80 value 79.236126 iter 90 value 79.205515 iter 100 value 79.185419 final value 79.185419 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.619828 iter 10 value 94.058726 iter 20 value 88.617047 iter 30 value 84.609747 iter 40 value 84.385286 iter 50 value 83.910212 iter 60 value 83.480725 iter 70 value 81.773285 iter 80 value 81.248743 iter 90 value 80.336166 iter 100 value 80.055454 final value 80.055454 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.472758 iter 10 value 94.073255 iter 20 value 93.290324 iter 30 value 91.130551 iter 40 value 88.326314 iter 50 value 85.752128 iter 60 value 84.248328 iter 70 value 83.205847 iter 80 value 83.093845 iter 90 value 82.826557 iter 100 value 82.612087 final value 82.612087 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.370712 iter 10 value 93.915165 iter 20 value 86.465478 iter 30 value 85.257593 iter 40 value 84.518852 iter 50 value 84.062553 iter 60 value 83.198748 iter 70 value 81.521301 iter 80 value 81.013093 iter 90 value 80.243169 iter 100 value 80.182139 final value 80.182139 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.781149 iter 10 value 94.251838 iter 20 value 86.771123 iter 30 value 85.659370 iter 40 value 83.919568 iter 50 value 83.217530 iter 60 value 82.991826 iter 70 value 81.396646 iter 80 value 80.549508 iter 90 value 80.219444 iter 100 value 79.701695 final value 79.701695 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.012527 iter 10 value 97.048265 iter 20 value 95.107663 iter 30 value 94.471395 iter 40 value 94.020285 iter 50 value 87.617920 iter 60 value 86.822260 iter 70 value 85.359971 iter 80 value 83.666371 iter 90 value 81.851847 iter 100 value 80.546846 final value 80.546846 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.568036 iter 10 value 96.012790 iter 20 value 91.921696 iter 30 value 87.883710 iter 40 value 82.838842 iter 50 value 81.123056 iter 60 value 79.932761 iter 70 value 79.460422 iter 80 value 79.330372 iter 90 value 79.259363 iter 100 value 79.224940 final value 79.224940 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.707914 iter 10 value 94.915522 iter 20 value 90.395016 iter 30 value 85.193084 iter 40 value 82.777757 iter 50 value 81.663176 iter 60 value 81.608942 iter 70 value 81.297061 iter 80 value 80.928830 iter 90 value 80.464515 iter 100 value 80.187171 final value 80.187171 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.227453 iter 10 value 93.677228 iter 20 value 90.446060 iter 30 value 84.599428 iter 40 value 84.027775 iter 50 value 83.128783 iter 60 value 81.479335 iter 70 value 80.414960 iter 80 value 80.017237 iter 90 value 79.849990 iter 100 value 79.687858 final value 79.687858 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.479966 final value 94.054391 converged Fitting Repeat 2 # weights: 103 initial value 94.746047 final value 94.054463 converged Fitting Repeat 3 # weights: 103 initial value 99.991912 iter 10 value 94.054873 iter 20 value 94.052975 final value 94.052915 converged Fitting Repeat 4 # weights: 103 initial value 96.494858 final value 94.054625 converged Fitting Repeat 5 # weights: 103 initial value 94.716409 final value 94.054689 converged Fitting Repeat 1 # weights: 305 initial value 97.367703 iter 10 value 86.264855 iter 20 value 86.171455 iter 30 value 85.281952 iter 40 value 85.271359 iter 50 value 85.268232 iter 60 value 85.268088 iter 60 value 85.268087 final value 85.268087 converged Fitting Repeat 2 # weights: 305 initial value 104.422267 iter 10 value 94.057736 iter 20 value 93.950264 iter 30 value 93.090932 iter 40 value 91.558071 iter 50 value 86.210065 iter 60 value 85.703930 iter 70 value 84.884575 iter 80 value 84.800078 iter 80 value 84.800077 iter 80 value 84.800077 final value 84.800077 converged Fitting Repeat 3 # weights: 305 initial value 107.625671 iter 10 value 93.872569 iter 20 value 87.702423 iter 30 value 86.986833 iter 40 value 86.271832 iter 50 value 86.166361 iter 60 value 85.811853 iter 70 value 85.806595 final value 85.806480 converged Fitting Repeat 4 # weights: 305 initial value 104.769470 iter 10 value 94.057632 iter 20 value 93.372354 final value 93.328889 converged Fitting Repeat 5 # weights: 305 initial value 108.988702 iter 10 value 94.057854 iter 20 value 94.052940 iter 30 value 93.777614 iter 40 value 92.510023 final value 92.507288 converged Fitting Repeat 1 # weights: 507 initial value 110.837971 iter 10 value 92.173167 iter 20 value 88.639534 iter 30 value 88.506107 iter 40 value 88.503430 iter 50 value 88.497594 iter 60 value 88.497262 iter 70 value 88.494630 final value 88.493344 converged Fitting Repeat 2 # weights: 507 initial value 101.163168 iter 10 value 94.060376 iter 20 value 88.939377 iter 30 value 85.607123 final value 85.606953 converged Fitting Repeat 3 # weights: 507 initial value 98.188487 iter 10 value 93.137001 iter 20 value 93.118946 iter 30 value 92.934291 iter 40 value 88.093589 iter 50 value 87.417289 iter 60 value 86.469403 iter 70 value 86.434751 iter 80 value 86.434207 iter 90 value 86.434059 iter 100 value 85.386728 final value 85.386728 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.353704 iter 10 value 94.061160 iter 20 value 94.036412 iter 30 value 92.995398 iter 40 value 92.845269 iter 50 value 92.845117 iter 60 value 92.845013 iter 60 value 92.845013 final value 92.845013 converged Fitting Repeat 5 # weights: 507 initial value 101.899301 iter 10 value 93.878295 iter 20 value 93.870381 iter 30 value 92.738597 iter 40 value 92.687956 iter 50 value 85.754441 iter 60 value 85.268178 iter 70 value 85.208811 iter 80 value 81.283843 iter 90 value 80.223879 iter 100 value 79.563068 final value 79.563068 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.695835 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.865679 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.347405 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 116.178654 final value 93.671508 converged Fitting Repeat 5 # weights: 103 initial value 97.211286 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.668667 final value 93.671508 converged Fitting Repeat 2 # weights: 305 initial value 111.985637 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 104.452364 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 96.320813 final value 93.671509 converged Fitting Repeat 5 # weights: 305 initial value 93.166618 iter 10 value 87.571646 final value 87.571429 converged Fitting Repeat 1 # weights: 507 initial value 98.998592 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 120.513587 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 106.038789 iter 10 value 93.508307 iter 20 value 86.327739 iter 30 value 86.313787 final value 86.313644 converged Fitting Repeat 4 # weights: 507 initial value 108.125365 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 96.290744 iter 10 value 92.901880 iter 20 value 86.256703 iter 30 value 86.229993 final value 86.229984 converged Fitting Repeat 1 # weights: 103 initial value 95.884200 iter 10 value 94.064224 iter 20 value 92.201209 iter 30 value 89.131145 iter 40 value 88.393769 iter 50 value 88.109200 iter 60 value 88.063353 iter 70 value 88.035124 iter 80 value 86.225599 iter 90 value 86.156029 iter 100 value 86.153144 final value 86.153144 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.415974 iter 10 value 94.061088 iter 20 value 93.514720 iter 30 value 93.469067 iter 40 value 92.578621 iter 50 value 89.070637 iter 60 value 88.951950 iter 70 value 88.450483 iter 80 value 86.227547 iter 90 value 86.157013 iter 100 value 86.139859 final value 86.139859 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.799908 iter 10 value 94.056594 iter 20 value 87.536426 iter 30 value 85.047333 iter 40 value 83.700076 iter 50 value 83.623494 iter 60 value 83.594865 final value 83.592695 converged Fitting Repeat 4 # weights: 103 initial value 104.880972 iter 10 value 93.961921 iter 20 value 91.822824 iter 30 value 90.364534 iter 40 value 90.258688 iter 50 value 87.514264 iter 60 value 86.088046 iter 70 value 84.851798 iter 80 value 84.547531 iter 90 value 84.143610 iter 100 value 83.712379 final value 83.712379 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.406556 iter 10 value 93.694100 iter 20 value 88.500796 iter 30 value 88.067660 iter 40 value 85.360240 iter 50 value 84.313440 iter 60 value 84.028757 iter 70 value 83.886439 iter 80 value 83.860962 final value 83.857995 converged Fitting Repeat 1 # weights: 305 initial value 106.807108 iter 10 value 94.412869 iter 20 value 89.807134 iter 30 value 86.855729 iter 40 value 85.252849 iter 50 value 84.617490 iter 60 value 84.454672 iter 70 value 84.373527 iter 80 value 84.300404 iter 90 value 84.071342 iter 100 value 83.306660 final value 83.306660 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.022892 iter 10 value 94.013778 iter 20 value 89.438562 iter 30 value 88.167501 iter 40 value 86.007127 iter 50 value 83.316150 iter 60 value 82.330277 iter 70 value 82.131217 iter 80 value 82.079101 iter 90 value 82.068231 iter 100 value 82.065126 final value 82.065126 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.421782 iter 10 value 93.761908 iter 20 value 93.449094 iter 30 value 90.949961 iter 40 value 87.523980 iter 50 value 87.193658 iter 60 value 86.529791 iter 70 value 86.115601 iter 80 value 86.002054 iter 90 value 85.060145 iter 100 value 84.574860 final value 84.574860 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.888615 iter 10 value 94.845619 iter 20 value 91.880372 iter 30 value 91.821930 iter 40 value 90.491784 iter 50 value 85.547348 iter 60 value 85.244378 iter 70 value 84.575538 iter 80 value 84.378392 iter 90 value 84.247540 iter 100 value 84.127957 final value 84.127957 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.818651 iter 10 value 94.041849 iter 20 value 93.615165 iter 30 value 93.378664 iter 40 value 92.760961 iter 50 value 88.630827 iter 60 value 86.263197 iter 70 value 85.292955 iter 80 value 84.686161 iter 90 value 83.757763 iter 100 value 83.130867 final value 83.130867 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.286813 iter 10 value 94.234538 iter 20 value 93.533075 iter 30 value 93.368849 iter 40 value 92.884980 iter 50 value 90.406692 iter 60 value 88.855717 iter 70 value 86.782136 iter 80 value 85.927177 iter 90 value 85.528822 iter 100 value 84.280817 final value 84.280817 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 142.302126 iter 10 value 94.111937 iter 20 value 93.810469 iter 30 value 90.789803 iter 40 value 87.936001 iter 50 value 84.118026 iter 60 value 83.296447 iter 70 value 83.057856 iter 80 value 82.755171 iter 90 value 82.564274 iter 100 value 82.541731 final value 82.541731 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.414139 iter 10 value 93.900776 iter 20 value 90.255959 iter 30 value 88.167146 iter 40 value 86.928519 iter 50 value 86.191541 iter 60 value 84.573849 iter 70 value 84.152662 iter 80 value 83.986086 iter 90 value 83.832459 iter 100 value 83.717821 final value 83.717821 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.178924 iter 10 value 94.055837 iter 20 value 90.528641 iter 30 value 86.293085 iter 40 value 84.019516 iter 50 value 83.722919 iter 60 value 83.073756 iter 70 value 82.738546 iter 80 value 82.687728 iter 90 value 82.509316 iter 100 value 82.254460 final value 82.254460 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.802157 iter 10 value 93.910636 iter 20 value 89.472121 iter 30 value 87.817896 iter 40 value 86.694097 iter 50 value 86.299616 iter 60 value 86.122551 iter 70 value 85.575592 iter 80 value 85.301380 iter 90 value 84.311199 iter 100 value 84.122931 final value 84.122931 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.482003 final value 94.054668 converged Fitting Repeat 2 # weights: 103 initial value 102.854463 final value 94.054485 converged Fitting Repeat 3 # weights: 103 initial value 104.826200 final value 94.054364 converged Fitting Repeat 4 # weights: 103 initial value 98.744736 final value 94.054391 converged Fitting Repeat 5 # weights: 103 initial value 95.911686 iter 10 value 93.425185 iter 20 value 93.385667 iter 30 value 93.384218 iter 40 value 93.383943 final value 93.383938 converged Fitting Repeat 1 # weights: 305 initial value 94.230243 iter 10 value 93.795037 iter 20 value 92.410762 iter 30 value 92.410317 iter 40 value 92.357658 iter 50 value 92.317067 iter 60 value 92.313224 final value 92.312455 converged Fitting Repeat 2 # weights: 305 initial value 95.428157 iter 10 value 92.890366 iter 20 value 91.571739 iter 30 value 91.338904 iter 40 value 91.336405 final value 91.334842 converged Fitting Repeat 3 # weights: 305 initial value 96.696437 iter 10 value 93.676416 iter 20 value 90.744023 iter 30 value 86.845795 iter 40 value 86.362678 iter 50 value 86.349356 iter 60 value 86.066771 iter 70 value 83.852795 iter 80 value 83.321278 iter 90 value 82.924307 iter 100 value 82.924177 final value 82.924177 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.243416 iter 10 value 94.053324 final value 94.053317 converged Fitting Repeat 5 # weights: 305 initial value 96.804586 iter 10 value 92.904458 iter 20 value 92.893971 iter 30 value 92.814326 iter 40 value 92.810088 iter 50 value 92.809281 iter 60 value 92.412946 iter 70 value 90.913175 iter 80 value 86.523404 iter 90 value 86.407209 iter 100 value 85.788945 final value 85.788945 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.119070 iter 10 value 93.679994 iter 20 value 92.572856 iter 30 value 86.692155 iter 40 value 85.446702 iter 50 value 84.600416 iter 60 value 84.538967 iter 70 value 84.516155 final value 84.515053 converged Fitting Repeat 2 # weights: 507 initial value 109.984762 iter 10 value 93.582143 iter 20 value 93.349709 iter 30 value 91.507984 iter 40 value 86.416146 iter 50 value 85.543606 iter 60 value 85.375362 iter 70 value 85.361034 iter 80 value 85.360325 final value 85.360290 converged Fitting Repeat 3 # weights: 507 initial value 103.307687 iter 10 value 94.041127 iter 20 value 94.030832 iter 30 value 92.939653 iter 40 value 86.371596 final value 86.370589 converged Fitting Repeat 4 # weights: 507 initial value 118.569345 iter 10 value 92.398536 iter 20 value 92.251863 iter 30 value 92.247521 iter 40 value 86.669268 iter 50 value 85.937834 iter 60 value 85.816710 iter 70 value 85.815865 iter 80 value 84.626881 iter 90 value 84.626520 iter 100 value 84.625267 final value 84.625267 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.598667 iter 10 value 94.060231 iter 20 value 93.929988 iter 30 value 91.142732 iter 40 value 87.021078 iter 50 value 85.444793 iter 60 value 84.737318 iter 70 value 84.000396 iter 80 value 83.950954 final value 83.949668 converged Fitting Repeat 1 # weights: 103 initial value 98.535008 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.330983 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.665881 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.609439 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.235629 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 103.560818 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 105.039473 iter 10 value 94.317411 iter 20 value 94.312049 final value 94.312039 converged Fitting Repeat 3 # weights: 305 initial value 116.037150 iter 10 value 94.464038 final value 94.462168 converged Fitting Repeat 4 # weights: 305 initial value 120.023394 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.926908 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.902829 iter 10 value 90.075525 iter 20 value 83.713915 iter 30 value 83.509530 final value 83.505319 converged Fitting Repeat 2 # weights: 507 initial value 101.294824 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 108.596121 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 113.374245 iter 10 value 90.494149 iter 20 value 87.988580 iter 30 value 87.372490 iter 40 value 87.372122 final value 87.372115 converged Fitting Repeat 5 # weights: 507 initial value 121.226131 iter 10 value 94.481085 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 99.004224 iter 10 value 94.525455 iter 20 value 94.407693 iter 30 value 91.246197 iter 40 value 90.930137 iter 50 value 85.828196 iter 60 value 83.309922 iter 70 value 82.473938 iter 80 value 82.462189 iter 90 value 81.886754 iter 100 value 81.724170 final value 81.724170 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.850060 iter 10 value 93.799576 iter 20 value 88.876590 iter 30 value 87.709598 iter 40 value 86.752733 iter 50 value 86.321932 iter 60 value 84.501149 iter 70 value 84.045909 iter 80 value 84.039835 iter 90 value 84.037072 iter 100 value 84.007047 final value 84.007047 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.815318 iter 10 value 93.944556 iter 20 value 90.506174 iter 30 value 87.533583 iter 40 value 85.353104 iter 50 value 84.595829 iter 60 value 83.638606 iter 70 value 83.047932 iter 80 value 82.154628 iter 90 value 82.118246 iter 100 value 81.916999 final value 81.916999 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.415921 iter 10 value 94.488521 iter 20 value 93.904136 iter 30 value 93.830788 iter 40 value 86.470419 iter 50 value 85.057280 iter 60 value 84.415744 iter 70 value 84.089005 iter 80 value 83.958390 iter 90 value 83.513703 iter 100 value 83.244253 final value 83.244253 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.260735 iter 10 value 93.884432 iter 20 value 85.733690 iter 30 value 85.187278 iter 40 value 85.106374 iter 50 value 83.345113 iter 60 value 83.132523 iter 70 value 82.279312 iter 80 value 81.710730 iter 90 value 81.607871 iter 100 value 81.587924 final value 81.587924 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 113.069397 iter 10 value 91.359306 iter 20 value 87.189018 iter 30 value 84.953966 iter 40 value 84.089739 iter 50 value 83.564130 iter 60 value 81.300322 iter 70 value 80.867205 iter 80 value 80.777207 iter 90 value 80.734155 iter 100 value 80.700383 final value 80.700383 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.691800 iter 10 value 93.913898 iter 20 value 87.675300 iter 30 value 85.649003 iter 40 value 85.147504 iter 50 value 85.064496 iter 60 value 84.786694 iter 70 value 83.699600 iter 80 value 82.971729 iter 90 value 82.742694 iter 100 value 82.134145 final value 82.134145 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.755750 iter 10 value 94.616060 iter 20 value 89.992469 iter 30 value 88.001382 iter 40 value 87.062898 iter 50 value 82.991932 iter 60 value 81.601939 iter 70 value 80.862023 iter 80 value 80.666896 iter 90 value 80.655103 iter 100 value 80.607330 final value 80.607330 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.673372 iter 10 value 91.619203 iter 20 value 84.480674 iter 30 value 81.670091 iter 40 value 81.150720 iter 50 value 80.884237 iter 60 value 80.845018 iter 70 value 80.754065 iter 80 value 80.680225 iter 90 value 80.625331 iter 100 value 80.558604 final value 80.558604 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.023771 iter 10 value 94.496964 iter 20 value 92.463297 iter 30 value 87.630825 iter 40 value 86.374704 iter 50 value 83.745740 iter 60 value 81.693051 iter 70 value 81.033094 iter 80 value 80.942941 iter 90 value 80.642656 iter 100 value 80.505635 final value 80.505635 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 130.684893 iter 10 value 94.723162 iter 20 value 88.903090 iter 30 value 84.939730 iter 40 value 84.027535 iter 50 value 83.918464 iter 60 value 82.928550 iter 70 value 82.070452 iter 80 value 81.860702 iter 90 value 81.643403 iter 100 value 80.785881 final value 80.785881 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.665777 iter 10 value 94.945439 iter 20 value 89.385867 iter 30 value 87.683280 iter 40 value 84.008002 iter 50 value 82.567286 iter 60 value 81.811068 iter 70 value 81.684706 iter 80 value 80.993147 iter 90 value 80.717656 iter 100 value 80.617996 final value 80.617996 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.326478 iter 10 value 98.111529 iter 20 value 97.108902 iter 30 value 89.650418 iter 40 value 88.231016 iter 50 value 87.361672 iter 60 value 86.279895 iter 70 value 84.082033 iter 80 value 82.983269 iter 90 value 82.398449 iter 100 value 81.763125 final value 81.763125 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.547416 iter 10 value 95.057508 iter 20 value 93.369000 iter 30 value 85.335310 iter 40 value 84.641855 iter 50 value 83.611735 iter 60 value 81.518355 iter 70 value 81.143085 iter 80 value 80.960462 iter 90 value 80.852300 iter 100 value 80.838722 final value 80.838722 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.810517 iter 10 value 94.485332 iter 20 value 92.933443 iter 30 value 85.935883 iter 40 value 85.002884 iter 50 value 84.697397 iter 60 value 84.393225 iter 70 value 83.823295 iter 80 value 82.697981 iter 90 value 81.501066 iter 100 value 80.831017 final value 80.831017 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.252599 final value 94.486202 converged Fitting Repeat 2 # weights: 103 initial value 97.490282 final value 94.485850 converged Fitting Repeat 3 # weights: 103 initial value 94.897989 final value 94.486100 converged Fitting Repeat 4 # weights: 103 initial value 98.529717 iter 10 value 94.485883 final value 94.484215 converged Fitting Repeat 5 # weights: 103 initial value 100.937376 final value 94.486010 converged Fitting Repeat 1 # weights: 305 initial value 107.907006 iter 10 value 94.316770 iter 20 value 94.313642 iter 30 value 92.561732 iter 40 value 91.244829 iter 50 value 91.224541 final value 91.224527 converged Fitting Repeat 2 # weights: 305 initial value 95.704754 iter 10 value 94.102923 iter 20 value 94.092722 iter 30 value 91.597174 iter 40 value 91.309891 iter 50 value 89.476601 iter 60 value 89.077693 iter 70 value 88.949604 iter 80 value 88.946848 iter 90 value 88.925440 iter 100 value 88.910902 final value 88.910902 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.889673 iter 10 value 90.301390 iter 20 value 85.011666 iter 30 value 84.749907 iter 40 value 84.748126 iter 50 value 84.729391 iter 60 value 83.941745 iter 70 value 82.489743 iter 80 value 82.476210 iter 90 value 82.471905 iter 100 value 82.332944 final value 82.332944 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.923438 iter 10 value 94.317047 iter 20 value 94.312348 iter 30 value 93.935214 iter 40 value 85.893807 iter 50 value 84.672732 iter 60 value 84.656532 iter 70 value 84.654237 iter 80 value 84.654097 final value 84.653992 converged Fitting Repeat 5 # weights: 305 initial value 101.439733 iter 10 value 94.488826 iter 20 value 94.027043 iter 30 value 86.967381 iter 40 value 86.574405 iter 50 value 86.573059 iter 50 value 86.573059 final value 86.573059 converged Fitting Repeat 1 # weights: 507 initial value 96.135499 iter 10 value 94.417185 iter 20 value 93.776540 final value 93.721687 converged Fitting Repeat 2 # weights: 507 initial value 100.727440 iter 10 value 94.488604 iter 20 value 94.484266 iter 30 value 94.272614 iter 40 value 89.526550 iter 50 value 84.652662 iter 60 value 82.529585 iter 70 value 80.927507 iter 80 value 80.921982 iter 90 value 80.919817 iter 100 value 80.432467 final value 80.432467 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.378065 iter 10 value 94.485070 iter 20 value 94.327796 iter 30 value 94.279469 iter 40 value 93.681809 iter 50 value 86.523171 iter 60 value 84.449341 iter 70 value 82.142315 iter 80 value 81.192979 iter 90 value 81.182615 iter 100 value 81.126619 final value 81.126619 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.096198 iter 10 value 94.475241 iter 20 value 94.467268 iter 30 value 94.159335 iter 40 value 91.934714 iter 40 value 91.934714 iter 40 value 91.934714 final value 91.934714 converged Fitting Repeat 5 # weights: 507 initial value 106.994001 iter 10 value 94.474633 iter 20 value 94.467248 iter 30 value 92.093005 final value 92.088752 converged Fitting Repeat 1 # weights: 103 initial value 100.502858 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.455233 final value 94.466823 converged Fitting Repeat 3 # weights: 103 initial value 101.337688 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 115.327114 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.571426 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.135498 iter 10 value 85.621576 iter 20 value 84.491709 iter 20 value 84.491709 iter 20 value 84.491709 final value 84.491709 converged Fitting Repeat 2 # weights: 305 initial value 103.854463 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 116.571031 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.296650 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.097855 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.892571 final value 94.165746 converged Fitting Repeat 2 # weights: 507 initial value 96.431223 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 106.249806 iter 10 value 94.468479 iter 20 value 94.466829 final value 94.466827 converged Fitting Repeat 4 # weights: 507 initial value 97.701721 iter 10 value 94.069022 iter 20 value 91.831777 iter 30 value 91.826093 final value 91.826088 converged Fitting Repeat 5 # weights: 507 initial value 95.274450 iter 10 value 93.970510 iter 20 value 93.601520 iter 30 value 93.592654 final value 93.592619 converged Fitting Repeat 1 # weights: 103 initial value 114.468214 iter 10 value 94.317743 iter 20 value 82.620867 iter 30 value 82.064495 iter 40 value 81.577292 iter 50 value 81.475900 iter 60 value 81.436827 final value 81.433010 converged Fitting Repeat 2 # weights: 103 initial value 97.563357 iter 10 value 94.337508 iter 20 value 84.467217 iter 30 value 81.568086 iter 40 value 79.798678 iter 50 value 79.566269 iter 60 value 78.928069 iter 70 value 78.243226 iter 80 value 78.163256 final value 78.163254 converged Fitting Repeat 3 # weights: 103 initial value 104.066868 iter 10 value 92.950517 iter 20 value 85.649254 iter 30 value 81.683620 iter 40 value 81.387287 iter 50 value 81.239120 iter 60 value 81.095345 iter 70 value 80.912210 iter 80 value 80.897198 iter 90 value 80.815910 final value 80.815821 converged Fitting Repeat 4 # weights: 103 initial value 100.312795 iter 10 value 94.512069 iter 20 value 94.476096 iter 30 value 94.299406 iter 40 value 93.537549 iter 50 value 93.433871 iter 60 value 93.380355 iter 70 value 93.377077 iter 80 value 82.181090 iter 90 value 81.512933 iter 100 value 81.409463 final value 81.409463 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.872439 iter 10 value 94.377272 iter 20 value 92.213413 iter 30 value 85.547711 iter 40 value 83.467635 iter 50 value 82.084052 iter 60 value 81.371927 iter 70 value 80.737711 final value 80.733077 converged Fitting Repeat 1 # weights: 305 initial value 101.139813 iter 10 value 94.411278 iter 20 value 93.462561 iter 30 value 90.340898 iter 40 value 90.259944 iter 50 value 85.715250 iter 60 value 82.062783 iter 70 value 80.406137 iter 80 value 78.427318 iter 90 value 76.929689 iter 100 value 76.620423 final value 76.620423 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.147362 iter 10 value 92.927959 iter 20 value 91.956787 iter 30 value 91.827268 iter 40 value 90.049802 iter 50 value 82.946322 iter 60 value 79.869668 iter 70 value 79.259466 iter 80 value 78.853445 iter 90 value 78.269666 iter 100 value 78.024518 final value 78.024518 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.954833 iter 10 value 94.549452 iter 20 value 93.832523 iter 30 value 88.877905 iter 40 value 87.889437 iter 50 value 85.496770 iter 60 value 81.826086 iter 70 value 79.895888 iter 80 value 77.152545 iter 90 value 76.263908 iter 100 value 75.920982 final value 75.920982 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.238932 iter 10 value 94.451607 iter 20 value 87.022985 iter 30 value 86.062112 iter 40 value 83.272869 iter 50 value 80.202519 iter 60 value 79.357882 iter 70 value 79.110448 iter 80 value 78.235022 iter 90 value 77.442400 iter 100 value 77.197109 final value 77.197109 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.952179 iter 10 value 94.449468 iter 20 value 90.685581 iter 30 value 89.612470 iter 40 value 85.792150 iter 50 value 82.005967 iter 60 value 81.556111 iter 70 value 79.365878 iter 80 value 77.485499 iter 90 value 77.218549 iter 100 value 76.519233 final value 76.519233 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.953243 iter 10 value 89.967422 iter 20 value 82.833835 iter 30 value 81.724058 iter 40 value 81.503254 iter 50 value 81.058255 iter 60 value 81.017151 iter 70 value 80.885713 iter 80 value 79.710774 iter 90 value 78.152537 iter 100 value 77.498912 final value 77.498912 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.136393 iter 10 value 94.531968 iter 20 value 81.475761 iter 30 value 80.028059 iter 40 value 79.233684 iter 50 value 78.523271 iter 60 value 78.380887 iter 70 value 78.020419 iter 80 value 77.486766 iter 90 value 76.456025 iter 100 value 76.353150 final value 76.353150 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.988929 iter 10 value 94.851142 iter 20 value 92.896564 iter 30 value 90.259371 iter 40 value 89.602885 iter 50 value 84.940658 iter 60 value 81.530392 iter 70 value 78.487503 iter 80 value 77.432762 iter 90 value 77.230672 iter 100 value 76.989720 final value 76.989720 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.020249 iter 10 value 94.460560 iter 20 value 93.625443 iter 30 value 85.011442 iter 40 value 83.421982 iter 50 value 81.947836 iter 60 value 79.022056 iter 70 value 77.607626 iter 80 value 76.861401 iter 90 value 76.189960 iter 100 value 76.124880 final value 76.124880 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.909100 iter 10 value 95.027014 iter 20 value 90.019453 iter 30 value 87.744005 iter 40 value 85.942623 iter 50 value 85.564368 iter 60 value 82.737014 iter 70 value 79.739415 iter 80 value 79.481929 iter 90 value 78.860704 iter 100 value 78.648178 final value 78.648178 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.351193 final value 94.485934 converged Fitting Repeat 2 # weights: 103 initial value 105.722108 iter 10 value 94.435838 final value 93.111846 converged Fitting Repeat 3 # weights: 103 initial value 95.891187 final value 94.485910 converged Fitting Repeat 4 # weights: 103 initial value 94.516660 final value 94.485837 converged Fitting Repeat 5 # weights: 103 initial value 110.738288 final value 94.485850 converged Fitting Repeat 1 # weights: 305 initial value 95.888584 iter 10 value 94.489177 iter 20 value 94.483514 iter 30 value 89.786402 iter 40 value 85.337149 iter 50 value 85.022323 iter 60 value 85.020204 iter 70 value 85.018206 iter 80 value 84.958513 iter 90 value 84.957241 iter 100 value 84.955444 final value 84.955444 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 94.152392 iter 10 value 89.604142 iter 20 value 89.548348 iter 30 value 89.546392 iter 40 value 88.940424 iter 50 value 88.246501 iter 60 value 88.040085 iter 70 value 87.823390 iter 80 value 87.822935 iter 90 value 87.745435 iter 100 value 87.745360 final value 87.745360 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.896292 iter 10 value 94.489559 iter 20 value 94.483822 iter 30 value 94.349928 iter 40 value 87.835457 iter 50 value 82.147373 iter 60 value 80.515919 iter 70 value 79.981174 final value 79.981170 converged Fitting Repeat 4 # weights: 305 initial value 128.480195 iter 10 value 94.489489 iter 20 value 94.453332 iter 30 value 93.228496 iter 40 value 93.213553 iter 50 value 92.218955 iter 60 value 92.012299 iter 70 value 91.944234 iter 80 value 91.942427 iter 90 value 91.942194 final value 91.942077 converged Fitting Repeat 5 # weights: 305 initial value 95.122027 iter 10 value 94.484523 iter 20 value 94.369299 iter 30 value 85.456290 iter 40 value 82.231939 iter 50 value 82.227704 iter 60 value 82.225249 iter 70 value 81.796858 iter 80 value 81.785177 iter 90 value 81.692192 iter 100 value 81.679608 final value 81.679608 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 95.447245 iter 10 value 93.882642 iter 20 value 93.266399 iter 30 value 93.104579 iter 40 value 93.091184 iter 50 value 84.929818 iter 60 value 84.696273 iter 70 value 84.638779 final value 84.637454 converged Fitting Repeat 2 # weights: 507 initial value 101.690159 iter 10 value 94.489044 iter 20 value 93.316546 iter 30 value 83.789039 iter 40 value 82.728096 iter 50 value 79.731154 iter 60 value 79.513457 iter 70 value 79.510869 iter 80 value 79.505959 iter 90 value 79.503866 iter 100 value 79.469582 final value 79.469582 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.691805 iter 10 value 94.490363 iter 20 value 94.484215 iter 30 value 93.783298 iter 40 value 88.641737 iter 50 value 88.244169 iter 60 value 88.242828 iter 70 value 88.240312 final value 88.239351 converged Fitting Repeat 4 # weights: 507 initial value 126.712974 iter 10 value 94.491978 iter 20 value 94.378505 iter 30 value 86.402045 final value 86.402043 converged Fitting Repeat 5 # weights: 507 initial value 109.581218 iter 10 value 94.491103 iter 20 value 91.916071 iter 30 value 85.538087 iter 40 value 83.690903 iter 50 value 83.349616 iter 60 value 83.348839 iter 70 value 83.347520 iter 80 value 82.394505 iter 90 value 82.271337 iter 100 value 82.270287 final value 82.270287 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.527748 iter 10 value 117.767289 iter 20 value 117.387686 iter 30 value 115.494264 iter 40 value 114.186736 iter 50 value 113.696651 iter 60 value 107.131469 iter 70 value 104.614418 iter 80 value 104.584386 iter 90 value 104.577952 iter 100 value 104.575625 final value 104.575625 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 155.636193 iter 10 value 117.898592 iter 20 value 117.890094 iter 30 value 117.531916 iter 40 value 109.596908 iter 50 value 108.864676 iter 60 value 108.459706 iter 70 value 107.174701 iter 80 value 107.174049 final value 107.173889 converged Fitting Repeat 3 # weights: 507 initial value 152.390568 iter 10 value 117.778243 iter 20 value 117.770123 iter 30 value 117.734522 iter 40 value 117.706836 iter 50 value 114.310819 iter 60 value 104.165024 iter 70 value 104.111123 iter 80 value 104.056170 iter 90 value 103.966136 iter 100 value 101.803190 final value 101.803190 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.372632 iter 10 value 117.765425 iter 20 value 117.750344 iter 30 value 117.736110 iter 40 value 117.688637 iter 50 value 116.608332 iter 60 value 105.361010 iter 70 value 105.358626 iter 80 value 102.994713 iter 90 value 102.064277 iter 100 value 100.570591 final value 100.570591 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.314736 iter 10 value 117.739163 iter 20 value 117.521611 iter 30 value 117.207406 iter 40 value 117.202953 iter 50 value 105.404471 iter 60 value 104.410862 iter 70 value 104.279138 iter 80 value 103.995886 iter 90 value 103.995699 final value 103.995694 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Mar 24 07:35:40 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 55.257 1.278 153.999
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 38.136 | 0.208 | 38.407 | |
FreqInteractors | 0.291 | 0.011 | 0.303 | |
calculateAAC | 0.048 | 0.000 | 0.048 | |
calculateAutocor | 0.689 | 0.016 | 0.708 | |
calculateCTDC | 0.101 | 0.000 | 0.102 | |
calculateCTDD | 0.803 | 0.000 | 0.805 | |
calculateCTDT | 0.262 | 0.003 | 0.267 | |
calculateCTriad | 0.478 | 0.003 | 0.484 | |
calculateDC | 0.131 | 0.000 | 0.131 | |
calculateF | 0.441 | 0.001 | 0.441 | |
calculateKSAAP | 0.145 | 0.000 | 0.145 | |
calculateQD_Sm | 2.458 | 0.031 | 2.495 | |
calculateTC | 2.473 | 0.024 | 2.503 | |
calculateTC_Sm | 0.382 | 0.004 | 0.386 | |
corr_plot | 37.515 | 0.388 | 37.964 | |
enrichfindP | 0.509 | 0.032 | 21.349 | |
enrichfind_hp | 0.077 | 0.008 | 2.345 | |
enrichplot | 0.555 | 0.047 | 0.604 | |
filter_missing_values | 0.002 | 0.000 | 0.002 | |
getFASTA | 0.125 | 0.008 | 7.672 | |
getHPI | 0.000 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.002 | 0.001 | |
plotPPI | 0.085 | 0.005 | 0.089 | |
pred_ensembel | 18.483 | 0.575 | 17.864 | |
var_imp | 39.998 | 0.870 | 40.936 | |