Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-03-24 11:40 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" | 4779 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" | 4550 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4578 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4530 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4461 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2313 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-03-23 23:03:24 -0400 (Sun, 23 Mar 2025) |
EndedAt: 2025-03-23 23:18:43 -0400 (Sun, 23 Mar 2025) |
EllapsedTime: 919.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-03-13 r87965) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 * running under: Ubuntu 24.04.2 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 34.307 0.513 34.822 corr_plot 33.443 0.309 33.757 FSmethod 32.530 0.408 32.940 pred_ensembel 13.214 0.278 12.156 enrichfindP 0.588 0.021 8.026 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 107.230588 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.467994 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 115.048370 final value 94.467391 converged Fitting Repeat 4 # weights: 103 initial value 110.119847 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.222977 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.343900 iter 10 value 85.651309 iter 20 value 84.744029 final value 84.533333 converged Fitting Repeat 2 # weights: 305 initial value 101.876683 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.129440 iter 10 value 91.324491 iter 20 value 91.183759 iter 30 value 90.819379 iter 40 value 90.806410 iter 50 value 90.714094 final value 90.711328 converged Fitting Repeat 4 # weights: 305 initial value 98.765987 iter 10 value 93.264418 iter 20 value 92.908958 iter 30 value 92.829411 iter 40 value 91.486392 iter 50 value 91.041088 iter 60 value 91.003670 iter 70 value 91.003373 final value 91.003368 converged Fitting Repeat 5 # weights: 305 initial value 101.093785 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.829603 final value 94.482478 converged Fitting Repeat 2 # weights: 507 initial value 101.708405 iter 10 value 91.440714 iter 20 value 91.430809 final value 91.430671 converged Fitting Repeat 3 # weights: 507 initial value 101.530982 final value 93.701657 converged Fitting Repeat 4 # weights: 507 initial value 113.233754 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 124.941644 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 105.644733 iter 10 value 94.486487 iter 20 value 93.760345 iter 30 value 92.240863 iter 40 value 88.501838 iter 50 value 86.780164 iter 60 value 85.553820 iter 70 value 85.040159 iter 80 value 83.684813 iter 90 value 83.421332 iter 100 value 83.378320 final value 83.378320 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.819854 iter 10 value 94.572736 iter 20 value 94.488929 iter 30 value 94.484589 iter 40 value 94.304071 iter 50 value 92.609288 iter 60 value 92.225233 iter 70 value 90.008928 iter 80 value 84.629512 iter 90 value 84.396947 iter 100 value 83.980848 final value 83.980848 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.797492 iter 10 value 95.391637 iter 20 value 94.195489 iter 30 value 92.915475 iter 40 value 90.442619 iter 50 value 85.372367 iter 60 value 83.025856 iter 70 value 82.587053 iter 80 value 81.968524 iter 90 value 81.533561 iter 100 value 81.167472 final value 81.167472 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.262726 iter 10 value 94.473991 iter 20 value 93.498040 iter 30 value 92.986497 iter 40 value 92.929803 iter 50 value 88.977769 iter 60 value 85.726743 iter 70 value 85.024869 iter 80 value 84.292348 iter 90 value 83.622880 iter 100 value 83.354856 final value 83.354856 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.171963 iter 10 value 94.538044 iter 20 value 94.475481 iter 30 value 89.798731 iter 40 value 84.801945 iter 50 value 84.508668 iter 60 value 84.463453 iter 70 value 83.879385 iter 80 value 83.365791 final value 83.350473 converged Fitting Repeat 1 # weights: 305 initial value 113.177876 iter 10 value 95.274923 iter 20 value 90.288851 iter 30 value 87.998011 iter 40 value 86.265146 iter 50 value 85.373069 iter 60 value 84.190572 iter 70 value 83.573975 iter 80 value 83.309272 iter 90 value 83.055445 iter 100 value 83.004852 final value 83.004852 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.182928 iter 10 value 94.490493 iter 20 value 93.723841 iter 30 value 89.839615 iter 40 value 85.413032 iter 50 value 83.048530 iter 60 value 81.642474 iter 70 value 80.995955 iter 80 value 80.218870 iter 90 value 79.895411 iter 100 value 79.694754 final value 79.694754 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.397605 iter 10 value 94.589778 iter 20 value 91.478729 iter 30 value 85.191793 iter 40 value 83.377126 iter 50 value 82.585642 iter 60 value 81.427974 iter 70 value 80.688480 iter 80 value 80.390129 iter 90 value 80.253604 iter 100 value 80.222319 final value 80.222319 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.844419 iter 10 value 94.556956 iter 20 value 92.399721 iter 30 value 88.533239 iter 40 value 85.330141 iter 50 value 82.930043 iter 60 value 81.349855 iter 70 value 81.040645 iter 80 value 80.330868 iter 90 value 79.824685 iter 100 value 79.769888 final value 79.769888 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.093565 iter 10 value 94.917920 iter 20 value 94.415936 iter 30 value 91.180003 iter 40 value 88.051581 iter 50 value 87.751819 iter 60 value 87.353532 iter 70 value 81.778267 iter 80 value 80.910073 iter 90 value 80.567990 iter 100 value 80.373304 final value 80.373304 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.704623 iter 10 value 97.011871 iter 20 value 87.194281 iter 30 value 84.233926 iter 40 value 81.756270 iter 50 value 81.221855 iter 60 value 81.040436 iter 70 value 80.746731 iter 80 value 80.225319 iter 90 value 79.949238 iter 100 value 79.615026 final value 79.615026 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.986745 iter 10 value 93.890531 iter 20 value 87.253555 iter 30 value 85.488515 iter 40 value 85.117888 iter 50 value 83.366003 iter 60 value 82.148292 iter 70 value 80.651559 iter 80 value 80.290084 iter 90 value 79.924623 iter 100 value 79.770011 final value 79.770011 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.028164 iter 10 value 94.123462 iter 20 value 87.732679 iter 30 value 84.611164 iter 40 value 83.604341 iter 50 value 81.637577 iter 60 value 81.208892 iter 70 value 80.910293 iter 80 value 80.612573 iter 90 value 80.305227 iter 100 value 79.831893 final value 79.831893 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.555397 iter 10 value 92.275988 iter 20 value 87.626806 iter 30 value 87.113701 iter 40 value 86.440336 iter 50 value 83.495776 iter 60 value 82.961663 iter 70 value 81.948232 iter 80 value 80.564568 iter 90 value 80.060326 iter 100 value 79.794139 final value 79.794139 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.624794 iter 10 value 94.465373 iter 20 value 89.136701 iter 30 value 88.024204 iter 40 value 86.989448 iter 50 value 84.189625 iter 60 value 82.132603 iter 70 value 80.564029 iter 80 value 80.364637 iter 90 value 80.173660 iter 100 value 80.099074 final value 80.099074 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.391593 final value 94.485768 converged Fitting Repeat 2 # weights: 103 initial value 99.495901 final value 94.486333 converged Fitting Repeat 3 # weights: 103 initial value 107.409204 final value 94.485907 converged Fitting Repeat 4 # weights: 103 initial value 96.146827 iter 10 value 94.485849 iter 20 value 94.451428 iter 30 value 94.065567 final value 94.064480 converged Fitting Repeat 5 # weights: 103 initial value 95.169534 final value 94.485816 converged Fitting Repeat 1 # weights: 305 initial value 120.635117 iter 10 value 94.489162 iter 20 value 94.178093 iter 30 value 92.109902 iter 40 value 91.953947 iter 50 value 91.308538 iter 60 value 90.801071 iter 70 value 90.764969 iter 80 value 88.581970 iter 90 value 87.335516 iter 100 value 85.788710 final value 85.788710 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.972494 iter 10 value 94.472163 iter 20 value 94.469217 iter 30 value 94.316540 iter 40 value 92.520856 iter 50 value 91.954272 iter 60 value 91.802448 final value 91.800362 converged Fitting Repeat 3 # weights: 305 initial value 96.879776 iter 10 value 93.095772 iter 20 value 87.839021 iter 30 value 87.837970 iter 40 value 87.366007 iter 50 value 86.330008 iter 60 value 86.254691 final value 86.254517 converged Fitting Repeat 4 # weights: 305 initial value 95.398728 iter 10 value 94.472047 iter 20 value 93.793852 iter 30 value 87.062165 iter 40 value 83.550375 iter 50 value 83.549467 iter 60 value 82.180195 iter 70 value 81.731739 iter 80 value 79.552769 iter 90 value 79.016152 iter 100 value 78.843347 final value 78.843347 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.988019 iter 10 value 94.481496 iter 20 value 94.479364 iter 30 value 94.477650 iter 40 value 93.677281 iter 50 value 91.977179 iter 60 value 91.317797 iter 70 value 91.080532 iter 80 value 91.079070 iter 90 value 91.045651 final value 91.044986 converged Fitting Repeat 1 # weights: 507 initial value 124.200153 iter 10 value 94.493401 iter 20 value 93.531783 iter 30 value 84.116540 iter 40 value 82.706668 iter 50 value 82.662016 final value 82.661253 converged Fitting Repeat 2 # weights: 507 initial value 108.117102 iter 10 value 94.492871 iter 20 value 94.436390 iter 30 value 85.990802 iter 40 value 85.960588 iter 50 value 85.960027 iter 60 value 85.709885 iter 70 value 84.737460 iter 80 value 84.604905 iter 90 value 84.604625 iter 100 value 84.601049 final value 84.601049 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.623726 iter 10 value 94.485701 iter 20 value 94.483898 iter 30 value 94.375281 final value 94.367925 converged Fitting Repeat 4 # weights: 507 initial value 102.844122 iter 10 value 93.781562 iter 20 value 93.589154 iter 30 value 93.585495 iter 40 value 93.551594 iter 50 value 93.235961 final value 93.235711 converged Fitting Repeat 5 # weights: 507 initial value 105.823067 iter 10 value 94.493822 iter 20 value 94.479157 iter 30 value 94.357123 iter 40 value 93.105782 iter 50 value 86.826491 iter 60 value 82.223226 iter 70 value 81.518399 iter 80 value 81.351467 iter 90 value 81.227494 iter 100 value 81.127371 final value 81.127371 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.853229 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.667535 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.056061 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.545284 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 111.128319 final value 94.252920 converged Fitting Repeat 1 # weights: 305 initial value 114.776365 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 107.245009 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.229681 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.717786 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 106.306141 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.692205 iter 10 value 94.483214 iter 20 value 94.467737 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 98.221531 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 103.109229 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 123.870008 iter 10 value 94.291057 iter 20 value 94.268310 final value 94.268289 converged Fitting Repeat 5 # weights: 507 initial value 130.026006 iter 10 value 94.027803 iter 20 value 93.737964 iter 30 value 93.737376 final value 93.737374 converged Fitting Repeat 1 # weights: 103 initial value 97.779545 iter 10 value 94.490535 iter 20 value 93.710177 iter 30 value 85.186875 iter 40 value 84.779361 iter 50 value 84.055040 iter 60 value 84.035694 iter 70 value 83.933792 final value 83.932394 converged Fitting Repeat 2 # weights: 103 initial value 100.401583 iter 10 value 87.161615 iter 20 value 85.533053 iter 30 value 83.176168 iter 40 value 81.758766 iter 50 value 80.908445 iter 60 value 80.792401 iter 70 value 80.504115 iter 80 value 80.499379 iter 90 value 80.493449 final value 80.493262 converged Fitting Repeat 3 # weights: 103 initial value 96.560760 iter 10 value 94.492764 iter 20 value 94.232034 iter 30 value 93.743217 iter 40 value 91.561919 iter 50 value 88.246585 iter 60 value 87.864120 iter 70 value 87.780385 iter 80 value 85.177505 iter 90 value 85.005503 iter 100 value 84.780126 final value 84.780126 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.256183 iter 10 value 94.302720 iter 20 value 86.322752 iter 30 value 84.599986 iter 40 value 84.510976 iter 50 value 84.096235 iter 60 value 83.922828 iter 70 value 83.906884 final value 83.906778 converged Fitting Repeat 5 # weights: 103 initial value 114.166423 iter 10 value 94.327830 iter 20 value 92.290905 iter 30 value 91.407742 iter 40 value 84.643615 iter 50 value 83.604828 iter 60 value 81.065652 iter 70 value 81.039683 final value 81.039506 converged Fitting Repeat 1 # weights: 305 initial value 113.371059 iter 10 value 94.548277 iter 20 value 90.119278 iter 30 value 87.288938 iter 40 value 87.189592 iter 50 value 84.712380 iter 60 value 82.718028 iter 70 value 81.525954 iter 80 value 81.142674 iter 90 value 80.965451 iter 100 value 80.705407 final value 80.705407 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.955123 iter 10 value 94.462599 iter 20 value 93.763039 iter 30 value 87.362089 iter 40 value 85.293135 iter 50 value 84.796537 iter 60 value 82.329566 iter 70 value 80.646662 iter 80 value 80.156608 iter 90 value 79.748021 iter 100 value 79.224529 final value 79.224529 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.004974 iter 10 value 94.572063 iter 20 value 93.982557 iter 30 value 87.462453 iter 40 value 85.703893 iter 50 value 83.913437 iter 60 value 83.686073 iter 70 value 83.629111 iter 80 value 82.464552 iter 90 value 81.383718 iter 100 value 81.252561 final value 81.252561 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.249209 iter 10 value 94.537341 iter 20 value 87.335309 iter 30 value 84.707725 iter 40 value 83.272944 iter 50 value 81.581493 iter 60 value 81.252189 iter 70 value 80.768197 iter 80 value 80.417673 iter 90 value 80.095494 iter 100 value 79.973380 final value 79.973380 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.022070 iter 10 value 94.542165 iter 20 value 88.350133 iter 30 value 87.479874 iter 40 value 82.155246 iter 50 value 81.313935 iter 60 value 80.408641 iter 70 value 79.901386 iter 80 value 79.615564 iter 90 value 79.332963 iter 100 value 79.316537 final value 79.316537 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.836940 iter 10 value 99.985004 iter 20 value 85.113348 iter 30 value 83.960531 iter 40 value 83.611141 iter 50 value 82.212515 iter 60 value 81.725942 iter 70 value 81.560570 iter 80 value 81.181772 iter 90 value 80.315224 iter 100 value 79.427626 final value 79.427626 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.438670 iter 10 value 95.666142 iter 20 value 88.307791 iter 30 value 86.335001 iter 40 value 85.194332 iter 50 value 83.325572 iter 60 value 82.044000 iter 70 value 80.528246 iter 80 value 80.238069 iter 90 value 80.201132 iter 100 value 80.076317 final value 80.076317 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.280117 iter 10 value 94.387521 iter 20 value 93.445794 iter 30 value 87.121977 iter 40 value 84.363683 iter 50 value 83.740675 iter 60 value 83.211637 iter 70 value 82.157408 iter 80 value 80.783023 iter 90 value 80.326230 iter 100 value 79.788367 final value 79.788367 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.813542 iter 10 value 94.513310 iter 20 value 85.407245 iter 30 value 83.923557 iter 40 value 82.285360 iter 50 value 80.814431 iter 60 value 80.566990 iter 70 value 80.316378 iter 80 value 79.341989 iter 90 value 78.904612 iter 100 value 78.855908 final value 78.855908 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.204463 iter 10 value 94.838260 iter 20 value 94.347124 iter 30 value 94.136659 iter 40 value 93.621617 iter 50 value 88.914628 iter 60 value 86.930319 iter 70 value 85.255243 iter 80 value 84.525910 iter 90 value 84.378634 iter 100 value 83.941129 final value 83.941129 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.816064 final value 94.468207 converged Fitting Repeat 2 # weights: 103 initial value 96.260606 iter 10 value 94.486005 iter 20 value 94.484212 iter 30 value 93.106030 iter 40 value 92.897886 iter 50 value 83.687731 iter 60 value 83.590577 iter 70 value 82.750296 iter 80 value 82.726503 final value 82.726023 converged Fitting Repeat 3 # weights: 103 initial value 103.368465 final value 94.485843 converged Fitting Repeat 4 # weights: 103 initial value 99.857836 final value 94.485646 converged Fitting Repeat 5 # weights: 103 initial value 102.342607 final value 94.478118 converged Fitting Repeat 1 # weights: 305 initial value 99.949713 iter 10 value 94.489045 iter 20 value 94.484299 final value 94.484266 converged Fitting Repeat 2 # weights: 305 initial value 105.065602 iter 10 value 94.490896 iter 20 value 94.477788 iter 30 value 90.420457 iter 40 value 84.812337 iter 50 value 84.685041 iter 60 value 84.680702 iter 70 value 84.629375 iter 80 value 84.608926 iter 90 value 84.607384 final value 84.605951 converged Fitting Repeat 3 # weights: 305 initial value 102.043592 iter 10 value 94.488011 iter 20 value 90.647120 iter 30 value 89.734138 iter 40 value 88.914000 iter 50 value 87.924945 iter 60 value 87.922368 final value 87.922262 converged Fitting Repeat 4 # weights: 305 initial value 94.927660 iter 10 value 94.468535 iter 20 value 92.995323 iter 30 value 92.898479 iter 40 value 92.898129 final value 92.898127 converged Fitting Repeat 5 # weights: 305 initial value 108.591267 iter 10 value 93.996146 iter 20 value 93.889782 iter 30 value 90.736882 iter 40 value 86.954125 iter 50 value 86.732692 iter 60 value 86.700006 iter 70 value 86.699162 final value 86.699159 converged Fitting Repeat 1 # weights: 507 initial value 102.836913 iter 10 value 86.426886 iter 20 value 85.843551 iter 30 value 85.839085 iter 40 value 85.793895 iter 50 value 85.352218 iter 60 value 84.791494 iter 70 value 81.656289 iter 80 value 80.910846 iter 90 value 79.731512 iter 100 value 79.137842 final value 79.137842 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.044434 iter 10 value 87.942725 iter 20 value 87.246452 iter 30 value 87.245685 iter 40 value 87.226102 iter 50 value 87.171883 iter 60 value 87.163884 iter 70 value 85.408651 iter 80 value 85.376934 iter 90 value 85.359299 iter 100 value 85.308554 final value 85.308554 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.051963 iter 10 value 94.474462 iter 20 value 94.301312 final value 94.057630 converged Fitting Repeat 4 # weights: 507 initial value 96.138620 iter 10 value 94.492331 iter 20 value 94.069772 iter 30 value 87.916680 iter 40 value 87.248783 iter 50 value 85.584801 iter 60 value 85.560690 iter 70 value 85.553987 iter 80 value 83.392045 iter 90 value 83.344947 iter 100 value 83.309939 final value 83.309939 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.692398 iter 10 value 94.492513 iter 20 value 94.459114 iter 30 value 83.529647 iter 40 value 83.240560 iter 50 value 83.229588 iter 60 value 82.844997 iter 70 value 82.725533 final value 82.725500 converged Fitting Repeat 1 # weights: 103 initial value 95.140886 final value 94.461539 converged Fitting Repeat 2 # weights: 103 initial value 97.084194 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.079943 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.798477 final value 94.312039 converged Fitting Repeat 5 # weights: 103 initial value 103.344320 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 104.672200 iter 10 value 93.870371 iter 20 value 93.860416 final value 93.860350 converged Fitting Repeat 2 # weights: 305 initial value 95.752476 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.593549 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.773222 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.737795 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 117.531948 iter 10 value 89.619086 iter 20 value 83.140707 iter 30 value 83.132868 iter 40 value 83.126394 iter 50 value 79.672822 iter 60 value 78.760669 iter 70 value 78.760200 iter 80 value 78.752073 iter 80 value 78.752072 iter 80 value 78.752072 final value 78.752072 converged Fitting Repeat 2 # weights: 507 initial value 97.051327 iter 10 value 94.127165 iter 20 value 92.405098 iter 30 value 88.372891 iter 40 value 88.361581 final value 88.361537 converged Fitting Repeat 3 # weights: 507 initial value 98.666838 final value 94.484212 converged Fitting Repeat 4 # weights: 507 initial value 95.258672 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 102.559861 iter 10 value 94.484214 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.296968 iter 10 value 94.488577 iter 20 value 94.076196 iter 30 value 93.990719 iter 40 value 93.988642 iter 50 value 89.931822 iter 60 value 85.667346 iter 70 value 85.257332 iter 80 value 85.019782 iter 90 value 83.505922 iter 100 value 82.320896 final value 82.320896 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.982914 iter 10 value 94.487720 iter 20 value 86.259622 iter 30 value 84.623129 iter 40 value 81.583287 iter 50 value 79.686632 iter 60 value 79.408338 iter 70 value 79.397531 iter 80 value 79.396523 final value 79.396429 converged Fitting Repeat 3 # weights: 103 initial value 102.514045 iter 10 value 94.083370 iter 20 value 84.715569 iter 30 value 81.080432 iter 40 value 79.657295 iter 50 value 79.304798 iter 60 value 79.208508 iter 70 value 78.865229 iter 80 value 78.650885 iter 90 value 78.541948 iter 100 value 78.492180 final value 78.492180 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.941672 iter 10 value 94.502653 iter 20 value 91.912051 iter 30 value 90.526350 iter 40 value 85.052971 iter 50 value 81.616118 iter 60 value 80.504492 iter 70 value 79.959172 iter 80 value 79.438764 iter 90 value 79.004504 iter 100 value 78.703846 final value 78.703846 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.070104 iter 10 value 94.490613 iter 20 value 94.483050 iter 30 value 94.237142 iter 40 value 94.151776 iter 50 value 93.863768 iter 60 value 93.727822 iter 70 value 85.522666 iter 80 value 84.978781 iter 90 value 84.881366 iter 100 value 84.793473 final value 84.793473 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.456796 iter 10 value 94.495948 iter 20 value 87.329475 iter 30 value 84.777066 iter 40 value 83.366645 iter 50 value 80.377779 iter 60 value 80.187403 iter 70 value 80.024510 iter 80 value 79.766403 iter 90 value 79.550415 iter 100 value 79.518636 final value 79.518636 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.965520 iter 10 value 94.411861 iter 20 value 92.285671 iter 30 value 87.073437 iter 40 value 85.448314 iter 50 value 84.948152 iter 60 value 84.461599 iter 70 value 83.993514 iter 80 value 81.308633 iter 90 value 79.463293 iter 100 value 79.046663 final value 79.046663 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.911892 iter 10 value 94.165004 iter 20 value 87.286544 iter 30 value 86.843228 iter 40 value 83.392347 iter 50 value 80.971269 iter 60 value 79.694103 iter 70 value 79.230032 iter 80 value 78.682522 iter 90 value 77.675016 iter 100 value 77.519924 final value 77.519924 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 123.645549 iter 10 value 95.853189 iter 20 value 94.765657 iter 30 value 94.312745 iter 40 value 91.157290 iter 50 value 85.140498 iter 60 value 83.015077 iter 70 value 82.615473 iter 80 value 80.666228 iter 90 value 79.623869 iter 100 value 79.002302 final value 79.002302 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.930409 iter 10 value 95.960217 iter 20 value 89.425884 iter 30 value 86.466654 iter 40 value 80.851515 iter 50 value 80.401720 iter 60 value 79.579820 iter 70 value 78.310066 iter 80 value 78.099002 iter 90 value 77.769226 iter 100 value 77.695066 final value 77.695066 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.163417 iter 10 value 96.363866 iter 20 value 93.956158 iter 30 value 93.881239 iter 40 value 85.283963 iter 50 value 84.282717 iter 60 value 83.552222 iter 70 value 81.733431 iter 80 value 79.896360 iter 90 value 79.470706 iter 100 value 78.041303 final value 78.041303 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 138.443457 iter 10 value 94.994351 iter 20 value 91.361435 iter 30 value 87.253034 iter 40 value 84.737727 iter 50 value 79.994009 iter 60 value 78.472373 iter 70 value 78.006599 iter 80 value 77.800944 iter 90 value 77.683912 iter 100 value 77.502568 final value 77.502568 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.976592 iter 10 value 95.589396 iter 20 value 83.322167 iter 30 value 79.186035 iter 40 value 78.578860 iter 50 value 78.048783 iter 60 value 77.997041 iter 70 value 77.870622 iter 80 value 77.705155 iter 90 value 77.652437 iter 100 value 77.625662 final value 77.625662 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.483974 iter 10 value 94.311425 iter 20 value 87.934598 iter 30 value 83.283737 iter 40 value 81.244581 iter 50 value 79.797253 iter 60 value 79.135529 iter 70 value 78.360322 iter 80 value 77.837309 iter 90 value 77.474233 iter 100 value 77.151508 final value 77.151508 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.592142 iter 10 value 94.331552 iter 20 value 91.114337 iter 30 value 82.720801 iter 40 value 80.186460 iter 50 value 79.379987 iter 60 value 79.015940 iter 70 value 78.898248 iter 80 value 78.631537 iter 90 value 78.450645 iter 100 value 78.187870 final value 78.187870 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.723031 final value 94.485888 converged Fitting Repeat 2 # weights: 103 initial value 100.888370 final value 94.486064 converged Fitting Repeat 3 # weights: 103 initial value 97.415029 final value 94.485826 converged Fitting Repeat 4 # weights: 103 initial value 98.257675 final value 94.485877 converged Fitting Repeat 5 # weights: 103 initial value 97.398516 final value 94.485803 converged Fitting Repeat 1 # weights: 305 initial value 97.867100 iter 10 value 94.489046 iter 20 value 94.459494 iter 30 value 94.159821 iter 30 value 94.159821 iter 30 value 94.159821 final value 94.159821 converged Fitting Repeat 2 # weights: 305 initial value 101.166360 iter 10 value 94.488573 iter 20 value 90.060959 iter 30 value 83.091932 iter 40 value 83.045049 iter 50 value 82.839203 iter 60 value 79.702456 final value 79.378003 converged Fitting Repeat 3 # weights: 305 initial value 99.140251 iter 10 value 94.489148 iter 20 value 94.480655 iter 30 value 90.928738 iter 40 value 84.847043 final value 84.652178 converged Fitting Repeat 4 # weights: 305 initial value 95.577294 iter 10 value 94.488971 iter 20 value 94.483994 final value 94.483858 converged Fitting Repeat 5 # weights: 305 initial value 103.236270 iter 10 value 94.489265 iter 20 value 94.484353 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.199741 iter 10 value 94.489786 iter 20 value 94.369109 iter 30 value 93.588249 iter 40 value 93.331533 iter 50 value 93.331271 final value 93.331267 converged Fitting Repeat 2 # weights: 507 initial value 96.810466 iter 10 value 94.486470 iter 20 value 93.620914 iter 30 value 83.178761 iter 40 value 82.650647 iter 50 value 82.603212 iter 60 value 82.590915 iter 70 value 82.573324 iter 80 value 82.566321 iter 90 value 82.018140 iter 100 value 79.908014 final value 79.908014 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.203889 iter 10 value 94.491782 iter 20 value 94.436598 iter 30 value 93.807601 iter 40 value 93.549817 iter 40 value 93.549817 final value 93.549817 converged Fitting Repeat 4 # weights: 507 initial value 102.481429 iter 10 value 93.629768 iter 20 value 93.270234 iter 30 value 84.465239 iter 40 value 83.157988 iter 50 value 82.757281 iter 60 value 82.735615 iter 70 value 82.734460 iter 80 value 82.733007 final value 82.732519 converged Fitting Repeat 5 # weights: 507 initial value 114.351926 iter 10 value 94.493157 iter 20 value 94.484840 iter 30 value 93.984366 iter 40 value 93.782540 iter 50 value 93.504771 iter 60 value 93.444259 iter 70 value 93.440033 iter 80 value 93.432574 iter 90 value 93.432244 final value 93.432187 converged Fitting Repeat 1 # weights: 103 initial value 96.267993 final value 93.722223 converged Fitting Repeat 2 # weights: 103 initial value 95.470540 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.979057 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.347335 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.525385 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 110.369780 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.731493 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.750367 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 102.958915 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 107.919935 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.906624 final value 93.328261 converged Fitting Repeat 2 # weights: 507 initial value 102.469404 final value 93.912644 converged Fitting Repeat 3 # weights: 507 initial value 117.741503 iter 10 value 93.219075 final value 93.214674 converged Fitting Repeat 4 # weights: 507 initial value 94.635753 iter 10 value 93.298760 iter 20 value 93.155302 iter 30 value 93.155035 final value 93.155030 converged Fitting Repeat 5 # weights: 507 initial value 123.936649 iter 10 value 94.346978 iter 20 value 93.734480 final value 93.734322 converged Fitting Repeat 1 # weights: 103 initial value 102.714043 iter 10 value 93.987975 iter 20 value 89.699717 iter 30 value 85.093208 iter 40 value 84.897950 iter 50 value 84.638334 iter 60 value 84.545133 iter 70 value 84.312519 iter 80 value 84.276332 final value 84.271382 converged Fitting Repeat 2 # weights: 103 initial value 114.055856 iter 10 value 93.618219 iter 20 value 93.460232 iter 30 value 87.869976 iter 40 value 86.387244 iter 50 value 86.124543 iter 60 value 84.574546 iter 70 value 84.257901 iter 80 value 84.052060 iter 90 value 83.889906 final value 83.886553 converged Fitting Repeat 3 # weights: 103 initial value 101.157949 iter 10 value 94.054861 iter 20 value 93.556794 iter 30 value 93.535111 iter 40 value 93.482328 iter 50 value 90.607221 iter 60 value 86.601871 iter 70 value 85.306924 iter 80 value 84.227725 iter 90 value 83.430765 iter 100 value 83.298470 final value 83.298470 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.468341 iter 10 value 93.591745 iter 20 value 93.519990 iter 30 value 93.516592 iter 40 value 93.514439 iter 50 value 92.761474 iter 60 value 89.276271 iter 70 value 89.165547 iter 80 value 86.801625 iter 90 value 85.437102 iter 100 value 84.796619 final value 84.796619 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 111.020288 iter 10 value 93.961249 iter 20 value 87.875056 iter 30 value 84.135429 iter 40 value 83.105142 iter 50 value 82.537172 iter 60 value 81.487561 iter 70 value 80.988177 iter 80 value 80.560922 iter 90 value 80.399925 final value 80.399102 converged Fitting Repeat 1 # weights: 305 initial value 101.773374 iter 10 value 94.063164 iter 20 value 93.927044 iter 30 value 93.424265 iter 40 value 93.348760 iter 50 value 91.395115 iter 60 value 88.590432 iter 70 value 87.432726 iter 80 value 86.449192 iter 90 value 85.096149 iter 100 value 83.456879 final value 83.456879 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.849070 iter 10 value 93.773358 iter 20 value 93.491801 iter 30 value 83.684096 iter 40 value 82.049581 iter 50 value 81.919538 iter 60 value 81.344072 iter 70 value 80.455546 iter 80 value 79.667669 iter 90 value 79.323794 iter 100 value 79.182479 final value 79.182479 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.218022 iter 10 value 94.021527 iter 20 value 88.746982 iter 30 value 87.115402 iter 40 value 85.235242 iter 50 value 84.850264 iter 60 value 84.731739 iter 70 value 84.303108 iter 80 value 83.929825 iter 90 value 83.762291 iter 100 value 82.219747 final value 82.219747 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.988563 iter 10 value 94.139391 iter 20 value 91.743071 iter 30 value 91.635250 iter 40 value 86.612094 iter 50 value 84.432323 iter 60 value 81.473923 iter 70 value 80.238465 iter 80 value 79.941351 iter 90 value 79.634237 iter 100 value 79.569931 final value 79.569931 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.996350 iter 10 value 93.074740 iter 20 value 86.467544 iter 30 value 84.814701 iter 40 value 84.489705 iter 50 value 84.217020 iter 60 value 84.007035 iter 70 value 83.939174 iter 80 value 83.804048 iter 90 value 83.372500 iter 100 value 81.867330 final value 81.867330 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.651442 iter 10 value 93.742916 iter 20 value 93.326188 iter 30 value 83.443832 iter 40 value 81.955718 iter 50 value 80.611458 iter 60 value 79.763932 iter 70 value 79.431132 iter 80 value 79.365364 iter 90 value 79.269587 iter 100 value 79.026755 final value 79.026755 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.080709 iter 10 value 88.305751 iter 20 value 85.978717 iter 30 value 85.230832 iter 40 value 84.860128 iter 50 value 82.146485 iter 60 value 80.777083 iter 70 value 79.571695 iter 80 value 79.058474 iter 90 value 78.928828 iter 100 value 78.877467 final value 78.877467 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.366639 iter 10 value 94.070828 iter 20 value 91.660248 iter 30 value 83.230997 iter 40 value 81.314953 iter 50 value 80.745722 iter 60 value 79.595964 iter 70 value 78.975953 iter 80 value 78.876116 iter 90 value 78.799909 iter 100 value 78.746127 final value 78.746127 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.165126 iter 10 value 93.994369 iter 20 value 88.767383 iter 30 value 84.772269 iter 40 value 83.327427 iter 50 value 81.384530 iter 60 value 81.188486 iter 70 value 80.820447 iter 80 value 79.943282 iter 90 value 79.605269 iter 100 value 79.185547 final value 79.185547 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.601870 iter 10 value 93.987651 iter 20 value 93.013286 iter 30 value 92.837561 iter 40 value 92.426906 iter 50 value 88.928677 iter 60 value 86.677380 iter 70 value 86.542039 iter 80 value 85.413944 iter 90 value 82.191883 iter 100 value 80.434470 final value 80.434470 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.010586 iter 10 value 93.330517 iter 20 value 93.330048 iter 30 value 93.329020 iter 40 value 93.189496 iter 50 value 92.515470 iter 60 value 89.744165 iter 70 value 82.488994 iter 80 value 81.390691 iter 90 value 81.313822 iter 100 value 81.313665 final value 81.313665 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 94.494697 final value 92.894622 converged Fitting Repeat 3 # weights: 103 initial value 98.864737 iter 10 value 94.054537 iter 20 value 91.510436 iter 30 value 84.016817 iter 30 value 84.016817 iter 30 value 84.016817 final value 84.016817 converged Fitting Repeat 4 # weights: 103 initial value 94.771311 final value 94.054349 converged Fitting Repeat 5 # weights: 103 initial value 95.007604 iter 10 value 93.168517 iter 20 value 93.156963 iter 30 value 93.155410 final value 93.155374 converged Fitting Repeat 1 # weights: 305 initial value 98.148394 iter 10 value 93.333360 iter 20 value 93.330095 iter 30 value 91.811806 iter 40 value 87.360703 iter 50 value 87.359844 iter 60 value 87.359217 iter 70 value 85.989723 iter 80 value 85.437380 iter 90 value 85.185767 final value 85.185013 converged Fitting Repeat 2 # weights: 305 initial value 109.377743 iter 10 value 94.057608 iter 20 value 94.016234 iter 30 value 93.331012 iter 40 value 93.161168 iter 50 value 93.157677 iter 60 value 85.314293 iter 70 value 85.074090 iter 80 value 84.720547 iter 90 value 84.501667 iter 100 value 84.436720 final value 84.436720 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.886980 iter 10 value 84.948247 iter 20 value 83.769300 iter 30 value 83.766884 iter 40 value 83.765659 iter 50 value 83.536846 iter 60 value 83.534331 iter 70 value 83.533957 iter 80 value 83.529422 iter 90 value 83.407844 final value 83.407698 converged Fitting Repeat 4 # weights: 305 initial value 97.366451 iter 10 value 93.460413 iter 20 value 93.384902 final value 93.155436 converged Fitting Repeat 5 # weights: 305 initial value 103.832606 iter 10 value 94.056135 final value 94.053995 converged Fitting Repeat 1 # weights: 507 initial value 109.032630 iter 10 value 93.336709 iter 20 value 93.335409 iter 30 value 92.609070 iter 40 value 88.356171 iter 50 value 88.154430 iter 60 value 88.152090 iter 70 value 88.151866 final value 88.151832 converged Fitting Repeat 2 # weights: 507 initial value 96.301098 iter 10 value 92.587638 iter 20 value 92.364102 iter 30 value 92.362418 iter 40 value 92.311615 iter 50 value 92.308776 iter 60 value 92.306442 final value 92.306067 converged Fitting Repeat 3 # weights: 507 initial value 118.415490 iter 10 value 94.060529 iter 20 value 93.764288 final value 93.328814 converged Fitting Repeat 4 # weights: 507 initial value 119.608544 iter 10 value 92.914089 iter 20 value 92.899370 iter 30 value 92.844368 final value 92.237856 converged Fitting Repeat 5 # weights: 507 initial value 106.508796 iter 10 value 92.020051 iter 20 value 91.483355 iter 30 value 91.447896 iter 40 value 91.429597 final value 91.429340 converged Fitting Repeat 1 # weights: 103 initial value 101.421879 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.174331 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 116.211953 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 101.668323 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.221445 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 117.732708 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.151780 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 94.384697 final value 93.604520 converged Fitting Repeat 4 # weights: 305 initial value 95.833416 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 98.844018 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 105.092443 iter 10 value 93.836089 final value 93.836066 converged Fitting Repeat 2 # weights: 507 initial value 100.730976 iter 10 value 93.836097 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 113.412816 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 95.630366 iter 10 value 89.800435 iter 20 value 87.202284 iter 30 value 87.197495 final value 87.197327 converged Fitting Repeat 5 # weights: 507 initial value 107.403520 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.379958 iter 10 value 94.054930 iter 20 value 94.010544 iter 30 value 92.406875 iter 40 value 88.443521 iter 50 value 87.665068 iter 60 value 86.308686 iter 70 value 86.251070 final value 86.251033 converged Fitting Repeat 2 # weights: 103 initial value 107.325706 iter 10 value 94.056836 iter 20 value 93.863154 iter 30 value 89.578789 iter 40 value 87.975985 iter 50 value 87.704977 iter 60 value 87.670427 iter 60 value 87.670427 iter 60 value 87.670427 final value 87.670427 converged Fitting Repeat 3 # weights: 103 initial value 100.615863 iter 10 value 93.800898 iter 20 value 89.515487 iter 30 value 88.189551 iter 40 value 87.965926 iter 50 value 87.828560 iter 60 value 87.618374 iter 70 value 87.494121 final value 87.493738 converged Fitting Repeat 4 # weights: 103 initial value 110.702794 iter 10 value 94.079122 iter 20 value 93.999541 iter 30 value 92.018212 iter 40 value 88.287206 iter 50 value 87.941613 iter 60 value 87.797352 iter 70 value 87.722303 iter 80 value 86.275902 iter 90 value 85.507714 iter 100 value 85.069840 final value 85.069840 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.328260 iter 10 value 92.921889 iter 20 value 88.593983 iter 30 value 87.812233 iter 40 value 87.558794 iter 50 value 87.419843 iter 60 value 87.413535 final value 87.412015 converged Fitting Repeat 1 # weights: 305 initial value 108.332995 iter 10 value 94.055535 iter 20 value 93.083453 iter 30 value 90.083708 iter 40 value 89.218540 iter 50 value 89.096685 iter 60 value 88.513556 iter 70 value 85.842199 iter 80 value 84.837688 iter 90 value 84.223618 iter 100 value 84.004333 final value 84.004333 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.143727 iter 10 value 94.603056 iter 20 value 94.081333 iter 30 value 90.861683 iter 40 value 88.564302 iter 50 value 87.840642 iter 60 value 87.033441 iter 70 value 86.691625 iter 80 value 86.667384 iter 90 value 86.614302 iter 100 value 86.138120 final value 86.138120 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.715633 iter 10 value 93.259391 iter 20 value 88.278189 iter 30 value 87.271944 iter 40 value 85.382416 iter 50 value 84.835114 iter 60 value 84.430487 iter 70 value 84.288528 iter 80 value 84.270146 iter 90 value 84.201812 iter 100 value 83.976004 final value 83.976004 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.910924 iter 10 value 94.061800 iter 20 value 93.979102 iter 30 value 89.769851 iter 40 value 88.050850 iter 50 value 87.821879 iter 60 value 87.286279 iter 70 value 87.046708 iter 80 value 86.909839 iter 90 value 86.647140 iter 100 value 86.123485 final value 86.123485 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.562906 iter 10 value 94.198976 iter 20 value 92.696159 iter 30 value 91.630727 iter 40 value 87.282993 iter 50 value 86.621970 iter 60 value 86.050906 iter 70 value 85.648869 iter 80 value 85.553572 iter 90 value 85.099629 iter 100 value 84.317819 final value 84.317819 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.585220 iter 10 value 94.154627 iter 20 value 88.975726 iter 30 value 88.053039 iter 40 value 86.645484 iter 50 value 85.542079 iter 60 value 84.622968 iter 70 value 84.237239 iter 80 value 84.091775 iter 90 value 83.864461 iter 100 value 83.824714 final value 83.824714 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 142.932801 iter 10 value 94.461913 iter 20 value 90.763017 iter 30 value 89.234766 iter 40 value 87.404975 iter 50 value 87.045707 iter 60 value 86.888006 iter 70 value 85.825996 iter 80 value 84.807484 iter 90 value 84.351524 iter 100 value 83.952091 final value 83.952091 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.236091 iter 10 value 91.583928 iter 20 value 88.179047 iter 30 value 86.423338 iter 40 value 84.897772 iter 50 value 84.575763 iter 60 value 84.133738 iter 70 value 83.790103 iter 80 value 83.704675 iter 90 value 83.628717 iter 100 value 83.601516 final value 83.601516 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.925966 iter 10 value 92.480924 iter 20 value 89.010212 iter 30 value 87.318341 iter 40 value 85.902471 iter 50 value 85.288674 iter 60 value 85.020832 iter 70 value 84.487279 iter 80 value 84.086168 iter 90 value 83.760933 iter 100 value 83.551952 final value 83.551952 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.081103 iter 10 value 94.158578 iter 20 value 94.064127 iter 30 value 92.865902 iter 40 value 88.949885 iter 50 value 87.059873 iter 60 value 85.873032 iter 70 value 84.666803 iter 80 value 84.237018 iter 90 value 84.029396 iter 100 value 83.934217 final value 83.934217 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.944846 final value 94.054572 converged Fitting Repeat 2 # weights: 103 initial value 94.794892 iter 10 value 94.054659 iter 20 value 94.009603 final value 93.604699 converged Fitting Repeat 3 # weights: 103 initial value 106.034754 final value 94.054314 converged Fitting Repeat 4 # weights: 103 initial value 99.048515 iter 10 value 94.054627 iter 20 value 94.052988 iter 30 value 88.779341 final value 88.775449 converged Fitting Repeat 5 # weights: 103 initial value 98.935364 final value 94.054817 converged Fitting Repeat 1 # weights: 305 initial value 113.875462 iter 10 value 94.021514 iter 20 value 92.068594 iter 30 value 88.227303 final value 88.222227 converged Fitting Repeat 2 # weights: 305 initial value 94.747037 iter 10 value 94.057369 iter 20 value 91.897544 iter 30 value 89.220722 iter 40 value 88.322752 iter 50 value 85.901910 iter 60 value 84.628475 iter 70 value 84.000520 iter 80 value 83.908638 iter 90 value 83.858104 iter 100 value 83.857351 final value 83.857351 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.100668 iter 10 value 94.057729 iter 20 value 93.998805 iter 30 value 93.219452 iter 40 value 90.035477 final value 90.029493 converged Fitting Repeat 4 # weights: 305 initial value 95.394465 iter 10 value 94.056549 iter 20 value 92.484121 iter 30 value 92.342399 iter 40 value 92.338850 iter 50 value 92.331337 iter 60 value 92.055660 iter 70 value 91.588501 iter 80 value 91.588006 final value 91.587980 converged Fitting Repeat 5 # weights: 305 initial value 97.157924 iter 10 value 94.057688 iter 20 value 94.052704 final value 93.836186 converged Fitting Repeat 1 # weights: 507 initial value 96.757495 iter 10 value 94.045120 iter 20 value 93.217522 iter 30 value 92.704618 iter 40 value 92.287843 iter 50 value 92.052575 iter 60 value 92.049577 iter 70 value 91.881027 final value 91.865993 converged Fitting Repeat 2 # weights: 507 initial value 103.075776 iter 10 value 93.878237 iter 20 value 93.641348 iter 30 value 90.439810 iter 40 value 86.339033 iter 50 value 85.767699 iter 60 value 85.665873 iter 70 value 85.292665 iter 80 value 85.135945 iter 90 value 85.120348 iter 100 value 85.119828 final value 85.119828 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.652590 iter 10 value 94.059113 iter 20 value 94.027782 iter 30 value 89.448849 iter 40 value 88.079402 iter 50 value 87.148442 iter 60 value 85.909595 iter 70 value 85.897713 final value 85.897655 converged Fitting Repeat 4 # weights: 507 initial value 109.559963 iter 10 value 92.389799 iter 20 value 91.924673 iter 30 value 91.868685 iter 40 value 91.749274 iter 50 value 91.744542 iter 60 value 91.743921 iter 70 value 91.737411 final value 91.736870 converged Fitting Repeat 5 # weights: 507 initial value 94.470236 iter 10 value 93.483270 iter 20 value 93.247719 iter 30 value 93.240966 iter 40 value 93.232866 iter 50 value 93.217331 iter 60 value 91.725704 iter 70 value 85.899427 iter 80 value 85.578934 iter 90 value 83.170027 iter 100 value 82.602292 final value 82.602292 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 118.947915 iter 10 value 117.763503 iter 20 value 111.963037 iter 30 value 104.886977 iter 40 value 104.449366 iter 50 value 104.294893 iter 60 value 104.294260 iter 70 value 104.175622 iter 80 value 104.057487 final value 104.057483 converged Fitting Repeat 2 # weights: 305 initial value 120.137736 iter 10 value 117.894055 iter 20 value 117.763205 iter 30 value 112.086835 iter 40 value 107.743906 iter 50 value 105.267138 iter 60 value 104.838400 iter 70 value 104.783682 iter 80 value 104.781108 iter 90 value 104.551125 iter 100 value 102.326987 final value 102.326987 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 134.028900 iter 10 value 117.763601 iter 20 value 117.665475 iter 30 value 116.437551 iter 40 value 107.329249 iter 50 value 99.770134 iter 60 value 99.398019 iter 70 value 99.391074 iter 80 value 99.388195 iter 90 value 99.387319 iter 100 value 99.386827 final value 99.386827 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 132.018824 iter 10 value 117.895926 iter 20 value 117.691052 iter 30 value 105.367915 final value 105.343478 converged Fitting Repeat 5 # weights: 305 initial value 124.521699 iter 10 value 117.895172 iter 20 value 117.890302 iter 20 value 117.890301 iter 20 value 117.890300 final value 117.890300 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Mar 23 23:09:05 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 38.698 1.243 132.218
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.530 | 0.408 | 32.940 | |
FreqInteractors | 0.207 | 0.015 | 0.222 | |
calculateAAC | 0.031 | 0.007 | 0.037 | |
calculateAutocor | 0.297 | 0.020 | 0.317 | |
calculateCTDC | 0.068 | 0.000 | 0.068 | |
calculateCTDD | 0.486 | 0.000 | 0.485 | |
calculateCTDT | 0.173 | 0.006 | 0.179 | |
calculateCTriad | 0.36 | 0.02 | 0.38 | |
calculateDC | 0.078 | 0.009 | 0.087 | |
calculateF | 0.288 | 0.005 | 0.293 | |
calculateKSAAP | 0.088 | 0.007 | 0.095 | |
calculateQD_Sm | 1.740 | 0.038 | 1.777 | |
calculateTC | 1.394 | 0.152 | 1.546 | |
calculateTC_Sm | 0.270 | 0.004 | 0.275 | |
corr_plot | 33.443 | 0.309 | 33.757 | |
enrichfindP | 0.588 | 0.021 | 8.026 | |
enrichfind_hp | 0.067 | 0.002 | 1.026 | |
enrichplot | 0.331 | 0.002 | 0.332 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.465 | 0.010 | 4.127 | |
getHPI | 0.001 | 0.000 | 0.002 | |
get_negativePPI | 0.002 | 0.001 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.002 | 0.004 | |
plotPPI | 0.081 | 0.001 | 0.082 | |
pred_ensembel | 13.214 | 0.278 | 12.156 | |
var_imp | 34.307 | 0.513 | 34.822 | |