Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-03-24 11:45 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" | 4779 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" | 4550 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4578 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4530 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4461 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2313 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-03-23 19:42:11 -0400 (Sun, 23 Mar 2025) |
EndedAt: 2025-03-23 19:45:19 -0400 (Sun, 23 Mar 2025) |
EllapsedTime: 188.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-03-02 r87868) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 18.030 0.757 18.854 FSmethod 18.014 0.710 18.975 corr_plot 17.550 0.742 18.566 pred_ensembel 5.550 0.096 5.055 enrichfindP 0.163 0.026 7.597 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 102.067636 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.750781 final value 94.052435 converged Fitting Repeat 3 # weights: 103 initial value 95.086361 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 105.170934 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.192650 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.562818 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.468155 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.817259 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.009442 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 100.178907 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.530171 iter 10 value 93.892780 final value 93.890562 converged Fitting Repeat 2 # weights: 507 initial value 95.089788 final value 94.484208 converged Fitting Repeat 3 # weights: 507 initial value 104.083625 iter 10 value 83.716147 iter 20 value 83.331537 final value 83.331152 converged Fitting Repeat 4 # weights: 507 initial value 100.951734 iter 10 value 93.640746 iter 20 value 93.530074 final value 93.530001 converged Fitting Repeat 5 # weights: 507 initial value 118.675913 iter 10 value 94.434933 final value 94.428837 converged Fitting Repeat 1 # weights: 103 initial value 100.755653 iter 10 value 94.063650 iter 20 value 80.737123 iter 30 value 79.966128 iter 40 value 79.852826 iter 50 value 79.124923 iter 60 value 79.040609 iter 70 value 78.859651 iter 80 value 78.735018 iter 90 value 78.143619 iter 100 value 78.122725 final value 78.122725 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.772843 iter 10 value 94.192449 iter 20 value 91.124249 iter 30 value 90.960440 iter 40 value 90.953101 iter 50 value 90.890098 iter 60 value 80.458645 iter 70 value 79.639375 iter 80 value 79.355282 iter 90 value 78.757107 iter 100 value 78.142493 final value 78.142493 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.243305 iter 10 value 94.139969 iter 20 value 82.557890 iter 30 value 80.839617 iter 40 value 80.798481 iter 50 value 80.728066 iter 60 value 80.710528 iter 70 value 80.698475 final value 80.698204 converged Fitting Repeat 4 # weights: 103 initial value 106.979557 iter 10 value 94.486666 iter 20 value 94.111478 iter 30 value 94.045034 iter 40 value 88.263128 iter 50 value 83.520277 iter 60 value 83.060216 iter 70 value 82.427500 iter 80 value 82.158676 iter 90 value 81.143370 iter 100 value 80.592347 final value 80.592347 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.489756 iter 10 value 94.444995 iter 20 value 85.362652 iter 30 value 81.207838 iter 40 value 80.391932 iter 50 value 80.298302 iter 60 value 80.247050 iter 70 value 80.214500 iter 80 value 80.209941 iter 80 value 80.209940 iter 80 value 80.209940 final value 80.209940 converged Fitting Repeat 1 # weights: 305 initial value 105.482675 iter 10 value 94.486169 iter 20 value 81.921668 iter 30 value 80.617832 iter 40 value 80.397751 iter 50 value 80.095445 iter 60 value 79.465658 iter 70 value 78.227446 iter 80 value 78.167171 iter 90 value 78.148215 iter 100 value 78.114865 final value 78.114865 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.714153 iter 10 value 95.169384 iter 20 value 94.237684 iter 30 value 94.118407 iter 40 value 93.989496 iter 50 value 88.305416 iter 60 value 83.544239 iter 70 value 79.377984 iter 80 value 78.086790 iter 90 value 77.300903 iter 100 value 77.160418 final value 77.160418 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 124.201134 iter 10 value 92.174159 iter 20 value 81.382071 iter 30 value 80.425149 iter 40 value 80.338668 iter 50 value 80.016987 iter 60 value 79.039913 iter 70 value 77.838315 iter 80 value 77.749016 iter 90 value 77.613225 iter 100 value 77.471394 final value 77.471394 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.767293 iter 10 value 94.555505 iter 20 value 94.333131 iter 30 value 93.859744 iter 40 value 89.454774 iter 50 value 86.434219 iter 60 value 83.534191 iter 70 value 81.339214 iter 80 value 80.643398 iter 90 value 79.221950 iter 100 value 78.483895 final value 78.483895 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.806905 iter 10 value 94.891514 iter 20 value 91.258673 iter 30 value 90.679633 iter 40 value 89.921231 iter 50 value 84.950044 iter 60 value 82.368766 iter 70 value 81.190093 iter 80 value 80.639745 iter 90 value 80.361423 iter 100 value 79.459055 final value 79.459055 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.214725 iter 10 value 94.980944 iter 20 value 83.110374 iter 30 value 82.141821 iter 40 value 80.853779 iter 50 value 79.124522 iter 60 value 78.765945 iter 70 value 78.132093 iter 80 value 76.676357 iter 90 value 76.321258 iter 100 value 75.826511 final value 75.826511 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.991389 iter 10 value 95.278407 iter 20 value 89.045349 iter 30 value 81.289547 iter 40 value 78.073805 iter 50 value 77.109306 iter 60 value 77.018606 iter 70 value 76.848218 iter 80 value 76.573289 iter 90 value 76.348435 iter 100 value 75.914396 final value 75.914396 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.499142 iter 10 value 95.155713 iter 20 value 93.055466 iter 30 value 89.402315 iter 40 value 83.844671 iter 50 value 81.115121 iter 60 value 79.125048 iter 70 value 78.525696 iter 80 value 78.138570 iter 90 value 77.899641 iter 100 value 77.584539 final value 77.584539 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.612914 iter 10 value 92.845517 iter 20 value 84.233981 iter 30 value 82.455352 iter 40 value 79.327810 iter 50 value 78.563113 iter 60 value 77.239924 iter 70 value 76.073778 iter 80 value 75.951914 iter 90 value 75.859928 iter 100 value 75.716036 final value 75.716036 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.270811 iter 10 value 94.077869 iter 20 value 84.770201 iter 30 value 81.116740 iter 40 value 80.381586 iter 50 value 80.161524 iter 60 value 79.750470 iter 70 value 78.818932 iter 80 value 77.437601 iter 90 value 76.359001 iter 100 value 76.091668 final value 76.091668 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.626194 iter 10 value 94.485811 iter 20 value 94.484149 iter 30 value 81.745565 iter 40 value 80.806756 iter 40 value 80.806756 iter 40 value 80.806756 final value 80.806756 converged Fitting Repeat 2 # weights: 103 initial value 97.913700 final value 94.485757 converged Fitting Repeat 3 # weights: 103 initial value 102.994274 final value 94.485958 converged Fitting Repeat 4 # weights: 103 initial value 106.347313 final value 94.485703 converged Fitting Repeat 5 # weights: 103 initial value 99.067607 iter 10 value 94.485749 final value 94.485164 converged Fitting Repeat 1 # weights: 305 initial value 103.657000 iter 10 value 94.489274 iter 20 value 94.484364 iter 30 value 90.207751 iter 40 value 83.195876 iter 50 value 83.188742 iter 60 value 79.241018 iter 70 value 77.511769 iter 80 value 77.469934 iter 90 value 77.467311 iter 100 value 77.465750 final value 77.465750 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.458468 iter 10 value 94.485564 iter 20 value 94.289091 iter 30 value 93.987335 iter 40 value 90.027278 iter 50 value 89.991715 iter 60 value 89.989507 iter 70 value 89.985209 final value 89.984647 converged Fitting Repeat 3 # weights: 305 initial value 98.713564 iter 10 value 94.436023 iter 20 value 94.429125 iter 30 value 83.739883 iter 40 value 77.239081 iter 50 value 76.575809 iter 60 value 76.170825 iter 70 value 76.147539 iter 80 value 76.146274 iter 90 value 76.145354 iter 100 value 76.144979 final value 76.144979 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.233097 iter 10 value 94.359319 iter 20 value 94.336273 iter 30 value 84.602438 iter 40 value 81.950893 iter 50 value 81.769852 iter 60 value 81.765585 iter 70 value 81.612267 final value 81.612189 converged Fitting Repeat 5 # weights: 305 initial value 101.961781 iter 10 value 94.358837 iter 20 value 94.085727 iter 30 value 94.039267 iter 40 value 92.343798 iter 50 value 91.235535 iter 60 value 91.101985 iter 70 value 91.061585 iter 80 value 88.805136 iter 90 value 80.647288 final value 80.591490 converged Fitting Repeat 1 # weights: 507 initial value 120.080821 iter 10 value 94.437202 iter 20 value 86.208098 iter 30 value 81.820367 iter 40 value 81.523419 iter 50 value 79.070026 iter 60 value 75.729358 iter 70 value 75.188269 iter 80 value 75.083879 iter 90 value 75.080796 iter 100 value 75.080540 final value 75.080540 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.762057 iter 10 value 94.363385 iter 20 value 94.361927 iter 30 value 94.360449 iter 40 value 89.481828 iter 50 value 83.196845 iter 60 value 83.194815 iter 70 value 83.186765 iter 80 value 83.183264 iter 90 value 81.372095 iter 100 value 80.407638 final value 80.407638 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.184605 iter 10 value 92.302817 iter 20 value 91.499788 iter 30 value 91.497704 iter 40 value 89.371204 iter 50 value 89.316590 iter 60 value 89.236383 final value 89.223543 converged Fitting Repeat 4 # weights: 507 initial value 110.749442 iter 10 value 94.492431 iter 20 value 91.516554 iter 30 value 91.226261 final value 91.224006 converged Fitting Repeat 5 # weights: 507 initial value 97.940065 iter 10 value 94.362683 iter 20 value 94.162667 iter 30 value 93.974335 iter 40 value 80.252980 iter 50 value 79.574151 iter 60 value 78.709953 iter 70 value 77.908472 iter 80 value 77.778069 final value 77.777959 converged Fitting Repeat 1 # weights: 103 initial value 108.472835 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.605285 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.433017 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.638455 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.515989 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 108.033432 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.935040 iter 10 value 94.387545 final value 94.387433 converged Fitting Repeat 3 # weights: 305 initial value 101.473475 final value 94.385583 converged Fitting Repeat 4 # weights: 305 initial value 102.199566 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.769311 iter 10 value 94.112904 iter 10 value 94.112903 iter 10 value 94.112903 final value 94.112903 converged Fitting Repeat 1 # weights: 507 initial value 104.547573 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 96.018326 iter 10 value 89.890027 iter 20 value 88.913683 final value 88.913541 converged Fitting Repeat 3 # weights: 507 initial value 102.277396 iter 10 value 94.112904 iter 10 value 94.112903 iter 10 value 94.112903 final value 94.112903 converged Fitting Repeat 4 # weights: 507 initial value 101.487883 iter 10 value 93.008326 iter 20 value 92.971859 final value 92.971355 converged Fitting Repeat 5 # weights: 507 initial value 107.050937 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 113.231127 iter 10 value 94.449722 iter 20 value 87.579500 iter 30 value 87.028529 iter 40 value 85.781584 iter 50 value 85.025517 iter 60 value 84.714133 iter 70 value 84.591720 iter 70 value 84.591719 iter 70 value 84.591719 final value 84.591719 converged Fitting Repeat 2 # weights: 103 initial value 96.526596 iter 10 value 92.384233 iter 20 value 85.590595 iter 30 value 84.982834 iter 40 value 84.878008 iter 50 value 84.759854 iter 60 value 84.395471 iter 70 value 84.207725 final value 84.201781 converged Fitting Repeat 3 # weights: 103 initial value 100.581959 iter 10 value 94.479567 iter 20 value 94.237933 iter 30 value 94.078593 iter 40 value 94.045454 iter 50 value 94.040873 iter 60 value 93.437819 iter 70 value 91.545328 iter 80 value 89.563532 iter 90 value 86.937469 iter 100 value 84.993119 final value 84.993119 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.910929 iter 10 value 94.444626 iter 20 value 91.545751 iter 30 value 88.926621 iter 40 value 88.781099 iter 50 value 85.671292 iter 60 value 84.584642 iter 70 value 84.407605 iter 80 value 84.312491 iter 90 value 83.845197 iter 100 value 83.616293 final value 83.616293 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.982210 iter 10 value 94.489150 iter 20 value 90.058554 iter 30 value 87.532085 iter 40 value 82.979559 iter 50 value 82.102238 iter 60 value 82.011385 iter 70 value 81.982413 iter 80 value 81.897287 iter 90 value 81.853148 final value 81.852176 converged Fitting Repeat 1 # weights: 305 initial value 106.933355 iter 10 value 94.500750 iter 20 value 93.049562 iter 30 value 91.871233 iter 40 value 90.673139 iter 50 value 90.584907 iter 60 value 90.373664 iter 70 value 89.983854 iter 80 value 87.318245 iter 90 value 83.226667 iter 100 value 82.380640 final value 82.380640 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.515464 iter 10 value 94.385217 iter 20 value 88.035920 iter 30 value 87.119576 iter 40 value 85.126940 iter 50 value 84.622356 iter 60 value 83.265896 iter 70 value 82.729869 iter 80 value 82.409396 iter 90 value 82.381125 iter 100 value 82.258178 final value 82.258178 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.458896 iter 10 value 94.433743 iter 20 value 87.587010 iter 30 value 87.072334 iter 40 value 86.763832 iter 50 value 84.886712 iter 60 value 84.281719 iter 70 value 84.265700 iter 80 value 84.208542 iter 90 value 83.171460 iter 100 value 82.137150 final value 82.137150 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.396714 iter 10 value 94.472810 iter 20 value 94.200671 iter 30 value 93.677114 iter 40 value 88.422163 iter 50 value 82.798638 iter 60 value 82.218089 iter 70 value 81.621048 iter 80 value 81.336838 iter 90 value 81.016796 iter 100 value 80.802252 final value 80.802252 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.331851 iter 10 value 95.146966 iter 20 value 87.988818 iter 30 value 85.377567 iter 40 value 82.650634 iter 50 value 82.022152 iter 60 value 81.612959 iter 70 value 81.402541 iter 80 value 81.392963 iter 90 value 81.364818 iter 100 value 81.096157 final value 81.096157 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.510776 iter 10 value 94.505058 iter 20 value 89.454369 iter 30 value 86.516649 iter 40 value 85.976829 iter 50 value 85.809960 iter 60 value 83.150209 iter 70 value 82.616641 iter 80 value 82.116337 iter 90 value 81.793571 iter 100 value 81.644654 final value 81.644654 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.054999 iter 10 value 94.222890 iter 20 value 87.535803 iter 30 value 85.488681 iter 40 value 85.306506 iter 50 value 84.386533 iter 60 value 82.511929 iter 70 value 81.732470 iter 80 value 81.247486 iter 90 value 80.933879 iter 100 value 80.697045 final value 80.697045 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.789449 iter 10 value 92.765586 iter 20 value 86.392662 iter 30 value 84.238078 iter 40 value 84.014968 iter 50 value 82.963838 iter 60 value 82.217112 iter 70 value 81.639494 iter 80 value 81.371197 iter 90 value 81.250718 iter 100 value 81.162976 final value 81.162976 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.897895 iter 10 value 93.456483 iter 20 value 88.132600 iter 30 value 85.118193 iter 40 value 82.449529 iter 50 value 81.599595 iter 60 value 81.278252 iter 70 value 80.792532 iter 80 value 80.599533 iter 90 value 80.337865 iter 100 value 80.065458 final value 80.065458 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.019216 iter 10 value 94.340887 iter 20 value 86.752705 iter 30 value 84.649689 iter 40 value 83.115837 iter 50 value 81.596887 iter 60 value 81.007828 iter 70 value 80.847396 iter 80 value 80.753912 iter 90 value 80.645756 iter 100 value 80.599977 final value 80.599977 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.375710 final value 94.485837 converged Fitting Repeat 2 # weights: 103 initial value 101.426231 final value 94.485727 converged Fitting Repeat 3 # weights: 103 initial value 94.588789 final value 94.485828 converged Fitting Repeat 4 # weights: 103 initial value 99.202777 final value 94.485782 converged Fitting Repeat 5 # weights: 103 initial value 98.264841 final value 94.325346 converged Fitting Repeat 1 # weights: 305 initial value 104.697351 iter 10 value 94.489376 iter 20 value 94.357842 iter 30 value 92.028807 iter 40 value 91.482062 iter 50 value 87.848577 iter 60 value 86.714950 iter 70 value 86.097116 iter 80 value 86.067234 iter 90 value 86.066786 iter 100 value 86.063166 final value 86.063166 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.285742 iter 10 value 94.489371 iter 20 value 94.484662 iter 30 value 94.406759 iter 40 value 91.404522 iter 50 value 86.124138 iter 60 value 85.783352 iter 70 value 84.811093 iter 80 value 84.772490 final value 84.772284 converged Fitting Repeat 3 # weights: 305 initial value 109.407646 iter 10 value 94.488929 iter 20 value 94.410561 iter 30 value 94.064226 iter 30 value 94.064226 iter 30 value 94.064226 final value 94.064226 converged Fitting Repeat 4 # weights: 305 initial value 95.132446 iter 10 value 94.476399 iter 20 value 91.207602 iter 30 value 91.205952 iter 40 value 88.983883 iter 50 value 88.411207 iter 60 value 88.402672 iter 70 value 88.402085 iter 80 value 88.400981 final value 88.400887 converged Fitting Repeat 5 # weights: 305 initial value 101.376380 iter 10 value 94.144558 iter 20 value 94.116904 iter 30 value 94.111778 iter 40 value 88.879233 iter 50 value 86.864976 iter 60 value 86.467597 iter 70 value 86.152874 final value 86.151892 converged Fitting Repeat 1 # weights: 507 initial value 97.123727 iter 10 value 94.491655 iter 20 value 93.312043 iter 30 value 83.803907 iter 40 value 83.219295 final value 83.219061 converged Fitting Repeat 2 # weights: 507 initial value 140.477627 iter 10 value 94.492911 iter 20 value 94.483024 iter 30 value 94.432183 iter 40 value 94.428327 iter 50 value 94.354643 final value 94.354626 converged Fitting Repeat 3 # weights: 507 initial value 101.531476 iter 10 value 94.217799 iter 20 value 94.137530 iter 30 value 94.133197 final value 94.133125 converged Fitting Repeat 4 # weights: 507 initial value 112.315054 iter 10 value 94.121265 iter 20 value 94.114324 iter 30 value 87.519263 iter 40 value 86.764110 iter 50 value 86.240948 final value 86.225899 converged Fitting Repeat 5 # weights: 507 initial value 105.246347 iter 10 value 94.478427 final value 94.478347 converged Fitting Repeat 1 # weights: 103 initial value 105.703276 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.600626 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.501325 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 107.191922 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.336828 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 104.660223 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 94.553200 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 108.452309 iter 10 value 94.008285 iter 20 value 88.629650 iter 30 value 87.121567 iter 40 value 86.876117 final value 86.874733 converged Fitting Repeat 4 # weights: 305 initial value 103.733292 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 105.523706 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 122.095571 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 100.473940 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 103.058805 iter 10 value 93.579161 iter 20 value 93.376233 iter 30 value 93.224404 iter 40 value 93.222089 final value 93.222083 converged Fitting Repeat 4 # weights: 507 initial value 119.858718 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.946944 iter 10 value 94.052832 iter 20 value 94.033425 final value 94.032967 converged Fitting Repeat 1 # weights: 103 initial value 103.701157 iter 10 value 94.045399 iter 20 value 89.356155 iter 30 value 86.010446 iter 40 value 85.692072 iter 50 value 85.367468 iter 60 value 83.514949 iter 70 value 82.747845 iter 80 value 82.629809 iter 90 value 82.593751 final value 82.592899 converged Fitting Repeat 2 # weights: 103 initial value 98.036827 iter 10 value 94.067299 iter 20 value 92.070278 iter 30 value 91.434861 iter 40 value 91.419827 iter 50 value 91.415927 iter 60 value 91.414426 final value 91.414343 converged Fitting Repeat 3 # weights: 103 initial value 105.701642 iter 10 value 93.966311 iter 20 value 92.369679 iter 30 value 89.979172 iter 40 value 85.857945 iter 50 value 85.338800 iter 60 value 85.260261 iter 70 value 85.246844 final value 85.246806 converged Fitting Repeat 4 # weights: 103 initial value 103.857789 iter 10 value 91.742462 iter 20 value 87.888062 iter 30 value 84.055816 iter 40 value 83.713466 iter 50 value 83.052130 iter 60 value 82.811118 iter 70 value 82.639482 iter 80 value 82.393587 iter 90 value 82.373602 final value 82.364284 converged Fitting Repeat 5 # weights: 103 initial value 106.146259 iter 10 value 93.885810 iter 20 value 85.689409 iter 30 value 84.153018 iter 40 value 83.350513 iter 50 value 82.922470 iter 60 value 82.673576 iter 70 value 82.635408 iter 80 value 82.599461 final value 82.592899 converged Fitting Repeat 1 # weights: 305 initial value 119.320479 iter 10 value 94.057899 iter 20 value 92.873606 iter 30 value 85.128499 iter 40 value 84.224917 iter 50 value 83.625219 iter 60 value 82.285388 iter 70 value 82.100454 iter 80 value 81.612798 iter 90 value 81.569206 iter 100 value 81.522030 final value 81.522030 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.632899 iter 10 value 93.899106 iter 20 value 92.461719 iter 30 value 91.817304 iter 40 value 91.609209 iter 50 value 90.280950 iter 60 value 88.360025 iter 70 value 86.273738 iter 80 value 85.663978 iter 90 value 85.236364 iter 100 value 84.734250 final value 84.734250 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.284238 iter 10 value 93.443941 iter 20 value 86.405586 iter 30 value 85.007960 iter 40 value 84.627852 iter 50 value 84.495029 iter 60 value 84.451260 iter 70 value 84.374024 iter 80 value 83.527161 iter 90 value 82.371820 iter 100 value 82.185482 final value 82.185482 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.225722 iter 10 value 94.061493 iter 20 value 90.069908 iter 30 value 88.334071 iter 40 value 86.483131 iter 50 value 84.603471 iter 60 value 83.575905 iter 70 value 83.033927 iter 80 value 82.531663 iter 90 value 82.358287 iter 100 value 82.332965 final value 82.332965 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.344346 iter 10 value 94.057977 iter 20 value 94.036558 iter 30 value 88.807984 iter 40 value 87.322678 iter 50 value 85.183778 iter 60 value 85.092843 iter 70 value 84.923637 iter 80 value 84.897587 iter 90 value 84.829808 iter 100 value 83.974173 final value 83.974173 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.019790 iter 10 value 94.899007 iter 20 value 88.549390 iter 30 value 86.240303 iter 40 value 85.278774 iter 50 value 83.471546 iter 60 value 82.843139 iter 70 value 81.769273 iter 80 value 81.591182 iter 90 value 81.399022 iter 100 value 81.309144 final value 81.309144 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.196727 iter 10 value 91.096056 iter 20 value 86.313875 iter 30 value 85.338392 iter 40 value 84.623255 iter 50 value 83.269324 iter 60 value 81.992075 iter 70 value 81.556706 iter 80 value 81.448904 iter 90 value 81.184002 iter 100 value 81.069133 final value 81.069133 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.546393 iter 10 value 94.356638 iter 20 value 88.803527 iter 30 value 87.455314 iter 40 value 85.677432 iter 50 value 83.634781 iter 60 value 83.250015 iter 70 value 82.721920 iter 80 value 82.111741 iter 90 value 81.839243 iter 100 value 81.513111 final value 81.513111 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.889308 iter 10 value 94.295478 iter 20 value 93.654476 iter 30 value 89.505832 iter 40 value 86.226732 iter 50 value 85.571771 iter 60 value 84.308601 iter 70 value 83.705023 iter 80 value 81.749375 iter 90 value 81.299698 iter 100 value 81.076280 final value 81.076280 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.761653 iter 10 value 94.628642 iter 20 value 93.641234 iter 30 value 92.481363 iter 40 value 90.732626 iter 50 value 90.036798 iter 60 value 89.633956 iter 70 value 87.197451 iter 80 value 85.661090 iter 90 value 82.673248 iter 100 value 82.297700 final value 82.297700 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.597595 final value 94.054749 converged Fitting Repeat 2 # weights: 103 initial value 95.271880 final value 94.054663 converged Fitting Repeat 3 # weights: 103 initial value 96.333865 iter 10 value 93.837888 iter 20 value 93.836623 iter 30 value 91.432716 iter 40 value 91.212766 iter 50 value 88.467855 iter 60 value 88.467551 iter 70 value 88.466365 iter 80 value 88.465679 iter 90 value 88.456991 iter 100 value 88.367391 final value 88.367391 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.521161 iter 10 value 93.837662 iter 20 value 93.837394 final value 93.837385 converged Fitting Repeat 5 # weights: 103 initial value 104.767281 final value 94.054736 converged Fitting Repeat 1 # weights: 305 initial value 94.247567 iter 10 value 93.840390 iter 20 value 93.831013 final value 93.830796 converged Fitting Repeat 2 # weights: 305 initial value 117.429483 iter 10 value 94.058269 iter 20 value 94.052973 iter 30 value 92.318859 iter 40 value 90.724441 iter 50 value 87.992902 iter 60 value 83.237848 iter 70 value 81.699314 iter 80 value 81.314285 iter 90 value 81.146831 iter 100 value 81.140314 final value 81.140314 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.618686 iter 10 value 93.840976 iter 20 value 93.837813 final value 93.836921 converged Fitting Repeat 4 # weights: 305 initial value 100.084983 iter 10 value 94.057257 iter 20 value 94.037081 iter 30 value 93.664413 iter 40 value 85.898413 iter 50 value 85.442232 iter 60 value 85.441203 final value 85.355821 converged Fitting Repeat 5 # weights: 305 initial value 125.590685 iter 10 value 94.057536 iter 20 value 94.024814 iter 30 value 86.495777 iter 40 value 86.319166 iter 50 value 86.216950 iter 60 value 83.163200 iter 70 value 83.020516 iter 80 value 82.992326 iter 90 value 82.946045 iter 100 value 82.655361 final value 82.655361 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 99.654608 iter 10 value 93.877380 iter 20 value 88.426290 iter 30 value 88.078454 iter 40 value 86.651162 iter 50 value 86.214225 iter 60 value 84.276901 iter 70 value 84.254559 iter 80 value 84.217854 iter 90 value 84.173169 final value 84.160339 converged Fitting Repeat 2 # weights: 507 initial value 97.507812 iter 10 value 94.040935 iter 20 value 94.035499 iter 30 value 93.837036 final value 93.758557 converged Fitting Repeat 3 # weights: 507 initial value 98.014210 iter 10 value 94.059149 iter 20 value 94.054576 iter 30 value 94.044384 iter 40 value 94.029982 iter 40 value 94.029982 iter 40 value 94.029982 final value 94.029982 converged Fitting Repeat 4 # weights: 507 initial value 102.904888 iter 10 value 93.325369 iter 20 value 90.722280 iter 30 value 85.663313 iter 40 value 85.278947 iter 50 value 85.268907 iter 60 value 85.266081 iter 60 value 85.266081 final value 85.266081 converged Fitting Repeat 5 # weights: 507 initial value 111.887909 iter 10 value 94.061201 iter 20 value 94.004949 iter 30 value 93.769967 iter 40 value 88.432753 iter 50 value 88.038840 iter 60 value 84.810412 iter 70 value 81.965400 iter 80 value 81.798308 iter 90 value 81.752979 iter 100 value 81.708778 final value 81.708778 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.573411 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.886014 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.632400 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.724005 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.445095 final value 93.912644 converged Fitting Repeat 1 # weights: 305 initial value 95.681922 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 94.207165 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 106.026053 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 98.056634 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 94.178758 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 110.627528 final value 93.604520 converged Fitting Repeat 2 # weights: 507 initial value 95.913639 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 111.898216 iter 10 value 87.814205 final value 86.618182 converged Fitting Repeat 4 # weights: 507 initial value 107.150901 iter 10 value 94.032968 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 105.966933 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 100.099831 iter 10 value 95.055863 iter 20 value 94.126913 iter 30 value 94.056837 iter 40 value 93.629764 iter 50 value 93.418423 iter 60 value 89.423603 iter 70 value 86.640415 iter 80 value 85.477666 iter 90 value 84.556806 iter 100 value 82.751603 final value 82.751603 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 112.353090 iter 10 value 93.167960 iter 20 value 86.168054 iter 30 value 84.764919 iter 40 value 83.886002 iter 50 value 83.700115 iter 60 value 83.468013 iter 70 value 83.388415 final value 83.388294 converged Fitting Repeat 3 # weights: 103 initial value 98.250908 iter 10 value 93.604656 iter 20 value 86.355173 iter 30 value 84.471332 iter 40 value 83.271628 iter 50 value 82.718919 iter 60 value 81.815399 iter 70 value 81.675058 final value 81.675014 converged Fitting Repeat 4 # weights: 103 initial value 98.419816 iter 10 value 93.989509 iter 20 value 90.660138 iter 30 value 88.017570 iter 40 value 84.587719 iter 50 value 83.861453 iter 60 value 83.571242 iter 70 value 83.399114 iter 80 value 83.388428 final value 83.388294 converged Fitting Repeat 5 # weights: 103 initial value 96.447111 iter 10 value 94.045989 iter 20 value 91.127611 iter 30 value 87.352847 iter 40 value 86.618335 iter 50 value 83.485718 iter 60 value 83.436040 iter 70 value 83.394351 iter 80 value 83.388848 final value 83.388294 converged Fitting Repeat 1 # weights: 305 initial value 103.209944 iter 10 value 94.062162 iter 20 value 90.954188 iter 30 value 89.112269 iter 40 value 88.116028 iter 50 value 86.040847 iter 60 value 81.716754 iter 70 value 81.235595 iter 80 value 80.765642 iter 90 value 80.550666 iter 100 value 80.440110 final value 80.440110 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.208997 iter 10 value 94.139705 iter 20 value 89.289844 iter 30 value 87.294936 iter 40 value 86.703694 iter 50 value 84.159255 iter 60 value 83.244798 iter 70 value 82.643119 iter 80 value 81.701905 iter 90 value 81.386506 iter 100 value 80.990589 final value 80.990589 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.749816 iter 10 value 94.049415 iter 20 value 86.356853 iter 30 value 84.845365 iter 40 value 84.656855 iter 50 value 83.729939 iter 60 value 83.276348 iter 70 value 83.197120 iter 80 value 82.682446 iter 90 value 81.487543 iter 100 value 80.970744 final value 80.970744 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.937755 iter 10 value 94.027765 iter 20 value 93.574749 iter 30 value 92.837219 iter 40 value 88.674000 iter 50 value 85.020772 iter 60 value 84.180879 iter 70 value 82.536796 iter 80 value 81.698496 iter 90 value 80.941612 iter 100 value 80.591264 final value 80.591264 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.914397 iter 10 value 90.832698 iter 20 value 85.856859 iter 30 value 83.266031 iter 40 value 81.928890 iter 50 value 81.111668 iter 60 value 81.008547 iter 70 value 80.912629 iter 80 value 80.908538 iter 90 value 80.906738 iter 100 value 80.896301 final value 80.896301 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 131.569223 iter 10 value 94.670907 iter 20 value 88.641941 iter 30 value 85.122627 iter 40 value 83.941107 iter 50 value 81.851194 iter 60 value 81.516457 iter 70 value 81.115558 iter 80 value 80.874713 iter 90 value 80.727235 iter 100 value 80.701022 final value 80.701022 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.287903 iter 10 value 92.706633 iter 20 value 86.290965 iter 30 value 85.288021 iter 40 value 84.855721 iter 50 value 84.124371 iter 60 value 83.582012 iter 70 value 83.382629 iter 80 value 83.338474 iter 90 value 83.215524 iter 100 value 83.077432 final value 83.077432 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.636209 iter 10 value 89.631594 iter 20 value 84.213449 iter 30 value 83.005578 iter 40 value 82.486503 iter 50 value 81.232522 iter 60 value 80.711835 iter 70 value 80.562125 iter 80 value 80.318357 iter 90 value 80.242118 iter 100 value 80.154651 final value 80.154651 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.414173 iter 10 value 95.179002 iter 20 value 90.499262 iter 30 value 86.478233 iter 40 value 86.232108 iter 50 value 84.877735 iter 60 value 82.963966 iter 70 value 82.583521 iter 80 value 81.994255 iter 90 value 81.912882 iter 100 value 81.443984 final value 81.443984 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.664958 iter 10 value 94.047409 iter 20 value 89.554865 iter 30 value 86.181490 iter 40 value 84.183976 iter 50 value 82.916461 iter 60 value 82.291183 iter 70 value 82.172186 iter 80 value 81.906264 iter 90 value 81.491130 iter 100 value 80.729624 final value 80.729624 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.355881 final value 94.054567 converged Fitting Repeat 2 # weights: 103 initial value 95.737264 iter 10 value 93.322445 iter 20 value 92.231853 iter 30 value 91.719135 iter 40 value 91.698934 iter 50 value 91.698552 iter 60 value 90.387179 iter 70 value 90.368116 iter 80 value 90.367932 final value 90.367900 converged Fitting Repeat 3 # weights: 103 initial value 111.387672 iter 10 value 91.016424 iter 20 value 85.883532 final value 85.312601 converged Fitting Repeat 4 # weights: 103 initial value 95.674608 final value 94.054795 converged Fitting Repeat 5 # weights: 103 initial value 110.059885 final value 94.054444 converged Fitting Repeat 1 # weights: 305 initial value 109.556355 iter 10 value 93.514087 iter 20 value 93.507137 iter 30 value 92.791363 iter 40 value 91.512997 iter 50 value 91.507555 iter 60 value 90.968951 iter 70 value 90.964140 iter 80 value 90.963420 iter 90 value 90.700478 final value 90.677042 converged Fitting Repeat 2 # weights: 305 initial value 101.090045 iter 10 value 94.057862 iter 20 value 94.052923 iter 30 value 90.221334 iter 40 value 85.914352 iter 50 value 85.905945 iter 60 value 85.802502 iter 70 value 84.481553 iter 80 value 84.068591 iter 90 value 83.976456 iter 100 value 83.140148 final value 83.140148 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.242785 iter 10 value 94.057757 iter 20 value 87.433577 iter 30 value 84.575149 iter 40 value 84.541744 iter 50 value 84.539547 iter 60 value 84.444236 iter 70 value 83.582104 iter 80 value 81.534667 iter 90 value 81.147875 iter 100 value 80.724505 final value 80.724505 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.128259 iter 10 value 94.057468 iter 20 value 94.004776 iter 30 value 93.482186 iter 40 value 93.481681 final value 93.481677 converged Fitting Repeat 5 # weights: 305 initial value 95.731625 iter 10 value 94.085041 iter 20 value 93.554106 iter 30 value 93.510089 iter 40 value 93.496391 iter 50 value 93.418078 iter 60 value 93.417614 final value 93.417605 converged Fitting Repeat 1 # weights: 507 initial value 97.743950 iter 10 value 91.178092 iter 20 value 90.432596 iter 30 value 90.428202 iter 40 value 90.391941 iter 50 value 89.683088 iter 60 value 89.551512 iter 70 value 89.427154 iter 80 value 89.403062 iter 90 value 89.283263 iter 100 value 89.155529 final value 89.155529 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.021150 iter 10 value 94.053464 iter 20 value 93.987171 iter 30 value 92.475695 iter 40 value 90.584903 iter 50 value 90.578683 final value 90.578674 converged Fitting Repeat 3 # weights: 507 initial value 99.099598 iter 10 value 94.041101 iter 20 value 94.033287 iter 30 value 91.947936 iter 40 value 89.054082 iter 40 value 89.054081 iter 40 value 89.054081 final value 89.054081 converged Fitting Repeat 4 # weights: 507 initial value 120.825273 iter 10 value 93.894355 iter 20 value 93.832223 iter 30 value 93.149912 iter 40 value 91.470797 iter 50 value 91.160198 iter 60 value 91.154973 final value 91.154771 converged Fitting Repeat 5 # weights: 507 initial value 101.284588 iter 10 value 94.059812 iter 20 value 93.934094 iter 30 value 84.309512 iter 40 value 83.922687 iter 50 value 82.066774 iter 60 value 80.648145 iter 70 value 79.584611 iter 80 value 79.366651 iter 90 value 79.346671 iter 100 value 79.341949 final value 79.341949 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.551341 iter 10 value 87.356972 iter 20 value 85.758906 iter 30 value 85.603212 iter 40 value 85.603123 final value 85.603101 converged Fitting Repeat 2 # weights: 103 initial value 96.621615 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.377268 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.030387 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.933136 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.979781 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 113.818324 iter 10 value 94.466823 iter 10 value 94.466823 iter 10 value 94.466823 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 111.691974 final value 94.484137 converged Fitting Repeat 4 # weights: 305 initial value 98.977668 iter 10 value 94.466581 iter 10 value 94.466580 iter 10 value 94.466580 final value 94.466580 converged Fitting Repeat 5 # weights: 305 initial value 117.302440 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 112.169616 iter 10 value 94.378861 iter 20 value 93.128499 final value 93.099987 converged Fitting Repeat 2 # weights: 507 initial value 108.099591 final value 94.484138 converged Fitting Repeat 3 # weights: 507 initial value 103.444815 final value 94.046703 converged Fitting Repeat 4 # weights: 507 initial value 117.713407 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 110.294551 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.279513 iter 10 value 94.489565 iter 20 value 94.487163 iter 30 value 93.853393 iter 40 value 86.888717 iter 50 value 85.908978 iter 60 value 85.716134 iter 70 value 85.636776 iter 80 value 85.510546 iter 90 value 85.475530 iter 100 value 85.462893 final value 85.462893 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 105.523408 iter 10 value 94.488597 iter 20 value 94.485030 iter 30 value 94.141642 iter 40 value 93.096429 iter 50 value 91.529677 iter 60 value 88.725488 iter 70 value 88.001694 iter 80 value 87.704152 iter 90 value 87.499582 iter 100 value 87.164904 final value 87.164904 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.663980 iter 10 value 94.488516 iter 20 value 94.473363 iter 30 value 93.388109 iter 40 value 90.338405 iter 50 value 88.902833 iter 60 value 88.341788 iter 70 value 87.263519 iter 80 value 86.796176 iter 90 value 85.933571 iter 100 value 85.523975 final value 85.523975 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.265938 iter 10 value 94.699558 iter 20 value 94.484875 iter 30 value 89.944039 iter 40 value 87.447412 iter 50 value 87.300716 iter 60 value 86.966329 iter 70 value 85.965270 iter 80 value 85.845325 iter 90 value 84.937426 iter 100 value 84.337167 final value 84.337167 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 119.465510 iter 10 value 94.414228 iter 20 value 89.336569 iter 30 value 87.893216 iter 40 value 86.652206 iter 50 value 85.092511 iter 60 value 84.634049 iter 70 value 84.504345 iter 80 value 84.420397 iter 90 value 84.279317 iter 100 value 84.097416 final value 84.097416 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.953548 iter 10 value 94.459170 iter 20 value 91.987966 iter 30 value 88.503170 iter 40 value 87.668891 iter 50 value 87.197840 iter 60 value 84.760803 iter 70 value 84.382583 iter 80 value 84.247857 iter 90 value 84.052466 iter 100 value 83.516081 final value 83.516081 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.433948 iter 10 value 93.482235 iter 20 value 87.524058 iter 30 value 86.918203 iter 40 value 86.737223 iter 50 value 85.977031 iter 60 value 85.827962 iter 70 value 85.683592 iter 80 value 85.590386 iter 90 value 85.578974 iter 100 value 85.559711 final value 85.559711 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.820885 iter 10 value 93.662732 iter 20 value 93.305024 iter 30 value 88.719257 iter 40 value 87.388033 iter 50 value 86.466365 iter 60 value 84.247385 iter 70 value 83.362339 iter 80 value 83.143923 iter 90 value 83.105121 iter 100 value 83.048252 final value 83.048252 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.060452 iter 10 value 94.421849 iter 20 value 90.684617 iter 30 value 88.486983 iter 40 value 87.734767 iter 50 value 85.786708 iter 60 value 84.865028 iter 70 value 84.395384 iter 80 value 84.334675 iter 90 value 83.917211 iter 100 value 83.287229 final value 83.287229 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 137.036623 iter 10 value 94.531730 iter 20 value 89.847822 iter 30 value 85.773920 iter 40 value 84.237576 iter 50 value 83.415058 iter 60 value 83.097459 iter 70 value 83.074169 iter 80 value 83.001933 iter 90 value 82.744348 iter 100 value 82.575932 final value 82.575932 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.997698 iter 10 value 93.643695 iter 20 value 88.347766 iter 30 value 87.993622 iter 40 value 87.659633 iter 50 value 87.279483 iter 60 value 87.229665 iter 70 value 87.185988 iter 80 value 86.927263 iter 90 value 85.078023 iter 100 value 83.700772 final value 83.700772 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.930949 iter 10 value 93.924208 iter 20 value 91.677035 iter 30 value 87.834957 iter 40 value 86.459044 iter 50 value 85.199581 iter 60 value 84.548236 iter 70 value 83.940989 iter 80 value 83.789435 iter 90 value 83.374603 iter 100 value 83.025906 final value 83.025906 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.775723 iter 10 value 98.795835 iter 20 value 90.237950 iter 30 value 87.443805 iter 40 value 84.927055 iter 50 value 84.683667 iter 60 value 84.605316 iter 70 value 84.311217 iter 80 value 83.717760 iter 90 value 83.370713 iter 100 value 83.160137 final value 83.160137 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 145.825453 iter 10 value 94.742673 iter 20 value 88.736450 iter 30 value 88.357196 iter 40 value 87.916483 iter 50 value 86.447598 iter 60 value 86.073210 iter 70 value 85.872488 iter 80 value 84.484281 iter 90 value 84.196442 iter 100 value 83.483927 final value 83.483927 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.529466 iter 10 value 94.412555 iter 20 value 92.327886 iter 30 value 87.939916 iter 40 value 85.399632 iter 50 value 84.181051 iter 60 value 83.180491 iter 70 value 82.989377 iter 80 value 82.737657 iter 90 value 82.567274 iter 100 value 82.505769 final value 82.505769 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.996455 iter 10 value 94.450792 iter 20 value 94.427270 iter 20 value 94.427270 iter 20 value 94.427270 final value 94.427270 converged Fitting Repeat 2 # weights: 103 initial value 101.121728 final value 94.485926 converged Fitting Repeat 3 # weights: 103 initial value 97.963065 final value 94.486062 converged Fitting Repeat 4 # weights: 103 initial value 95.063825 final value 94.485864 converged Fitting Repeat 5 # weights: 103 initial value 97.287919 final value 94.485799 converged Fitting Repeat 1 # weights: 305 initial value 96.370264 iter 10 value 94.488867 iter 20 value 94.419744 iter 30 value 94.051396 iter 40 value 94.046806 iter 50 value 90.035328 iter 60 value 87.296685 iter 70 value 87.289103 iter 80 value 87.288969 iter 90 value 87.187873 iter 100 value 87.187502 final value 87.187502 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 127.081061 iter 10 value 94.490524 iter 20 value 94.485388 iter 30 value 93.772621 iter 40 value 93.152882 iter 50 value 93.152152 iter 60 value 92.567837 iter 70 value 92.567208 iter 80 value 92.549256 iter 90 value 92.220892 iter 100 value 90.226961 final value 90.226961 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.815105 iter 10 value 94.488544 iter 20 value 94.479560 iter 30 value 90.080302 iter 40 value 87.685327 iter 50 value 86.276944 iter 60 value 85.422130 iter 70 value 84.695448 final value 84.695442 converged Fitting Repeat 4 # weights: 305 initial value 97.979342 iter 10 value 94.473135 iter 20 value 94.471491 iter 30 value 94.466810 iter 40 value 90.626361 iter 50 value 88.941891 iter 60 value 87.187880 final value 87.187095 converged Fitting Repeat 5 # weights: 305 initial value 95.521882 iter 10 value 94.457776 iter 20 value 94.440685 final value 94.429327 converged Fitting Repeat 1 # weights: 507 initial value 101.428465 iter 10 value 94.491096 iter 20 value 92.682042 iter 30 value 89.889656 iter 40 value 87.425823 iter 50 value 87.416543 iter 60 value 87.416284 iter 70 value 87.137710 iter 80 value 84.454035 iter 90 value 83.908427 final value 83.907498 converged Fitting Repeat 2 # weights: 507 initial value 110.411247 final value 94.475019 converged Fitting Repeat 3 # weights: 507 initial value 105.973913 iter 10 value 94.389501 iter 20 value 93.253381 iter 30 value 93.218967 iter 40 value 91.294304 iter 50 value 87.106156 iter 60 value 86.911916 iter 70 value 86.895469 iter 80 value 86.571244 iter 90 value 86.469682 iter 100 value 86.220835 final value 86.220835 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.226831 iter 10 value 94.492123 iter 20 value 94.437453 iter 30 value 94.424819 final value 94.424817 converged Fitting Repeat 5 # weights: 507 initial value 106.029169 iter 10 value 94.121618 iter 20 value 94.054902 iter 30 value 86.373794 iter 40 value 85.625370 iter 50 value 85.577072 iter 60 value 85.519181 iter 70 value 85.514618 iter 80 value 85.506020 iter 90 value 85.505571 iter 100 value 85.478057 final value 85.478057 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 131.696426 iter 10 value 117.894693 iter 20 value 117.825507 iter 30 value 116.787691 iter 40 value 111.657989 iter 50 value 111.639412 iter 60 value 111.410704 iter 70 value 111.405813 iter 80 value 111.400575 iter 90 value 108.095549 final value 108.094269 converged Fitting Repeat 2 # weights: 305 initial value 118.973810 iter 10 value 106.296862 iter 20 value 105.058428 final value 105.058098 converged Fitting Repeat 3 # weights: 305 initial value 118.137241 iter 10 value 117.554222 iter 20 value 117.514699 iter 30 value 115.037597 iter 40 value 106.940712 iter 50 value 106.806919 iter 60 value 106.802866 iter 60 value 106.802866 iter 60 value 106.802866 final value 106.802866 converged Fitting Repeat 4 # weights: 305 initial value 119.118248 iter 10 value 117.887743 iter 20 value 117.262212 iter 30 value 115.287766 iter 40 value 115.101801 iter 50 value 115.061237 final value 115.061138 converged Fitting Repeat 5 # weights: 305 initial value 125.850261 iter 10 value 117.893879 iter 20 value 116.523375 iter 30 value 107.259115 iter 40 value 107.043315 iter 50 value 106.806595 iter 50 value 106.806595 iter 50 value 106.806595 final value 106.806595 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Mar 23 19:45:15 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 16.744 0.414 74.858
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 18.014 | 0.710 | 18.975 | |
FreqInteractors | 0.074 | 0.004 | 0.078 | |
calculateAAC | 0.012 | 0.003 | 0.015 | |
calculateAutocor | 0.138 | 0.032 | 0.170 | |
calculateCTDC | 0.025 | 0.003 | 0.027 | |
calculateCTDD | 0.176 | 0.016 | 0.193 | |
calculateCTDT | 0.083 | 0.004 | 0.087 | |
calculateCTriad | 0.142 | 0.011 | 0.153 | |
calculateDC | 0.030 | 0.003 | 0.034 | |
calculateF | 0.095 | 0.005 | 0.099 | |
calculateKSAAP | 0.031 | 0.003 | 0.034 | |
calculateQD_Sm | 0.604 | 0.033 | 0.637 | |
calculateTC | 0.548 | 0.043 | 0.590 | |
calculateTC_Sm | 0.097 | 0.007 | 0.104 | |
corr_plot | 17.550 | 0.742 | 18.566 | |
enrichfindP | 0.163 | 0.026 | 7.597 | |
enrichfind_hp | 0.024 | 0.010 | 1.003 | |
enrichplot | 0.119 | 0.003 | 0.122 | |
filter_missing_values | 0.000 | 0.000 | 0.001 | |
getFASTA | 0.029 | 0.005 | 3.775 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0.000 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.001 | 0.001 | |
plotPPI | 0.024 | 0.002 | 0.027 | |
pred_ensembel | 5.550 | 0.096 | 5.055 | |
var_imp | 18.030 | 0.757 | 18.854 | |