Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-03-22 11:43 -0400 (Sat, 22 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-03-13 r87965) -- "Unsuffered Consequences" | 4777 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-03-01 r87860 ucrt) -- "Unsuffered Consequences" | 4547 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4576 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" | 4528 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4458 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2313 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-03-21 21:43:32 -0400 (Fri, 21 Mar 2025) |
EndedAt: 2025-03-21 21:49:32 -0400 (Fri, 21 Mar 2025) |
EllapsedTime: 360.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-03-02 r87868) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.980 1.867 38.314 FSmethod 34.067 1.664 36.207 corr_plot 33.382 1.613 35.216 pred_ensembel 13.602 0.417 12.081 enrichfindP 0.465 0.054 8.843 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-03-02 r87868) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.913280 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.177725 iter 10 value 92.318409 iter 20 value 92.265842 iter 20 value 92.265842 iter 20 value 92.265842 final value 92.265842 converged Fitting Repeat 3 # weights: 103 initial value 98.102696 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 4 # weights: 103 initial value 96.148240 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.383917 iter 10 value 90.010720 final value 89.850383 converged Fitting Repeat 1 # weights: 305 initial value 102.998054 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 97.948236 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.746391 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 101.468609 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.852921 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 118.090011 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 97.176705 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 120.504925 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.721999 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 102.677805 iter 10 value 94.305882 iter 10 value 94.305882 iter 10 value 94.305882 final value 94.305882 converged Fitting Repeat 1 # weights: 103 initial value 104.869541 iter 10 value 95.026324 iter 20 value 94.487770 iter 30 value 91.592764 iter 40 value 88.780988 iter 50 value 88.427620 iter 60 value 87.799011 iter 70 value 86.816881 iter 80 value 86.487775 final value 86.484702 converged Fitting Repeat 2 # weights: 103 initial value 120.107600 iter 10 value 94.452144 iter 20 value 89.649828 iter 30 value 89.357547 iter 40 value 85.807070 iter 50 value 84.840934 iter 60 value 84.080884 iter 70 value 84.000249 final value 83.995779 converged Fitting Repeat 3 # weights: 103 initial value 98.421896 iter 10 value 93.970004 iter 20 value 87.893691 iter 30 value 86.980051 iter 40 value 86.620202 iter 50 value 85.312013 iter 60 value 84.388849 iter 70 value 84.251533 iter 80 value 84.201253 iter 90 value 84.052893 iter 100 value 83.995907 final value 83.995907 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.351236 iter 10 value 94.282790 iter 20 value 91.767946 iter 30 value 90.072251 iter 40 value 88.769109 iter 50 value 87.039725 iter 60 value 86.344897 iter 70 value 86.200609 iter 80 value 86.114044 final value 86.112090 converged Fitting Repeat 5 # weights: 103 initial value 99.782430 iter 10 value 95.133053 iter 20 value 91.756111 iter 30 value 91.659197 iter 40 value 90.391912 iter 50 value 85.745839 iter 60 value 84.879389 iter 70 value 84.604974 iter 80 value 84.070909 iter 90 value 83.881851 final value 83.881841 converged Fitting Repeat 1 # weights: 305 initial value 113.496329 iter 10 value 94.616980 iter 20 value 91.373138 iter 30 value 87.316349 iter 40 value 87.049381 iter 50 value 86.830048 iter 60 value 85.339457 iter 70 value 84.286747 iter 80 value 83.312400 iter 90 value 82.964602 iter 100 value 82.901000 final value 82.901000 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.634436 iter 10 value 94.734858 iter 20 value 93.259070 iter 30 value 88.217177 iter 40 value 88.029225 iter 50 value 85.092074 iter 60 value 82.985618 iter 70 value 82.650738 iter 80 value 82.580302 iter 90 value 82.440080 iter 100 value 82.291642 final value 82.291642 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.592415 iter 10 value 94.325992 iter 20 value 92.287209 iter 30 value 85.037027 iter 40 value 83.435701 iter 50 value 82.925652 iter 60 value 82.657978 iter 70 value 82.556484 iter 80 value 82.452217 iter 90 value 82.434700 iter 100 value 82.410344 final value 82.410344 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.470680 iter 10 value 93.946561 iter 20 value 89.538573 iter 30 value 87.504300 iter 40 value 87.002527 iter 50 value 86.213092 iter 60 value 85.497681 iter 70 value 83.633128 iter 80 value 83.119748 iter 90 value 83.016341 iter 100 value 82.827521 final value 82.827521 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.741872 iter 10 value 94.469475 iter 20 value 94.309569 iter 30 value 93.925856 iter 40 value 88.465389 iter 50 value 87.860188 iter 60 value 87.196855 iter 70 value 86.175906 iter 80 value 86.007084 iter 90 value 85.966498 iter 100 value 84.720850 final value 84.720850 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.005428 iter 10 value 97.495492 iter 20 value 90.555017 iter 30 value 90.408237 iter 40 value 90.271780 iter 50 value 90.227798 iter 60 value 90.097427 iter 70 value 87.533599 iter 80 value 85.279077 iter 90 value 84.676331 iter 100 value 84.475834 final value 84.475834 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.527523 iter 10 value 94.702017 iter 20 value 94.472499 iter 30 value 94.324389 iter 40 value 91.388396 iter 50 value 88.252004 iter 60 value 87.439331 iter 70 value 86.981599 iter 80 value 86.027360 iter 90 value 85.684011 iter 100 value 84.607260 final value 84.607260 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 126.022535 iter 10 value 100.281203 iter 20 value 91.442468 iter 30 value 87.801483 iter 40 value 85.299644 iter 50 value 84.785415 iter 60 value 83.800864 iter 70 value 83.785851 iter 80 value 83.737180 iter 90 value 83.450682 iter 100 value 83.183704 final value 83.183704 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.792760 iter 10 value 94.676199 iter 20 value 94.551986 iter 30 value 94.308735 iter 40 value 90.893647 iter 50 value 86.270819 iter 60 value 84.433729 iter 70 value 84.019428 iter 80 value 83.834134 iter 90 value 82.732276 iter 100 value 82.385201 final value 82.385201 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.652071 iter 10 value 94.217740 iter 20 value 91.550009 iter 30 value 89.211210 iter 40 value 87.733205 iter 50 value 84.126307 iter 60 value 83.182755 iter 70 value 83.118782 iter 80 value 82.777354 iter 90 value 82.742876 iter 100 value 82.504829 final value 82.504829 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.034435 iter 10 value 94.485972 iter 20 value 92.975084 iter 30 value 88.407714 iter 40 value 88.399971 iter 50 value 88.399352 final value 88.398191 converged Fitting Repeat 2 # weights: 103 initial value 94.759896 final value 94.486096 converged Fitting Repeat 3 # weights: 103 initial value 96.331650 iter 10 value 94.277111 iter 20 value 94.275580 final value 94.275489 converged Fitting Repeat 4 # weights: 103 initial value 96.429119 final value 94.485643 converged Fitting Repeat 5 # weights: 103 initial value 97.864441 iter 10 value 94.485793 iter 20 value 94.484222 final value 94.484214 converged Fitting Repeat 1 # weights: 305 initial value 101.071379 iter 10 value 94.454460 final value 94.454292 converged Fitting Repeat 2 # weights: 305 initial value 112.952524 iter 10 value 94.483367 iter 20 value 94.279998 iter 30 value 94.275789 iter 40 value 93.895012 iter 50 value 84.781253 iter 60 value 82.530231 iter 70 value 82.526349 iter 80 value 82.524212 iter 90 value 82.521307 iter 100 value 82.499280 final value 82.499280 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.352893 iter 10 value 94.488936 iter 20 value 94.382357 iter 30 value 91.993345 iter 40 value 90.936183 iter 50 value 88.203692 iter 60 value 87.862435 iter 70 value 87.372632 iter 80 value 87.312524 iter 90 value 87.312190 final value 87.312111 converged Fitting Repeat 4 # weights: 305 initial value 100.248193 iter 10 value 88.964394 iter 20 value 87.089079 iter 30 value 87.087718 iter 40 value 86.950624 final value 86.946068 converged Fitting Repeat 5 # weights: 305 initial value 111.071736 iter 10 value 94.488777 iter 20 value 94.479293 iter 30 value 94.448015 iter 40 value 94.318478 final value 94.280219 converged Fitting Repeat 1 # weights: 507 initial value 98.746918 iter 10 value 94.492654 iter 20 value 94.440802 iter 30 value 89.085673 iter 40 value 88.407786 iter 50 value 87.220563 iter 60 value 86.847954 iter 70 value 86.847165 iter 80 value 86.812964 final value 86.812884 converged Fitting Repeat 2 # weights: 507 initial value 104.617401 iter 10 value 94.283931 iter 20 value 94.276483 iter 30 value 94.264492 iter 40 value 90.848778 iter 50 value 90.504415 iter 60 value 90.379891 final value 90.379826 converged Fitting Repeat 3 # weights: 507 initial value 105.163995 iter 10 value 94.314517 iter 20 value 89.210909 iter 30 value 85.909946 iter 40 value 85.609860 final value 85.607474 converged Fitting Repeat 4 # weights: 507 initial value 104.010522 iter 10 value 94.492440 iter 20 value 94.458936 iter 30 value 91.095878 iter 40 value 91.056738 iter 50 value 85.337947 iter 60 value 84.536843 iter 70 value 84.531104 iter 80 value 84.490746 iter 90 value 84.439622 iter 100 value 83.450203 final value 83.450203 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.708303 iter 10 value 92.682619 iter 20 value 92.145218 iter 30 value 85.391051 iter 40 value 85.039879 iter 50 value 85.035873 iter 60 value 85.035097 iter 70 value 85.000749 iter 80 value 84.993768 iter 90 value 84.993070 iter 100 value 84.766640 final value 84.766640 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.721637 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.859143 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.460431 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.115824 iter 10 value 81.902926 final value 81.866476 converged Fitting Repeat 5 # weights: 103 initial value 111.190870 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.459803 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 94.823949 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 99.156907 final value 93.915746 converged Fitting Repeat 4 # weights: 305 initial value 100.243335 final value 93.915746 converged Fitting Repeat 5 # weights: 305 initial value 109.094365 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.258153 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 100.908697 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 101.864951 iter 10 value 93.894436 iter 20 value 93.869758 final value 93.869756 converged Fitting Repeat 4 # weights: 507 initial value 115.200520 final value 93.915746 converged Fitting Repeat 5 # weights: 507 initial value 96.272272 iter 10 value 91.165000 iter 20 value 90.487720 iter 30 value 90.239604 iter 40 value 90.226532 iter 50 value 90.225688 iter 50 value 90.225688 iter 50 value 90.225688 final value 90.225688 converged Fitting Repeat 1 # weights: 103 initial value 105.637087 iter 10 value 93.992510 iter 20 value 93.728138 iter 30 value 93.724128 iter 40 value 89.841241 iter 50 value 88.771788 iter 60 value 88.761713 final value 88.761634 converged Fitting Repeat 2 # weights: 103 initial value 97.695622 iter 10 value 94.060419 iter 20 value 93.959839 iter 30 value 93.697728 iter 40 value 86.432057 iter 50 value 85.778153 iter 60 value 85.686796 iter 70 value 84.105307 iter 80 value 83.181316 iter 90 value 83.079820 iter 100 value 83.076485 final value 83.076485 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.729695 iter 10 value 88.375304 iter 20 value 85.337887 iter 30 value 84.615257 iter 40 value 82.826954 iter 50 value 82.771437 iter 60 value 82.710488 iter 70 value 82.620493 iter 80 value 82.556743 final value 82.556684 converged Fitting Repeat 4 # weights: 103 initial value 104.260873 iter 10 value 94.040319 iter 20 value 92.707679 iter 30 value 86.113596 iter 40 value 82.426593 iter 50 value 80.775886 iter 60 value 80.112861 iter 70 value 80.011849 iter 80 value 79.882380 iter 90 value 79.806182 final value 79.805839 converged Fitting Repeat 5 # weights: 103 initial value 115.071417 iter 10 value 94.054847 iter 20 value 93.345228 iter 30 value 88.209284 iter 40 value 85.818609 iter 50 value 83.240476 iter 60 value 83.057057 final value 83.052771 converged Fitting Repeat 1 # weights: 305 initial value 106.659014 iter 10 value 86.900599 iter 20 value 82.241939 iter 30 value 80.410963 iter 40 value 79.636737 iter 50 value 79.419386 iter 60 value 79.280070 iter 70 value 79.022295 iter 80 value 78.671044 iter 90 value 78.661934 iter 100 value 78.659720 final value 78.659720 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.888181 iter 10 value 94.684721 iter 20 value 90.418371 iter 30 value 87.528545 iter 40 value 86.237399 iter 50 value 82.578025 iter 60 value 80.718807 iter 70 value 79.971648 iter 80 value 79.144498 iter 90 value 78.916243 iter 100 value 78.774832 final value 78.774832 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.751851 iter 10 value 94.626093 iter 20 value 94.454408 iter 30 value 93.916284 iter 40 value 92.026629 iter 50 value 86.393311 iter 60 value 81.741027 iter 70 value 81.351859 iter 80 value 81.227690 iter 90 value 81.073065 iter 100 value 80.629500 final value 80.629500 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.850774 iter 10 value 93.984365 iter 20 value 88.631791 iter 30 value 86.242358 iter 40 value 84.272309 iter 50 value 84.064572 iter 60 value 81.175332 iter 70 value 80.670550 iter 80 value 80.331473 iter 90 value 80.008606 iter 100 value 79.694222 final value 79.694222 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.830509 iter 10 value 93.995481 iter 20 value 87.950880 iter 30 value 83.809156 iter 40 value 80.793619 iter 50 value 79.369259 iter 60 value 78.913816 iter 70 value 78.563241 iter 80 value 78.396584 iter 90 value 78.331237 iter 100 value 78.316469 final value 78.316469 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.505511 iter 10 value 93.205441 iter 20 value 90.576306 iter 30 value 89.156422 iter 40 value 84.262289 iter 50 value 83.116871 iter 60 value 82.572857 iter 70 value 81.088336 iter 80 value 80.234940 iter 90 value 80.102559 iter 100 value 80.075868 final value 80.075868 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.700526 iter 10 value 95.720563 iter 20 value 89.386796 iter 30 value 85.386531 iter 40 value 82.512360 iter 50 value 81.655572 iter 60 value 81.141473 iter 70 value 80.450611 iter 80 value 79.270152 iter 90 value 79.026640 iter 100 value 78.845236 final value 78.845236 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.102646 iter 10 value 93.076421 iter 20 value 84.916473 iter 30 value 82.098336 iter 40 value 80.678562 iter 50 value 79.748893 iter 60 value 79.637389 iter 70 value 79.552647 iter 80 value 79.551722 iter 90 value 79.537665 iter 100 value 78.997765 final value 78.997765 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.405622 iter 10 value 95.525642 iter 20 value 93.952254 iter 30 value 85.477311 iter 40 value 84.411169 iter 50 value 83.795240 iter 60 value 80.691251 iter 70 value 79.551615 iter 80 value 79.414797 iter 90 value 79.364289 iter 100 value 78.738931 final value 78.738931 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.103985 iter 10 value 94.045381 iter 20 value 93.733267 iter 30 value 93.556284 iter 40 value 90.021082 iter 50 value 86.516542 iter 60 value 82.307752 iter 70 value 81.533509 iter 80 value 80.585371 iter 90 value 80.273768 iter 100 value 80.159647 final value 80.159647 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.837147 final value 94.054236 converged Fitting Repeat 2 # weights: 103 initial value 107.259601 iter 10 value 94.054561 iter 20 value 88.509127 iter 30 value 84.145377 iter 40 value 84.077884 iter 50 value 84.077766 final value 84.077735 converged Fitting Repeat 3 # weights: 103 initial value 106.077129 final value 94.054558 converged Fitting Repeat 4 # weights: 103 initial value 98.236460 final value 94.054703 converged Fitting Repeat 5 # weights: 103 initial value 102.997871 iter 10 value 94.056575 final value 94.054753 converged Fitting Repeat 1 # weights: 305 initial value 95.502811 iter 10 value 94.057547 iter 20 value 91.186098 iter 30 value 85.862860 iter 40 value 85.375769 iter 50 value 83.522950 iter 60 value 83.473014 iter 70 value 83.469012 iter 80 value 83.468264 iter 90 value 83.467742 final value 83.466783 converged Fitting Repeat 2 # weights: 305 initial value 94.393034 iter 10 value 94.053998 iter 20 value 94.049126 iter 30 value 92.213162 iter 40 value 92.212343 iter 50 value 92.212007 iter 60 value 92.211880 iter 70 value 92.200324 iter 80 value 84.310030 iter 90 value 84.073568 iter 100 value 84.073041 final value 84.073041 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.880526 iter 10 value 93.874896 iter 20 value 93.403781 iter 30 value 84.867132 iter 40 value 84.638031 iter 50 value 84.637080 iter 60 value 84.634685 iter 70 value 84.264877 iter 80 value 84.249401 final value 84.249304 converged Fitting Repeat 4 # weights: 305 initial value 94.611674 iter 10 value 93.680173 iter 20 value 93.499537 final value 93.392851 converged Fitting Repeat 5 # weights: 305 initial value 95.427270 iter 10 value 94.056415 iter 20 value 93.694342 final value 93.653720 converged Fitting Repeat 1 # weights: 507 initial value 98.597646 iter 10 value 92.931799 iter 20 value 91.993009 iter 30 value 91.987955 final value 91.987851 converged Fitting Repeat 2 # weights: 507 initial value 99.501992 iter 10 value 93.720842 iter 20 value 93.718031 iter 30 value 93.716903 iter 40 value 93.713957 iter 50 value 93.695963 iter 60 value 88.124123 iter 70 value 84.252279 iter 80 value 84.249800 iter 90 value 84.249409 iter 100 value 81.257224 final value 81.257224 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.193450 iter 10 value 93.931608 iter 20 value 93.923939 final value 93.923443 converged Fitting Repeat 4 # weights: 507 initial value 97.164779 iter 10 value 94.061000 iter 20 value 93.877389 iter 30 value 93.861154 iter 40 value 93.625360 iter 50 value 93.622039 final value 93.622007 converged Fitting Repeat 5 # weights: 507 initial value 114.002211 iter 10 value 93.665766 iter 20 value 93.657239 iter 30 value 93.517262 iter 40 value 87.637198 iter 50 value 84.092765 iter 60 value 84.090955 iter 70 value 84.070466 iter 80 value 81.989892 iter 90 value 81.875100 iter 100 value 81.874891 final value 81.874891 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.808707 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 105.872506 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.970880 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 107.103623 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.656799 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.630437 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 107.816322 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.525664 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 4 # weights: 305 initial value 106.086148 iter 10 value 93.617777 final value 93.300000 converged Fitting Repeat 5 # weights: 305 initial value 93.041286 iter 10 value 86.107890 iter 20 value 84.572588 iter 30 value 84.537748 iter 40 value 84.532078 iter 50 value 84.464684 final value 84.464474 converged Fitting Repeat 1 # weights: 507 initial value 99.951802 iter 10 value 94.026544 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 96.288308 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 98.239911 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 117.336996 iter 10 value 91.735474 iter 20 value 88.394219 iter 30 value 86.905687 iter 40 value 86.709763 final value 86.709642 converged Fitting Repeat 5 # weights: 507 initial value 98.289153 final value 94.482478 converged Fitting Repeat 1 # weights: 103 initial value 97.331309 iter 10 value 89.122869 iter 20 value 85.279374 iter 30 value 85.086702 iter 40 value 84.564996 iter 50 value 84.129600 iter 60 value 82.649836 iter 70 value 82.376509 iter 80 value 82.178270 final value 82.175724 converged Fitting Repeat 2 # weights: 103 initial value 96.367877 iter 10 value 94.438765 iter 20 value 87.586569 iter 30 value 86.574874 iter 40 value 85.209748 iter 50 value 84.662398 iter 60 value 84.287575 iter 70 value 83.221202 iter 80 value 82.797040 iter 90 value 82.426041 iter 100 value 82.372860 final value 82.372860 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.839336 iter 10 value 94.488784 iter 20 value 94.445069 iter 30 value 94.225597 iter 40 value 94.216396 iter 50 value 94.155711 iter 60 value 85.940348 iter 70 value 85.161529 iter 80 value 85.026737 iter 90 value 83.834819 iter 100 value 83.105912 final value 83.105912 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.991620 iter 10 value 94.516810 iter 20 value 94.473114 iter 30 value 94.144321 iter 40 value 93.815202 iter 50 value 84.752434 iter 60 value 84.053369 iter 70 value 83.767342 iter 80 value 83.621659 iter 90 value 83.444890 iter 100 value 83.395407 final value 83.395407 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 104.018411 iter 10 value 94.483410 iter 20 value 85.344690 iter 30 value 84.745840 iter 40 value 84.196175 iter 50 value 83.594910 iter 60 value 83.443090 iter 70 value 83.374739 iter 80 value 83.371729 final value 83.371715 converged Fitting Repeat 1 # weights: 305 initial value 101.298657 iter 10 value 94.573540 iter 20 value 94.135545 iter 30 value 94.087531 iter 40 value 93.987049 iter 50 value 88.438838 iter 60 value 86.202379 iter 70 value 84.640493 iter 80 value 84.434815 iter 90 value 83.665734 iter 100 value 83.242382 final value 83.242382 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.527863 iter 10 value 88.893916 iter 20 value 86.307444 iter 30 value 85.005184 iter 40 value 84.591892 iter 50 value 83.497153 iter 60 value 82.876007 iter 70 value 82.557958 iter 80 value 82.287211 iter 90 value 82.132013 iter 100 value 81.926514 final value 81.926514 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.699787 iter 10 value 95.050225 iter 20 value 92.815268 iter 30 value 84.556763 iter 40 value 83.459547 iter 50 value 83.195078 iter 60 value 82.978244 iter 70 value 82.610777 iter 80 value 82.480325 iter 90 value 82.442496 iter 100 value 82.295612 final value 82.295612 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.246518 iter 10 value 94.381706 iter 20 value 93.604174 iter 30 value 85.727762 iter 40 value 85.287312 iter 50 value 83.917789 iter 60 value 83.191512 iter 70 value 82.911871 iter 80 value 82.252382 iter 90 value 82.014096 iter 100 value 81.784735 final value 81.784735 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 128.114292 iter 10 value 94.375415 iter 20 value 86.637838 iter 30 value 85.167101 iter 40 value 84.737023 iter 50 value 83.581095 iter 60 value 82.582518 iter 70 value 82.396180 iter 80 value 82.139079 iter 90 value 82.085844 iter 100 value 81.848884 final value 81.848884 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.413049 iter 10 value 94.489989 iter 20 value 94.203731 iter 30 value 92.486484 iter 40 value 85.951561 iter 50 value 84.260505 iter 60 value 82.852406 iter 70 value 82.611894 iter 80 value 82.231155 iter 90 value 81.611767 iter 100 value 81.046262 final value 81.046262 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.395349 iter 10 value 90.068695 iter 20 value 85.888083 iter 30 value 85.499001 iter 40 value 85.353930 iter 50 value 85.292535 iter 60 value 84.993454 iter 70 value 83.232444 iter 80 value 82.540654 iter 90 value 82.319442 iter 100 value 82.014564 final value 82.014564 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.539646 iter 10 value 99.136765 iter 20 value 90.279243 iter 30 value 86.047463 iter 40 value 85.605079 iter 50 value 85.227468 iter 60 value 83.682303 iter 70 value 81.965275 iter 80 value 81.286465 iter 90 value 81.130820 iter 100 value 80.933590 final value 80.933590 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.753896 iter 10 value 94.225085 iter 20 value 87.728881 iter 30 value 87.137496 iter 40 value 86.020306 iter 50 value 85.546499 iter 60 value 84.832668 iter 70 value 83.686361 iter 80 value 82.059546 iter 90 value 81.311993 iter 100 value 81.184157 final value 81.184157 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.433878 iter 10 value 94.305442 iter 20 value 93.945445 iter 30 value 88.477841 iter 40 value 85.747841 iter 50 value 85.205669 iter 60 value 84.863738 iter 70 value 84.238927 iter 80 value 83.435199 iter 90 value 82.973690 iter 100 value 82.624829 final value 82.624829 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.731258 final value 94.485982 converged Fitting Repeat 2 # weights: 103 initial value 99.393617 final value 94.485911 converged Fitting Repeat 3 # weights: 103 initial value 98.962927 final value 94.485878 converged Fitting Repeat 4 # weights: 103 initial value 97.830023 final value 94.485823 converged Fitting Repeat 5 # weights: 103 initial value 95.425399 final value 94.485834 converged Fitting Repeat 1 # weights: 305 initial value 101.473669 iter 10 value 93.305281 iter 20 value 93.302106 iter 30 value 92.721936 iter 40 value 83.842781 iter 50 value 83.630231 iter 60 value 83.441564 iter 70 value 83.398078 iter 80 value 82.288586 iter 90 value 82.262104 final value 82.262022 converged Fitting Repeat 2 # weights: 305 initial value 116.749310 iter 10 value 94.487978 iter 20 value 94.426118 iter 30 value 94.028180 iter 40 value 94.026887 final value 94.026862 converged Fitting Repeat 3 # weights: 305 initial value 107.108654 iter 10 value 94.031312 iter 20 value 94.027638 iter 30 value 90.322711 iter 40 value 85.849541 iter 50 value 84.924202 iter 60 value 84.922811 iter 70 value 84.922461 iter 80 value 84.053378 iter 90 value 84.035086 final value 84.034798 converged Fitting Repeat 4 # weights: 305 initial value 98.671932 iter 10 value 94.031354 iter 20 value 94.028021 iter 30 value 93.948347 iter 40 value 85.066066 iter 50 value 83.406418 iter 60 value 82.274314 iter 70 value 81.034678 iter 80 value 80.496354 iter 90 value 80.430110 iter 100 value 80.419423 final value 80.419423 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.822217 iter 10 value 93.981281 iter 20 value 93.975254 iter 30 value 93.973616 iter 40 value 92.350325 iter 50 value 84.585078 iter 60 value 84.244893 iter 70 value 83.996085 iter 80 value 83.808599 iter 90 value 83.808409 iter 100 value 83.808233 final value 83.808233 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.079610 iter 10 value 89.761392 iter 20 value 86.769307 iter 30 value 85.243723 iter 40 value 84.993463 iter 50 value 84.844197 iter 60 value 84.843383 iter 70 value 83.456670 iter 80 value 82.258567 iter 90 value 81.032903 iter 100 value 80.469001 final value 80.469001 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.288625 iter 10 value 94.331719 iter 20 value 94.328314 iter 30 value 88.238113 iter 40 value 87.065309 iter 50 value 86.990705 iter 60 value 86.982742 iter 70 value 86.075081 iter 80 value 85.875171 iter 90 value 85.872994 iter 100 value 85.868481 final value 85.868481 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.478962 iter 10 value 94.492421 iter 20 value 94.428510 iter 30 value 86.938429 iter 40 value 84.712937 iter 50 value 84.665330 iter 60 value 84.661263 iter 70 value 84.659030 iter 80 value 84.506086 iter 90 value 83.471852 iter 100 value 81.082350 final value 81.082350 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.203762 iter 10 value 94.492372 iter 20 value 94.258969 iter 30 value 83.757349 iter 40 value 83.729976 final value 83.729972 converged Fitting Repeat 5 # weights: 507 initial value 97.400690 iter 10 value 94.272618 iter 20 value 94.169078 final value 94.027057 converged Fitting Repeat 1 # weights: 103 initial value 100.203717 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.601238 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.342300 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.021473 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 101.952985 iter 10 value 93.601829 iter 20 value 93.321052 iter 30 value 92.324755 final value 92.321846 converged Fitting Repeat 1 # weights: 305 initial value 128.173845 iter 10 value 94.038251 iter 10 value 94.038251 iter 10 value 94.038251 final value 94.038251 converged Fitting Repeat 2 # weights: 305 initial value 100.189994 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.771133 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.188650 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.487998 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.602910 iter 10 value 93.271104 final value 93.271095 converged Fitting Repeat 2 # weights: 507 initial value 104.076365 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 103.638645 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 101.409810 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 94.197458 iter 10 value 84.127767 iter 20 value 83.452784 iter 30 value 83.452396 iter 40 value 83.396215 iter 50 value 83.314755 final value 83.314670 converged Fitting Repeat 1 # weights: 103 initial value 106.831381 iter 10 value 94.056698 iter 20 value 83.816238 iter 30 value 82.581103 iter 40 value 82.283372 iter 50 value 82.186490 iter 60 value 81.708723 iter 70 value 81.454529 iter 80 value 81.383623 final value 81.383558 converged Fitting Repeat 2 # weights: 103 initial value 96.033865 iter 10 value 93.988947 iter 20 value 84.024317 iter 30 value 82.471863 iter 40 value 82.243530 iter 50 value 81.976249 iter 60 value 81.850488 iter 70 value 81.842215 final value 81.842059 converged Fitting Repeat 3 # weights: 103 initial value 98.430512 iter 10 value 87.210318 iter 20 value 85.810907 iter 30 value 85.698843 iter 40 value 85.004958 iter 50 value 84.646222 iter 60 value 81.950841 iter 70 value 81.455162 iter 80 value 81.401231 iter 90 value 81.383559 iter 90 value 81.383558 iter 90 value 81.383558 final value 81.383558 converged Fitting Repeat 4 # weights: 103 initial value 96.423231 iter 10 value 94.008848 iter 20 value 93.491963 iter 30 value 88.793124 iter 40 value 86.671419 iter 50 value 86.088637 iter 60 value 83.633124 iter 70 value 82.641143 iter 80 value 82.341446 iter 90 value 81.867814 final value 81.842059 converged Fitting Repeat 5 # weights: 103 initial value 99.796422 iter 10 value 94.043662 iter 20 value 93.729749 iter 30 value 93.237317 iter 40 value 86.265096 iter 50 value 85.885934 iter 60 value 85.441308 iter 70 value 85.120912 iter 80 value 83.031921 iter 90 value 81.512133 iter 100 value 81.491793 final value 81.491793 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.166394 iter 10 value 93.903935 iter 20 value 86.643710 iter 30 value 86.415879 iter 40 value 85.231217 iter 50 value 82.629244 iter 60 value 81.764806 iter 70 value 81.558206 iter 80 value 81.512840 iter 90 value 81.484401 iter 100 value 81.377508 final value 81.377508 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.102615 iter 10 value 93.944756 iter 20 value 88.465627 iter 30 value 87.474311 iter 40 value 86.648668 iter 50 value 84.993166 iter 60 value 81.785793 iter 70 value 81.554609 iter 80 value 81.511131 iter 90 value 81.487423 iter 100 value 81.444909 final value 81.444909 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.072420 iter 10 value 95.484445 iter 20 value 93.390476 iter 30 value 88.986487 iter 40 value 85.445625 iter 50 value 81.246612 iter 60 value 80.516610 iter 70 value 79.831387 iter 80 value 79.337644 iter 90 value 79.040599 iter 100 value 78.517017 final value 78.517017 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.881037 iter 10 value 94.059049 iter 20 value 89.038844 iter 30 value 86.654944 iter 40 value 82.149090 iter 50 value 81.676681 iter 60 value 79.200189 iter 70 value 78.149986 iter 80 value 77.634973 iter 90 value 77.598331 iter 100 value 77.459039 final value 77.459039 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.181804 iter 10 value 94.013777 iter 20 value 88.698517 iter 30 value 81.957467 iter 40 value 80.113709 iter 50 value 79.303884 iter 60 value 78.535462 iter 70 value 77.539175 iter 80 value 77.489812 iter 90 value 77.391775 iter 100 value 77.377698 final value 77.377698 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.721982 iter 10 value 94.095793 iter 20 value 86.339955 iter 30 value 83.918276 iter 40 value 83.161684 iter 50 value 81.921032 iter 60 value 79.757855 iter 70 value 78.336857 iter 80 value 78.205974 iter 90 value 78.093525 iter 100 value 77.565851 final value 77.565851 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.785766 iter 10 value 88.195424 iter 20 value 83.213986 iter 30 value 79.472703 iter 40 value 77.991773 iter 50 value 77.934840 iter 60 value 77.583599 iter 70 value 77.382558 iter 80 value 77.346890 iter 90 value 77.323387 iter 100 value 77.229646 final value 77.229646 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.902091 iter 10 value 94.092739 iter 20 value 88.812267 iter 30 value 80.804519 iter 40 value 79.148367 iter 50 value 78.423086 iter 60 value 78.341737 iter 70 value 78.121990 iter 80 value 77.709516 iter 90 value 77.573051 iter 100 value 77.446514 final value 77.446514 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.446997 iter 10 value 94.134349 iter 20 value 93.193989 iter 30 value 84.143551 iter 40 value 81.930592 iter 50 value 79.396375 iter 60 value 78.741715 iter 70 value 77.837099 iter 80 value 77.394731 iter 90 value 77.101640 iter 100 value 76.941805 final value 76.941805 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.131382 iter 10 value 93.667928 iter 20 value 85.943493 iter 30 value 81.525836 iter 40 value 80.453799 iter 50 value 79.520139 iter 60 value 79.320257 iter 70 value 79.014328 iter 80 value 78.160630 iter 90 value 77.828771 iter 100 value 77.731669 final value 77.731669 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.030727 final value 94.054475 converged Fitting Repeat 2 # weights: 103 initial value 95.236877 iter 10 value 94.039902 iter 20 value 93.736665 iter 30 value 89.697905 iter 40 value 85.675893 iter 50 value 85.674088 iter 60 value 85.673910 iter 70 value 83.982699 iter 80 value 83.618054 iter 90 value 83.388393 iter 100 value 82.330159 final value 82.330159 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 94.725768 iter 10 value 94.043729 iter 20 value 94.042095 iter 30 value 93.866418 iter 40 value 81.698013 iter 50 value 80.818439 iter 60 value 80.661942 final value 80.645562 converged Fitting Repeat 4 # weights: 103 initial value 94.820567 iter 10 value 94.039869 iter 20 value 94.038281 iter 30 value 93.756640 iter 40 value 91.448527 iter 50 value 91.438669 iter 60 value 91.435421 iter 70 value 91.358322 iter 80 value 91.355365 iter 90 value 91.354545 iter 100 value 91.169956 final value 91.169956 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.055442 iter 10 value 94.029556 iter 20 value 94.029035 iter 30 value 94.028034 iter 40 value 91.123161 iter 50 value 90.598844 iter 50 value 90.598844 iter 50 value 90.598844 final value 90.598844 converged Fitting Repeat 1 # weights: 305 initial value 121.472463 iter 10 value 94.057850 iter 20 value 94.038608 iter 30 value 94.038409 iter 40 value 84.141319 iter 50 value 83.453410 iter 60 value 83.444796 iter 60 value 83.444795 iter 60 value 83.444795 final value 83.444795 converged Fitting Repeat 2 # weights: 305 initial value 97.539529 iter 10 value 94.056237 iter 20 value 93.810190 final value 93.810169 converged Fitting Repeat 3 # weights: 305 initial value 107.443281 iter 10 value 94.053289 iter 20 value 93.850899 iter 30 value 93.765133 iter 40 value 91.346514 iter 50 value 83.934034 iter 60 value 83.932593 iter 70 value 82.245773 iter 80 value 79.864773 iter 90 value 78.231323 iter 100 value 77.653882 final value 77.653882 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.841248 iter 10 value 85.219657 iter 20 value 84.966988 iter 30 value 82.843485 iter 40 value 81.850258 iter 50 value 81.845328 iter 60 value 81.505468 iter 70 value 81.505370 iter 80 value 81.505190 final value 81.505151 converged Fitting Repeat 5 # weights: 305 initial value 102.268119 iter 10 value 94.057324 iter 20 value 93.819673 iter 30 value 90.379283 final value 83.454962 converged Fitting Repeat 1 # weights: 507 initial value 103.342181 iter 10 value 94.060127 iter 20 value 94.036779 iter 30 value 83.718090 iter 40 value 83.071204 iter 50 value 81.272849 final value 81.270280 converged Fitting Repeat 2 # weights: 507 initial value 98.907485 iter 10 value 94.046589 iter 20 value 93.586597 iter 30 value 85.534784 iter 40 value 83.634626 iter 50 value 83.493254 iter 60 value 81.035784 iter 70 value 79.928217 iter 80 value 79.182232 iter 90 value 78.471256 iter 100 value 78.248313 final value 78.248313 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 134.814596 iter 10 value 94.061278 iter 20 value 94.049682 iter 30 value 91.338271 iter 40 value 84.656490 iter 50 value 84.621094 iter 60 value 83.547427 iter 70 value 83.454114 final value 83.444926 converged Fitting Repeat 4 # weights: 507 initial value 100.714661 iter 10 value 94.046459 iter 20 value 93.743382 iter 30 value 83.669484 iter 40 value 82.756360 iter 50 value 82.465341 iter 60 value 81.889260 iter 70 value 81.857340 final value 81.856044 converged Fitting Repeat 5 # weights: 507 initial value 95.297571 iter 10 value 94.046085 iter 20 value 94.039603 final value 94.039583 converged Fitting Repeat 1 # weights: 103 initial value 102.834052 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.493220 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.633325 iter 10 value 92.606829 iter 20 value 84.099511 iter 30 value 84.025707 iter 40 value 83.000887 iter 50 value 82.668407 final value 82.668387 converged Fitting Repeat 4 # weights: 103 initial value 102.077599 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.340818 final value 94.313817 converged Fitting Repeat 1 # weights: 305 initial value 94.840232 iter 10 value 94.466830 iter 20 value 94.443663 final value 94.443243 converged Fitting Repeat 2 # weights: 305 initial value 101.748623 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.847510 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.928315 iter 10 value 94.165746 iter 10 value 94.165746 iter 10 value 94.165746 final value 94.165746 converged Fitting Repeat 5 # weights: 305 initial value 101.529374 final value 94.443243 converged Fitting Repeat 1 # weights: 507 initial value 97.316237 iter 10 value 94.065750 final value 94.065747 converged Fitting Repeat 2 # weights: 507 initial value 110.313430 final value 94.238210 converged Fitting Repeat 3 # weights: 507 initial value 121.190025 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.754423 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 107.454864 iter 10 value 93.759198 final value 93.756370 converged Fitting Repeat 1 # weights: 103 initial value 106.594850 iter 10 value 93.820530 iter 20 value 92.326404 iter 30 value 92.162666 iter 40 value 92.146492 final value 92.144871 converged Fitting Repeat 2 # weights: 103 initial value 97.353148 iter 10 value 94.552507 iter 20 value 91.522006 iter 30 value 86.721974 iter 40 value 86.536372 iter 50 value 84.360355 iter 60 value 84.091546 iter 70 value 83.663890 iter 80 value 83.581849 final value 83.581815 converged Fitting Repeat 3 # weights: 103 initial value 97.434207 iter 10 value 94.265816 iter 20 value 92.746146 iter 30 value 92.445116 final value 92.440463 converged Fitting Repeat 4 # weights: 103 initial value 103.449617 iter 10 value 94.507117 iter 20 value 92.845287 iter 30 value 92.365590 iter 40 value 87.185047 iter 50 value 84.841963 iter 60 value 84.330092 iter 70 value 83.846082 iter 80 value 83.626155 iter 90 value 83.573979 final value 83.573977 converged Fitting Repeat 5 # weights: 103 initial value 98.519627 iter 10 value 94.485948 iter 20 value 91.376978 iter 30 value 88.530289 iter 40 value 88.154852 iter 50 value 85.859099 iter 60 value 85.416411 iter 70 value 85.117321 iter 80 value 84.687244 iter 90 value 84.103585 iter 100 value 84.033863 final value 84.033863 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.292680 iter 10 value 94.620953 iter 20 value 94.478315 iter 30 value 94.215295 iter 40 value 91.060575 iter 50 value 86.535650 iter 60 value 84.492546 iter 70 value 82.636126 iter 80 value 81.082069 iter 90 value 80.273286 iter 100 value 80.262110 final value 80.262110 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.943018 iter 10 value 94.550347 iter 20 value 93.473996 iter 30 value 88.855528 iter 40 value 84.792053 iter 50 value 84.322542 iter 60 value 82.775897 iter 70 value 82.340524 iter 80 value 81.498192 iter 90 value 80.780504 iter 100 value 80.181904 final value 80.181904 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.132783 iter 10 value 94.297727 iter 20 value 85.617685 iter 30 value 84.340688 iter 40 value 83.962294 iter 50 value 83.537633 iter 60 value 82.411532 iter 70 value 81.942059 iter 80 value 81.600938 iter 90 value 81.495164 iter 100 value 81.165205 final value 81.165205 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.185431 iter 10 value 94.378841 iter 20 value 87.359987 iter 30 value 86.436523 iter 40 value 84.062505 iter 50 value 83.536854 iter 60 value 83.445857 iter 70 value 82.729963 iter 80 value 81.901808 iter 90 value 80.760098 iter 100 value 80.520669 final value 80.520669 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.019263 iter 10 value 92.163521 iter 20 value 85.202139 iter 30 value 83.348233 iter 40 value 82.935434 iter 50 value 80.777227 iter 60 value 80.266693 iter 70 value 80.205821 iter 80 value 80.093843 iter 90 value 79.950001 iter 100 value 79.872147 final value 79.872147 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.537751 iter 10 value 94.610953 iter 20 value 87.097265 iter 30 value 86.243967 iter 40 value 85.487571 iter 50 value 84.614584 iter 60 value 84.495887 iter 70 value 84.489594 iter 80 value 84.421929 iter 90 value 83.153612 iter 100 value 81.367754 final value 81.367754 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.506905 iter 10 value 94.501773 iter 20 value 88.819888 iter 30 value 85.530751 iter 40 value 85.276658 iter 50 value 84.546824 iter 60 value 82.973150 iter 70 value 82.321842 iter 80 value 80.842612 iter 90 value 80.474512 iter 100 value 80.150093 final value 80.150093 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.788258 iter 10 value 93.388759 iter 20 value 84.548863 iter 30 value 83.269819 iter 40 value 82.248934 iter 50 value 80.923637 iter 60 value 80.560455 iter 70 value 80.497789 iter 80 value 80.301696 iter 90 value 80.275847 iter 100 value 80.236164 final value 80.236164 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.285390 iter 10 value 94.767783 iter 20 value 94.497194 iter 30 value 94.442266 iter 40 value 86.534562 iter 50 value 84.980353 iter 60 value 83.064378 iter 70 value 81.912861 iter 80 value 80.753978 iter 90 value 80.235650 iter 100 value 79.913884 final value 79.913884 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.605591 iter 10 value 98.534862 iter 20 value 92.898653 iter 30 value 91.605951 iter 40 value 88.110830 iter 50 value 83.762325 iter 60 value 81.858912 iter 70 value 80.740591 iter 80 value 79.955292 iter 90 value 79.707806 iter 100 value 79.591828 final value 79.591828 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.454000 iter 10 value 94.485995 iter 20 value 94.475515 iter 30 value 94.107000 iter 40 value 84.812479 iter 50 value 83.842270 iter 60 value 83.518511 iter 70 value 83.078279 iter 80 value 83.077802 iter 90 value 82.784419 iter 100 value 82.475635 final value 82.475635 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 104.517110 final value 94.485847 converged Fitting Repeat 3 # weights: 103 initial value 97.797643 final value 94.485388 converged Fitting Repeat 4 # weights: 103 initial value 99.390335 iter 10 value 94.320525 iter 20 value 94.115277 iter 30 value 94.070948 final value 94.067253 converged Fitting Repeat 5 # weights: 103 initial value 99.994208 final value 94.485686 converged Fitting Repeat 1 # weights: 305 initial value 100.507864 iter 10 value 94.489505 iter 20 value 94.484463 iter 30 value 89.452723 iter 40 value 88.892405 final value 88.811851 converged Fitting Repeat 2 # weights: 305 initial value 101.230603 iter 10 value 94.489390 iter 20 value 94.484273 final value 94.484250 converged Fitting Repeat 3 # weights: 305 initial value 97.047492 iter 10 value 94.448044 iter 20 value 94.331372 iter 30 value 90.519504 iter 40 value 90.105796 iter 50 value 90.099873 iter 60 value 90.095011 iter 70 value 90.087041 iter 80 value 89.672406 iter 90 value 89.667494 iter 100 value 88.549034 final value 88.549034 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.928733 iter 10 value 94.488189 iter 20 value 93.002731 iter 30 value 90.497947 iter 40 value 89.280684 iter 50 value 89.272088 final value 89.271561 converged Fitting Repeat 5 # weights: 305 initial value 110.332094 iter 10 value 94.448007 iter 20 value 94.444190 iter 30 value 93.538948 iter 40 value 93.538752 iter 50 value 93.348295 iter 60 value 93.189364 iter 70 value 93.093617 final value 93.093549 converged Fitting Repeat 1 # weights: 507 initial value 111.226417 iter 10 value 94.457182 iter 20 value 93.560183 iter 30 value 91.996370 iter 40 value 91.995322 final value 91.995309 converged Fitting Repeat 2 # weights: 507 initial value 103.771480 iter 10 value 94.492312 iter 20 value 87.876413 iter 30 value 84.461945 iter 40 value 84.437885 iter 50 value 84.420473 iter 60 value 84.369314 final value 84.369245 converged Fitting Repeat 3 # weights: 507 initial value 106.032931 iter 10 value 94.492030 iter 20 value 94.408015 iter 30 value 87.521906 iter 40 value 84.851494 iter 50 value 83.938768 iter 60 value 83.897015 iter 70 value 81.954702 iter 80 value 80.341228 iter 90 value 80.282038 iter 100 value 80.279393 final value 80.279393 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.752883 iter 10 value 92.298453 iter 20 value 92.290663 iter 30 value 92.280346 final value 92.280157 converged Fitting Repeat 5 # weights: 507 initial value 103.148710 iter 10 value 94.451367 iter 20 value 94.443511 iter 30 value 94.293743 iter 40 value 91.818657 iter 50 value 84.543318 iter 60 value 84.474786 iter 70 value 84.474398 final value 84.474392 converged Fitting Repeat 1 # weights: 507 initial value 134.167418 iter 10 value 119.302045 iter 20 value 118.303648 iter 30 value 115.901910 iter 40 value 106.672814 iter 50 value 105.483736 iter 60 value 104.183647 iter 70 value 101.216434 iter 80 value 100.706234 iter 90 value 100.526772 iter 100 value 100.237140 final value 100.237140 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 136.967891 iter 10 value 118.138045 iter 20 value 110.906142 iter 30 value 105.194706 iter 40 value 103.005963 iter 50 value 101.889856 iter 60 value 101.551197 iter 70 value 101.196389 iter 80 value 100.938919 iter 90 value 100.548790 iter 100 value 100.337309 final value 100.337309 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 154.218844 iter 10 value 118.492682 iter 20 value 117.816443 iter 30 value 116.197288 iter 40 value 113.543000 iter 50 value 107.777368 iter 60 value 106.303827 iter 70 value 105.604429 iter 80 value 105.247382 iter 90 value 104.883453 iter 100 value 103.413464 final value 103.413464 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.556620 iter 10 value 117.920532 iter 20 value 117.047308 iter 30 value 115.162323 iter 40 value 110.475956 iter 50 value 108.289403 iter 60 value 107.560644 iter 70 value 106.507367 iter 80 value 103.509011 iter 90 value 102.193889 iter 100 value 101.009991 final value 101.009991 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 139.603522 iter 10 value 117.920382 iter 20 value 116.861243 iter 30 value 109.667706 iter 40 value 107.241235 iter 50 value 105.535491 iter 60 value 103.181749 iter 70 value 101.800959 iter 80 value 101.568143 iter 90 value 101.523043 iter 100 value 101.119244 final value 101.119244 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Mar 21 21:49:22 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 40.921 1.644 114.225
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.067 | 1.664 | 36.207 | |
FreqInteractors | 0.225 | 0.014 | 0.243 | |
calculateAAC | 0.035 | 0.008 | 0.043 | |
calculateAutocor | 0.387 | 0.066 | 0.458 | |
calculateCTDC | 0.080 | 0.007 | 0.087 | |
calculateCTDD | 0.626 | 0.032 | 0.663 | |
calculateCTDT | 0.232 | 0.012 | 0.246 | |
calculateCTriad | 0.400 | 0.022 | 0.426 | |
calculateDC | 0.095 | 0.009 | 0.105 | |
calculateF | 0.379 | 0.015 | 0.397 | |
calculateKSAAP | 0.107 | 0.014 | 0.123 | |
calculateQD_Sm | 1.884 | 0.114 | 2.011 | |
calculateTC | 1.834 | 0.169 | 2.016 | |
calculateTC_Sm | 0.291 | 0.015 | 0.308 | |
corr_plot | 33.382 | 1.613 | 35.216 | |
enrichfindP | 0.465 | 0.054 | 8.843 | |
enrichfind_hp | 0.066 | 0.031 | 1.058 | |
enrichplot | 0.407 | 0.009 | 0.420 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.065 | 0.009 | 3.180 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.001 | 0.002 | |
plotPPI | 0.075 | 0.004 | 0.079 | |
pred_ensembel | 13.602 | 0.417 | 12.081 | |
var_imp | 35.980 | 1.867 | 38.314 | |