Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-20 12:02 -0500 (Wed, 20 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4481 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4479 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4359 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-20 04:26:25 -0500 (Wed, 20 Nov 2024) |
EndedAt: 2024-11-20 04:37:12 -0500 (Wed, 20 Nov 2024) |
EllapsedTime: 646.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 26.097 0.422 26.531 FSmethod 25.711 0.272 25.989 corr_plot 24.653 0.125 24.950 pred_ensembel 9.448 0.181 8.649 enrichfindP 0.321 0.040 14.086 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/media/volume/teran2_disk/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 101.623993 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.098426 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.395975 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.275979 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.370765 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.216702 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 99.112379 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 112.029565 iter 10 value 93.465505 iter 20 value 93.464286 iter 20 value 93.464286 iter 20 value 93.464286 final value 93.464286 converged Fitting Repeat 4 # weights: 305 initial value 109.979767 iter 10 value 94.401697 iter 20 value 91.543685 iter 30 value 86.686528 iter 40 value 86.196565 iter 50 value 86.108977 iter 60 value 84.961672 iter 70 value 83.214847 iter 80 value 82.912525 iter 90 value 82.749302 iter 100 value 82.578653 final value 82.578653 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.433796 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 102.460418 iter 10 value 87.590965 final value 87.590732 converged Fitting Repeat 2 # weights: 507 initial value 119.187477 iter 10 value 94.354396 iter 10 value 94.354396 iter 10 value 94.354396 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 110.337345 final value 94.354395 converged Fitting Repeat 4 # weights: 507 initial value 96.274149 iter 10 value 93.312179 iter 20 value 93.010992 iter 30 value 93.009742 iter 40 value 92.994167 iter 50 value 92.990273 final value 92.990260 converged Fitting Repeat 5 # weights: 507 initial value 111.867713 final value 94.449438 converged Fitting Repeat 1 # weights: 103 initial value 103.647095 iter 10 value 94.486511 iter 20 value 94.321120 iter 30 value 94.114378 iter 40 value 94.082081 iter 50 value 93.650856 iter 60 value 89.535499 iter 70 value 87.718315 iter 80 value 87.159032 iter 90 value 86.802494 iter 100 value 86.700413 final value 86.700413 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.265700 iter 10 value 93.454369 iter 20 value 88.405683 iter 30 value 88.182492 iter 40 value 86.634908 iter 50 value 84.990221 iter 60 value 84.720294 final value 84.715472 converged Fitting Repeat 3 # weights: 103 initial value 98.969142 iter 10 value 94.521439 iter 20 value 94.426915 iter 30 value 94.176354 iter 40 value 93.715897 iter 50 value 93.649998 iter 60 value 93.619992 iter 70 value 93.609210 iter 80 value 90.310145 iter 90 value 88.611814 iter 100 value 88.017311 final value 88.017311 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.671240 iter 10 value 94.486382 iter 20 value 94.402407 iter 30 value 92.413736 iter 40 value 87.364068 iter 50 value 87.255252 iter 60 value 87.033562 iter 70 value 86.896964 iter 80 value 86.894970 final value 86.894912 converged Fitting Repeat 5 # weights: 103 initial value 96.777281 iter 10 value 94.290837 iter 20 value 92.915190 iter 30 value 90.579660 iter 40 value 89.197051 iter 50 value 87.253581 iter 60 value 86.033425 iter 70 value 84.973657 iter 80 value 84.903661 iter 90 value 84.879873 iter 100 value 84.720041 final value 84.720041 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.591281 iter 10 value 94.388664 iter 20 value 93.186913 iter 30 value 87.027017 iter 40 value 86.274326 iter 50 value 85.250949 iter 60 value 85.177620 iter 70 value 84.607560 iter 80 value 84.012032 iter 90 value 83.744147 iter 100 value 83.481377 final value 83.481377 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.133910 iter 10 value 94.560534 iter 20 value 94.098078 iter 30 value 90.417339 iter 40 value 88.237541 iter 50 value 88.198484 iter 60 value 86.048636 iter 70 value 84.980059 iter 80 value 84.673869 iter 90 value 84.464657 iter 100 value 84.048636 final value 84.048636 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 124.412204 iter 10 value 94.741793 iter 20 value 91.079842 iter 30 value 87.005652 iter 40 value 86.300209 iter 50 value 85.273298 iter 60 value 84.963083 iter 70 value 84.771800 iter 80 value 84.558015 iter 90 value 84.356675 iter 100 value 84.285185 final value 84.285185 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.820378 iter 10 value 95.064537 iter 20 value 94.483698 iter 30 value 94.009297 iter 40 value 92.766024 iter 50 value 92.500119 iter 60 value 89.898882 iter 70 value 87.403196 iter 80 value 86.629398 iter 90 value 85.583246 iter 100 value 83.846414 final value 83.846414 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 122.263562 iter 10 value 94.511328 iter 20 value 93.936715 iter 30 value 88.697616 iter 40 value 86.186944 iter 50 value 84.284138 iter 60 value 84.000388 iter 70 value 83.878941 iter 80 value 83.424879 iter 90 value 83.367619 iter 100 value 83.357111 final value 83.357111 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.744185 iter 10 value 94.964835 iter 20 value 90.757397 iter 30 value 87.310148 iter 40 value 86.453101 iter 50 value 85.546604 iter 60 value 85.098561 iter 70 value 84.614476 iter 80 value 83.981980 iter 90 value 83.742249 iter 100 value 83.710320 final value 83.710320 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.130780 iter 10 value 96.085594 iter 20 value 94.620030 iter 30 value 89.513475 iter 40 value 88.101941 iter 50 value 87.192026 iter 60 value 86.801239 iter 70 value 86.390786 iter 80 value 86.010212 iter 90 value 85.236151 iter 100 value 84.338179 final value 84.338179 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.770579 iter 10 value 90.639157 iter 20 value 87.371884 iter 30 value 86.100269 iter 40 value 85.608519 iter 50 value 85.252439 iter 60 value 84.892932 iter 70 value 84.637309 iter 80 value 84.418071 iter 90 value 84.077453 iter 100 value 83.811477 final value 83.811477 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.100440 iter 10 value 94.547403 iter 20 value 93.838706 iter 30 value 90.601374 iter 40 value 89.189299 iter 50 value 85.305224 iter 60 value 84.536317 iter 70 value 83.753621 iter 80 value 83.355727 iter 90 value 83.238971 iter 100 value 83.028511 final value 83.028511 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.567988 iter 10 value 95.463680 iter 20 value 94.384264 iter 30 value 89.908142 iter 40 value 87.882545 iter 50 value 87.416052 iter 60 value 85.932969 iter 70 value 84.611113 iter 80 value 84.199589 iter 90 value 83.942787 iter 100 value 83.596158 final value 83.596158 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.820493 final value 94.485726 converged Fitting Repeat 2 # weights: 103 initial value 98.134008 iter 10 value 94.356249 iter 20 value 94.354660 final value 94.354487 converged Fitting Repeat 3 # weights: 103 initial value 114.131911 final value 94.485959 converged Fitting Repeat 4 # weights: 103 initial value 115.246099 iter 10 value 93.921371 iter 20 value 93.839000 iter 30 value 93.838968 iter 40 value 93.838319 iter 50 value 93.837547 final value 93.837469 converged Fitting Repeat 5 # weights: 103 initial value 102.365242 final value 94.486262 converged Fitting Repeat 1 # weights: 305 initial value 121.460137 iter 10 value 94.488987 iter 20 value 94.484233 final value 94.484213 converged Fitting Repeat 2 # weights: 305 initial value 105.606496 iter 10 value 94.217337 iter 20 value 87.607218 iter 30 value 87.602445 iter 40 value 87.597122 iter 50 value 87.146950 iter 60 value 86.844727 final value 86.844628 converged Fitting Repeat 3 # weights: 305 initial value 96.301490 iter 10 value 94.359546 iter 20 value 93.734125 iter 30 value 87.990288 iter 40 value 85.911962 iter 50 value 85.663292 iter 60 value 85.610175 iter 70 value 85.167627 iter 80 value 83.221437 iter 90 value 83.185101 final value 83.184643 converged Fitting Repeat 4 # weights: 305 initial value 97.543559 iter 10 value 94.488839 iter 20 value 94.484222 iter 30 value 94.073136 final value 94.053589 converged Fitting Repeat 5 # weights: 305 initial value 100.033692 iter 10 value 94.489199 iter 20 value 94.484483 final value 94.484474 converged Fitting Repeat 1 # weights: 507 initial value 126.887304 iter 10 value 94.362363 iter 20 value 94.126847 iter 30 value 90.521843 iter 40 value 87.303601 iter 50 value 87.082879 iter 60 value 86.709716 iter 70 value 86.665283 iter 80 value 86.073394 iter 90 value 85.707457 iter 100 value 85.707204 final value 85.707204 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.511176 iter 10 value 94.492575 iter 20 value 94.435563 iter 30 value 87.710978 iter 40 value 85.812295 iter 50 value 84.931661 iter 60 value 84.886525 iter 70 value 84.886263 final value 84.886101 converged Fitting Repeat 3 # weights: 507 initial value 97.173503 iter 10 value 94.362477 iter 20 value 94.354771 iter 30 value 94.334861 iter 40 value 93.313997 iter 50 value 92.330726 iter 60 value 92.240164 iter 70 value 92.239605 iter 80 value 92.238917 iter 90 value 92.238376 iter 100 value 92.238229 final value 92.238229 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.387510 iter 10 value 94.490902 iter 20 value 91.485193 iter 30 value 87.685178 iter 30 value 87.685178 iter 30 value 87.685178 final value 87.685178 converged Fitting Repeat 5 # weights: 507 initial value 107.544022 iter 10 value 94.362461 iter 20 value 94.356307 iter 30 value 93.604307 final value 93.600677 converged Fitting Repeat 1 # weights: 103 initial value 100.170787 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.226982 final value 94.046753 converged Fitting Repeat 3 # weights: 103 initial value 100.975018 final value 93.969041 converged Fitting Repeat 4 # weights: 103 initial value 97.164448 iter 10 value 94.020213 iter 20 value 93.645436 final value 93.642191 converged Fitting Repeat 5 # weights: 103 initial value 96.221274 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.980025 iter 10 value 93.966932 final value 93.963025 converged Fitting Repeat 2 # weights: 305 initial value 107.563205 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.979113 final value 93.671508 converged Fitting Repeat 4 # weights: 305 initial value 98.096133 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.327644 final value 94.008696 converged Fitting Repeat 1 # weights: 507 initial value 115.733941 iter 10 value 93.976145 iter 20 value 93.783209 final value 93.782932 converged Fitting Repeat 2 # weights: 507 initial value 106.373220 iter 10 value 94.039042 iter 20 value 89.593532 iter 30 value 87.509759 final value 87.508032 converged Fitting Repeat 3 # weights: 507 initial value 99.004483 iter 10 value 89.954205 iter 20 value 87.606522 iter 30 value 87.594531 iter 30 value 87.594530 iter 30 value 87.594530 final value 87.594530 converged Fitting Repeat 4 # weights: 507 initial value 94.607138 iter 10 value 92.170393 iter 20 value 90.261623 iter 30 value 87.472866 iter 40 value 87.156478 iter 50 value 86.981241 iter 60 value 84.558175 iter 70 value 84.453932 iter 80 value 84.444145 iter 80 value 84.444144 iter 80 value 84.444144 final value 84.444144 converged Fitting Repeat 5 # weights: 507 initial value 114.807518 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 103.837915 iter 10 value 94.081355 iter 20 value 94.054907 iter 30 value 94.013076 iter 40 value 92.901146 iter 50 value 92.063448 iter 60 value 91.722020 iter 70 value 89.742045 iter 80 value 88.078907 iter 90 value 87.772788 iter 100 value 86.013827 final value 86.013827 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.036074 iter 10 value 94.124687 iter 20 value 93.903000 iter 30 value 93.744530 iter 40 value 93.598280 iter 50 value 89.855234 iter 60 value 87.333872 iter 70 value 86.012698 iter 80 value 85.885100 final value 85.881237 converged Fitting Repeat 3 # weights: 103 initial value 97.369410 iter 10 value 93.182973 iter 20 value 89.074396 iter 30 value 88.876269 iter 40 value 88.334140 iter 50 value 85.856730 iter 60 value 85.854010 iter 70 value 85.853563 iter 80 value 85.852596 final value 85.852529 converged Fitting Repeat 4 # weights: 103 initial value 98.653717 iter 10 value 94.042300 iter 20 value 87.153131 iter 30 value 86.743325 iter 40 value 86.108336 iter 50 value 85.881681 iter 60 value 85.852740 final value 85.852528 converged Fitting Repeat 5 # weights: 103 initial value 103.330687 iter 10 value 93.992429 iter 20 value 86.959818 iter 30 value 86.326786 iter 40 value 86.086542 iter 50 value 85.989628 iter 60 value 85.893492 iter 70 value 85.852806 iter 80 value 85.852573 final value 85.852563 converged Fitting Repeat 1 # weights: 305 initial value 104.566706 iter 10 value 94.540946 iter 20 value 94.195660 iter 30 value 93.248300 iter 40 value 91.601773 iter 50 value 89.408296 iter 60 value 86.297203 iter 70 value 84.908195 iter 80 value 83.644790 iter 90 value 83.386572 iter 100 value 82.973736 final value 82.973736 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.438663 iter 10 value 94.289977 iter 20 value 89.163543 iter 30 value 84.819379 iter 40 value 84.121370 iter 50 value 83.526623 iter 60 value 83.249474 iter 70 value 82.855565 iter 80 value 82.768310 iter 90 value 82.569522 iter 100 value 82.397885 final value 82.397885 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 133.521928 iter 10 value 94.135937 iter 20 value 88.955517 iter 30 value 87.848804 iter 40 value 86.412740 iter 50 value 84.757120 iter 60 value 84.502320 iter 70 value 84.304390 iter 80 value 84.034624 iter 90 value 83.881963 iter 100 value 83.598911 final value 83.598911 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.408768 iter 10 value 90.222875 iter 20 value 89.065543 iter 30 value 86.560994 iter 40 value 85.497084 iter 50 value 84.764915 iter 60 value 84.411262 iter 70 value 83.829207 iter 80 value 83.229845 iter 90 value 82.258560 iter 100 value 82.032061 final value 82.032061 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.628387 iter 10 value 93.488353 iter 20 value 89.561116 iter 30 value 87.559112 iter 40 value 85.711561 iter 50 value 84.311234 iter 60 value 83.389317 iter 70 value 82.677684 iter 80 value 82.490014 iter 90 value 82.377491 iter 100 value 82.325435 final value 82.325435 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.563787 iter 10 value 94.037114 iter 20 value 93.950961 iter 30 value 87.885485 iter 40 value 86.517922 iter 50 value 85.890693 iter 60 value 84.547574 iter 70 value 83.384568 iter 80 value 83.160805 iter 90 value 83.037114 iter 100 value 82.934933 final value 82.934933 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.570897 iter 10 value 94.854800 iter 20 value 87.359716 iter 30 value 86.755095 iter 40 value 84.623845 iter 50 value 83.903781 iter 60 value 83.716657 iter 70 value 83.493748 iter 80 value 83.075413 iter 90 value 82.914841 iter 100 value 82.358933 final value 82.358933 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.780814 iter 10 value 93.949440 iter 20 value 89.773048 iter 30 value 88.984811 iter 40 value 87.777180 iter 50 value 84.588632 iter 60 value 83.600925 iter 70 value 83.064185 iter 80 value 82.484985 iter 90 value 82.328296 iter 100 value 82.207585 final value 82.207585 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.770534 iter 10 value 94.122305 iter 20 value 88.854327 iter 30 value 85.730741 iter 40 value 85.065358 iter 50 value 84.788702 iter 60 value 84.278643 iter 70 value 83.689774 iter 80 value 83.322947 iter 90 value 82.698177 iter 100 value 82.501290 final value 82.501290 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.194056 iter 10 value 93.997583 iter 20 value 92.861550 iter 30 value 86.643509 iter 40 value 84.704774 iter 50 value 83.644508 iter 60 value 83.270263 iter 70 value 83.142426 iter 80 value 82.897764 iter 90 value 82.775732 iter 100 value 82.706104 final value 82.706104 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.167540 iter 10 value 94.054751 final value 94.052919 converged Fitting Repeat 2 # weights: 103 initial value 94.494833 final value 94.056031 converged Fitting Repeat 3 # weights: 103 initial value 95.939444 final value 94.054476 converged Fitting Repeat 4 # weights: 103 initial value 96.354696 final value 94.054471 converged Fitting Repeat 5 # weights: 103 initial value 95.901939 final value 94.054198 converged Fitting Repeat 1 # weights: 305 initial value 112.902500 iter 10 value 94.058093 iter 20 value 94.053550 final value 94.053399 converged Fitting Repeat 2 # weights: 305 initial value 95.388060 iter 10 value 94.056462 final value 94.052929 converged Fitting Repeat 3 # weights: 305 initial value 98.095857 iter 10 value 94.013564 iter 20 value 94.008787 iter 30 value 90.426671 iter 40 value 83.298339 iter 50 value 82.581373 iter 60 value 82.548394 iter 60 value 82.548393 final value 82.548393 converged Fitting Repeat 4 # weights: 305 initial value 97.768214 iter 10 value 93.976843 iter 20 value 93.973287 iter 30 value 93.966609 iter 40 value 93.965242 iter 50 value 88.104617 iter 60 value 87.511830 iter 70 value 87.511665 final value 87.511491 converged Fitting Repeat 5 # weights: 305 initial value 107.819894 iter 10 value 94.056291 iter 20 value 93.820394 iter 30 value 90.228078 iter 40 value 88.601551 iter 50 value 88.291304 iter 60 value 88.008846 iter 70 value 87.762388 iter 80 value 86.817413 iter 90 value 84.092172 iter 100 value 81.516813 final value 81.516813 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.145609 iter 10 value 93.527220 iter 20 value 92.794021 iter 30 value 91.686198 iter 40 value 86.084035 iter 50 value 86.080752 iter 60 value 85.697896 iter 70 value 85.692519 iter 80 value 85.687197 iter 80 value 85.687197 final value 85.687197 converged Fitting Repeat 2 # weights: 507 initial value 101.849398 iter 10 value 94.061081 iter 20 value 93.852560 iter 30 value 93.015681 iter 40 value 92.529216 iter 50 value 88.499746 iter 60 value 86.911998 iter 70 value 86.865155 iter 80 value 86.863150 iter 90 value 85.840543 iter 100 value 85.548933 final value 85.548933 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.071878 iter 10 value 94.060564 iter 20 value 93.920153 iter 30 value 93.708303 final value 93.671669 converged Fitting Repeat 4 # weights: 507 initial value 118.566856 iter 10 value 90.175285 iter 20 value 89.434639 iter 30 value 87.839685 iter 40 value 87.744782 iter 50 value 87.613619 iter 60 value 87.594275 iter 70 value 87.540653 iter 80 value 86.471739 iter 90 value 86.434996 iter 100 value 86.354947 final value 86.354947 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.030388 iter 10 value 94.016631 iter 20 value 94.010680 final value 94.008759 converged Fitting Repeat 1 # weights: 103 initial value 94.432919 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.827630 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 109.537986 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.404300 final value 93.371808 converged Fitting Repeat 5 # weights: 103 initial value 108.526079 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 104.072116 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 101.616977 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 104.405353 final value 94.052926 converged Fitting Repeat 4 # weights: 305 initial value 102.437964 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 106.716748 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.655788 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 112.305126 iter 10 value 93.519960 iter 10 value 93.519960 iter 10 value 93.519960 final value 93.519960 converged Fitting Repeat 3 # weights: 507 initial value 96.272056 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 109.687967 iter 10 value 93.766000 final value 93.765896 converged Fitting Repeat 5 # weights: 507 initial value 95.728894 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 99.158687 iter 10 value 94.045666 iter 20 value 88.353945 iter 30 value 86.977467 iter 40 value 85.039761 iter 50 value 83.250680 iter 60 value 81.798693 iter 70 value 81.256482 iter 80 value 80.913088 iter 90 value 80.620005 final value 80.490919 converged Fitting Repeat 2 # weights: 103 initial value 102.443945 iter 10 value 94.074583 iter 20 value 93.479054 iter 30 value 87.850291 iter 40 value 87.087899 iter 50 value 85.762418 iter 60 value 84.511496 iter 70 value 84.166624 iter 80 value 83.789232 iter 90 value 83.307521 iter 100 value 83.243733 final value 83.243733 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.600906 iter 10 value 94.057150 iter 20 value 93.977036 iter 30 value 89.287774 iter 40 value 84.459328 iter 50 value 83.782796 iter 60 value 83.270864 iter 70 value 83.229022 final value 83.228882 converged Fitting Repeat 4 # weights: 103 initial value 102.459192 iter 10 value 93.845535 iter 20 value 89.294670 iter 30 value 88.450092 iter 40 value 87.673605 iter 50 value 87.032964 iter 60 value 82.125016 iter 70 value 80.982012 iter 80 value 80.358960 iter 90 value 80.299330 final value 80.299148 converged Fitting Repeat 5 # weights: 103 initial value 104.184073 iter 10 value 94.056874 iter 20 value 93.846940 iter 30 value 90.991494 iter 40 value 89.356774 iter 50 value 85.677308 iter 60 value 85.007636 iter 70 value 84.772063 iter 80 value 84.477624 iter 90 value 84.342771 final value 84.342610 converged Fitting Repeat 1 # weights: 305 initial value 99.347083 iter 10 value 94.199277 iter 20 value 91.321055 iter 30 value 85.831313 iter 40 value 84.391513 iter 50 value 84.016822 iter 60 value 83.669673 iter 70 value 83.169527 iter 80 value 82.999136 iter 90 value 82.988214 iter 100 value 82.951739 final value 82.951739 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.304137 iter 10 value 94.211251 iter 20 value 89.086474 iter 30 value 85.300138 iter 40 value 82.970359 iter 50 value 82.810747 iter 60 value 82.726991 iter 70 value 81.933864 iter 80 value 80.356635 iter 90 value 79.929335 iter 100 value 79.896719 final value 79.896719 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.632088 iter 10 value 94.119144 iter 20 value 93.830144 iter 30 value 93.565131 iter 40 value 88.628359 iter 50 value 88.376403 iter 60 value 85.287372 iter 70 value 83.215587 iter 80 value 82.335285 iter 90 value 82.082557 iter 100 value 81.940248 final value 81.940248 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.327817 iter 10 value 93.934560 iter 20 value 87.975101 iter 30 value 85.230961 iter 40 value 84.800836 iter 50 value 83.748056 iter 60 value 81.335508 iter 70 value 80.068956 iter 80 value 79.468484 iter 90 value 79.378906 iter 100 value 79.210042 final value 79.210042 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.628511 iter 10 value 94.207284 iter 20 value 89.993876 iter 30 value 84.839807 iter 40 value 84.709536 iter 50 value 83.651913 iter 60 value 82.035073 iter 70 value 80.277094 iter 80 value 79.998944 iter 90 value 79.892607 iter 100 value 79.872450 final value 79.872450 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.481802 iter 10 value 94.534932 iter 20 value 88.569498 iter 30 value 84.409012 iter 40 value 84.078344 iter 50 value 83.896499 iter 60 value 83.375680 iter 70 value 81.309129 iter 80 value 80.587332 iter 90 value 79.664368 iter 100 value 79.195346 final value 79.195346 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.956573 iter 10 value 94.047151 iter 20 value 92.575683 iter 30 value 87.354051 iter 40 value 84.084589 iter 50 value 82.588758 iter 60 value 80.963229 iter 70 value 79.556370 iter 80 value 79.391988 iter 90 value 78.814165 iter 100 value 78.622188 final value 78.622188 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.674596 iter 10 value 93.879837 iter 20 value 92.473911 iter 30 value 86.772035 iter 40 value 83.902884 iter 50 value 82.413417 iter 60 value 81.634882 iter 70 value 80.634547 iter 80 value 80.130733 iter 90 value 79.942502 iter 100 value 79.754253 final value 79.754253 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.567350 iter 10 value 91.871810 iter 20 value 86.563488 iter 30 value 82.938608 iter 40 value 80.644309 iter 50 value 80.394898 iter 60 value 80.089257 iter 70 value 79.675259 iter 80 value 79.398336 iter 90 value 79.247546 iter 100 value 79.142397 final value 79.142397 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.853145 iter 10 value 93.997519 iter 20 value 88.522009 iter 30 value 86.528052 iter 40 value 83.405943 iter 50 value 81.703570 iter 60 value 80.623020 iter 70 value 79.724396 iter 80 value 79.040478 iter 90 value 78.852657 iter 100 value 78.721567 final value 78.721567 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.017924 final value 94.054376 converged Fitting Repeat 2 # weights: 103 initial value 94.725721 final value 94.054438 converged Fitting Repeat 3 # weights: 103 initial value 96.018030 final value 93.837850 converged Fitting Repeat 4 # weights: 103 initial value 102.050378 iter 10 value 93.767692 iter 20 value 93.734094 final value 93.734088 converged Fitting Repeat 5 # weights: 103 initial value 98.111249 iter 10 value 92.345659 iter 20 value 87.817881 iter 30 value 87.814412 iter 40 value 85.868874 iter 50 value 85.849249 iter 60 value 85.747779 iter 70 value 85.745259 iter 80 value 85.742555 final value 85.740837 converged Fitting Repeat 1 # weights: 305 initial value 94.661856 iter 10 value 94.056883 iter 20 value 92.798215 iter 30 value 83.396818 iter 40 value 81.915114 iter 50 value 79.691167 iter 60 value 78.758995 iter 70 value 78.671545 iter 80 value 78.671156 iter 90 value 78.671131 iter 90 value 78.671130 iter 90 value 78.671130 final value 78.671130 converged Fitting Repeat 2 # weights: 305 initial value 99.340735 iter 10 value 94.057836 iter 20 value 94.052925 iter 30 value 85.599552 iter 40 value 85.591923 iter 50 value 85.590713 iter 60 value 85.359686 iter 70 value 85.227965 iter 80 value 81.983061 iter 90 value 80.510544 iter 100 value 80.423929 final value 80.423929 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.303213 iter 10 value 93.770750 iter 20 value 91.522207 iter 30 value 86.583568 final value 86.561699 converged Fitting Repeat 4 # weights: 305 initial value 126.985508 iter 10 value 94.048646 iter 20 value 93.743566 iter 30 value 91.666981 iter 40 value 90.460080 iter 50 value 90.425355 iter 60 value 90.194165 iter 70 value 90.008978 iter 80 value 90.008779 iter 90 value 90.008097 final value 90.008023 converged Fitting Repeat 5 # weights: 305 initial value 104.356842 iter 10 value 93.770791 iter 20 value 93.536811 final value 93.535671 converged Fitting Repeat 1 # weights: 507 initial value 111.987166 iter 10 value 93.943758 iter 20 value 93.939534 iter 30 value 90.074741 iter 40 value 82.836887 iter 50 value 81.180702 iter 60 value 80.746985 final value 80.741454 converged Fitting Repeat 2 # weights: 507 initial value 94.899065 iter 10 value 92.382657 iter 20 value 87.754786 iter 30 value 86.941220 iter 40 value 86.928561 iter 50 value 85.611673 iter 60 value 85.463746 iter 70 value 85.462018 iter 80 value 85.457277 iter 90 value 85.454331 final value 85.453905 converged Fitting Repeat 3 # weights: 507 initial value 96.961852 iter 10 value 93.844251 iter 20 value 89.845434 iter 30 value 86.309130 iter 40 value 83.720432 iter 50 value 81.381358 iter 60 value 80.532245 iter 70 value 80.216022 iter 80 value 79.978162 iter 90 value 79.931142 iter 100 value 79.928621 final value 79.928621 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.116084 iter 10 value 92.627486 iter 20 value 83.444505 iter 30 value 83.438567 iter 40 value 83.434831 iter 50 value 83.432100 iter 60 value 83.350398 iter 70 value 83.320183 iter 80 value 83.318049 iter 90 value 83.317322 final value 83.317254 converged Fitting Repeat 5 # weights: 507 initial value 96.666586 iter 10 value 94.061356 iter 20 value 93.858499 iter 30 value 83.828814 iter 40 value 80.198893 iter 50 value 79.260787 iter 60 value 79.242066 iter 70 value 79.216659 iter 80 value 79.026632 iter 90 value 78.559313 iter 100 value 78.530606 final value 78.530606 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.813148 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.751507 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.632096 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.224714 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.623670 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.404034 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.544925 iter 10 value 94.275366 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 108.603171 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.779935 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.510793 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 112.974982 iter 10 value 93.210064 iter 20 value 83.847197 iter 30 value 82.651176 final value 82.649363 converged Fitting Repeat 2 # weights: 507 initial value 115.013553 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 115.902195 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 102.952864 iter 10 value 85.238490 iter 20 value 81.464384 iter 30 value 81.271486 iter 40 value 81.270042 final value 81.269954 converged Fitting Repeat 5 # weights: 507 initial value 98.455270 final value 94.286550 converged Fitting Repeat 1 # weights: 103 initial value 101.862410 iter 10 value 94.660046 iter 20 value 94.442301 iter 30 value 94.316852 iter 40 value 94.284678 iter 50 value 85.000153 iter 60 value 84.040825 iter 70 value 82.376443 iter 80 value 80.972883 iter 90 value 80.022394 iter 100 value 79.649328 final value 79.649328 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.372920 iter 10 value 94.192014 iter 20 value 89.938196 iter 30 value 83.980812 iter 40 value 83.163991 iter 50 value 79.901736 iter 60 value 79.338059 iter 70 value 79.251432 iter 80 value 79.208902 final value 79.208858 converged Fitting Repeat 3 # weights: 103 initial value 98.478006 iter 10 value 94.345570 iter 20 value 91.952088 iter 30 value 83.202286 iter 40 value 82.354330 iter 50 value 82.098433 iter 60 value 82.011515 iter 70 value 81.887136 final value 81.884195 converged Fitting Repeat 4 # weights: 103 initial value 103.397080 iter 10 value 94.488496 iter 20 value 93.897177 iter 30 value 86.951681 iter 40 value 86.231447 iter 50 value 85.180139 iter 60 value 82.631052 final value 82.624739 converged Fitting Repeat 5 # weights: 103 initial value 103.980257 iter 10 value 94.498582 iter 20 value 94.342965 iter 30 value 90.861087 iter 40 value 89.583549 iter 50 value 89.437725 iter 60 value 85.665513 iter 70 value 82.862750 iter 80 value 80.821321 iter 90 value 80.074487 iter 100 value 79.916951 final value 79.916951 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.303272 iter 10 value 94.687529 iter 20 value 94.330934 iter 30 value 93.163272 iter 40 value 84.025941 iter 50 value 82.797375 iter 60 value 82.614616 iter 70 value 81.089525 iter 80 value 80.140829 iter 90 value 79.961843 iter 100 value 79.659294 final value 79.659294 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.630950 iter 10 value 94.487984 iter 20 value 92.417277 iter 30 value 85.357847 iter 40 value 81.629261 iter 50 value 80.700331 iter 60 value 79.841761 iter 70 value 79.164909 iter 80 value 79.063953 iter 90 value 78.808589 iter 100 value 78.701074 final value 78.701074 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.218725 iter 10 value 94.407286 iter 20 value 86.198931 iter 30 value 83.114703 iter 40 value 82.638226 iter 50 value 80.251789 iter 60 value 79.793555 iter 70 value 79.531734 iter 80 value 79.364563 iter 90 value 78.729897 iter 100 value 78.147368 final value 78.147368 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.021974 iter 10 value 94.954802 iter 20 value 94.487361 iter 30 value 94.289117 iter 40 value 86.564060 iter 50 value 83.735692 iter 60 value 82.626079 iter 70 value 82.069995 iter 80 value 81.830290 iter 90 value 80.138952 iter 100 value 79.322410 final value 79.322410 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.338818 iter 10 value 94.113473 iter 20 value 87.876688 iter 30 value 84.950445 iter 40 value 84.502368 iter 50 value 83.984164 iter 60 value 82.072794 iter 70 value 79.269232 iter 80 value 79.040616 iter 90 value 78.865549 iter 100 value 78.758805 final value 78.758805 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 136.988336 iter 10 value 94.385429 iter 20 value 86.155019 iter 30 value 82.329916 iter 40 value 80.531958 iter 50 value 79.985766 iter 60 value 79.823799 iter 70 value 79.703311 iter 80 value 79.471284 iter 90 value 79.281773 iter 100 value 78.596608 final value 78.596608 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.052846 iter 10 value 93.274917 iter 20 value 86.720776 iter 30 value 85.314492 iter 40 value 82.674805 iter 50 value 80.660738 iter 60 value 79.107705 iter 70 value 78.068906 iter 80 value 77.636033 iter 90 value 77.358659 iter 100 value 77.134735 final value 77.134735 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.129831 iter 10 value 95.670396 iter 20 value 89.811845 iter 30 value 84.978440 iter 40 value 81.474870 iter 50 value 79.821789 iter 60 value 78.688571 iter 70 value 78.547755 iter 80 value 78.346262 iter 90 value 77.906845 iter 100 value 77.752956 final value 77.752956 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.576772 iter 10 value 94.643923 iter 20 value 88.135193 iter 30 value 86.623865 iter 40 value 84.970680 iter 50 value 83.378540 iter 60 value 79.462578 iter 70 value 78.536119 iter 80 value 78.236357 iter 90 value 78.148312 iter 100 value 78.078260 final value 78.078260 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.333623 iter 10 value 94.517838 iter 20 value 92.755779 iter 30 value 89.705271 iter 40 value 86.400314 iter 50 value 81.949887 iter 60 value 81.435161 iter 70 value 79.958579 iter 80 value 78.683118 iter 90 value 78.269191 iter 100 value 77.720789 final value 77.720789 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.712023 final value 94.485860 converged Fitting Repeat 2 # weights: 103 initial value 96.552329 final value 94.485762 converged Fitting Repeat 3 # weights: 103 initial value 98.000124 final value 94.485918 converged Fitting Repeat 4 # weights: 103 initial value 95.164039 iter 10 value 94.177927 final value 94.167580 converged Fitting Repeat 5 # weights: 103 initial value 99.432036 final value 94.486034 converged Fitting Repeat 1 # weights: 305 initial value 109.277903 iter 10 value 94.489570 iter 20 value 94.478840 iter 30 value 93.849501 iter 40 value 85.248546 iter 50 value 84.594704 iter 60 value 84.588208 iter 70 value 84.222272 iter 80 value 84.218604 iter 90 value 79.107185 iter 100 value 78.502774 final value 78.502774 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.003864 iter 10 value 92.418621 iter 20 value 92.380958 iter 30 value 81.715054 iter 40 value 81.629839 iter 50 value 81.159374 iter 60 value 81.156314 iter 70 value 81.156185 final value 81.156184 converged Fitting Repeat 3 # weights: 305 initial value 99.515174 iter 10 value 94.466549 iter 20 value 94.432908 iter 30 value 90.267122 iter 40 value 85.399323 iter 50 value 85.293787 iter 60 value 83.439970 iter 70 value 82.793379 iter 80 value 82.790994 final value 82.790905 converged Fitting Repeat 4 # weights: 305 initial value 103.113559 iter 10 value 94.488868 iter 20 value 94.337942 iter 30 value 87.697228 iter 40 value 82.999077 iter 50 value 82.650915 final value 82.650816 converged Fitting Repeat 5 # weights: 305 initial value 106.402091 iter 10 value 94.489323 iter 20 value 94.484642 iter 30 value 94.254621 iter 30 value 94.254621 iter 30 value 94.254621 final value 94.254621 converged Fitting Repeat 1 # weights: 507 initial value 123.827600 iter 10 value 94.344437 iter 20 value 85.761724 iter 30 value 85.454564 iter 40 value 85.279915 iter 50 value 82.432169 iter 60 value 80.419207 iter 70 value 80.409839 iter 80 value 80.385620 iter 90 value 80.212215 iter 100 value 79.945101 final value 79.945101 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.444988 iter 10 value 94.078095 iter 20 value 94.019620 final value 94.018390 converged Fitting Repeat 3 # weights: 507 initial value 97.767367 iter 10 value 94.051656 iter 20 value 93.773510 iter 30 value 93.767300 iter 40 value 93.764516 iter 50 value 93.763476 iter 60 value 92.014747 iter 70 value 87.280455 iter 80 value 86.985455 iter 90 value 86.835055 iter 100 value 86.810202 final value 86.810202 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.996548 iter 10 value 94.492965 iter 20 value 94.477124 final value 94.165958 converged Fitting Repeat 5 # weights: 507 initial value 116.358679 iter 10 value 94.283788 iter 20 value 93.875293 iter 30 value 82.993539 iter 40 value 82.769252 iter 50 value 82.755117 iter 60 value 80.757606 iter 70 value 80.609246 iter 80 value 80.606879 iter 90 value 80.603437 iter 100 value 80.603104 final value 80.603104 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.144380 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.997239 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.398564 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 105.893747 final value 94.484137 converged Fitting Repeat 5 # weights: 103 initial value 95.107579 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 95.501843 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.054413 iter 10 value 94.484405 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.206745 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 103.521485 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 95.170776 final value 94.484137 converged Fitting Repeat 1 # weights: 507 initial value 97.540116 iter 10 value 93.861035 final value 93.851932 converged Fitting Repeat 2 # weights: 507 initial value 94.980300 iter 10 value 86.893524 iter 20 value 85.912989 final value 85.912179 converged Fitting Repeat 3 # weights: 507 initial value 98.901257 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 101.500112 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 101.380346 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.456519 iter 10 value 94.495121 iter 20 value 88.994675 iter 30 value 84.682170 iter 40 value 84.443061 iter 50 value 83.684721 iter 60 value 83.611510 final value 83.611508 converged Fitting Repeat 2 # weights: 103 initial value 98.620368 iter 10 value 94.348881 iter 20 value 91.848437 iter 30 value 88.054461 iter 40 value 84.027703 iter 50 value 82.491264 iter 60 value 82.219823 iter 70 value 81.353442 iter 80 value 80.975769 iter 90 value 80.511240 iter 100 value 80.259933 final value 80.259933 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.158711 iter 10 value 94.339325 iter 20 value 87.390473 iter 30 value 84.528193 iter 40 value 83.159203 iter 50 value 82.050494 iter 60 value 81.743240 iter 70 value 81.660146 iter 80 value 81.650401 final value 81.650233 converged Fitting Repeat 4 # weights: 103 initial value 101.900063 iter 10 value 94.484747 iter 20 value 87.234429 iter 30 value 84.263011 iter 40 value 83.198301 iter 50 value 82.491100 iter 60 value 81.836896 iter 70 value 81.768852 iter 80 value 81.638857 iter 90 value 81.283755 iter 100 value 80.546226 final value 80.546226 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.458920 iter 10 value 94.269310 iter 20 value 86.987894 iter 30 value 85.335811 iter 40 value 84.662910 iter 50 value 83.413886 iter 60 value 82.832302 iter 70 value 82.814553 iter 80 value 82.773329 iter 90 value 82.696229 iter 100 value 82.569256 final value 82.569256 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.136233 iter 10 value 94.380581 iter 20 value 90.364444 iter 30 value 86.090745 iter 40 value 82.538109 iter 50 value 81.367295 iter 60 value 80.969296 iter 70 value 80.820240 iter 80 value 80.173727 iter 90 value 79.828189 iter 100 value 79.443863 final value 79.443863 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.858363 iter 10 value 94.798125 iter 20 value 94.497491 iter 30 value 93.596172 iter 40 value 84.698348 iter 50 value 83.080597 iter 60 value 82.047270 iter 70 value 79.787317 iter 80 value 79.312589 iter 90 value 79.053234 iter 100 value 78.835011 final value 78.835011 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.284783 iter 10 value 94.251577 iter 20 value 83.463543 iter 30 value 82.688671 iter 40 value 82.510837 iter 50 value 80.952499 iter 60 value 79.434336 iter 70 value 79.128447 iter 80 value 78.779848 iter 90 value 78.585599 iter 100 value 78.543395 final value 78.543395 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.794189 iter 10 value 94.401729 iter 20 value 93.393237 iter 30 value 87.382956 iter 40 value 82.342563 iter 50 value 79.820549 iter 60 value 78.881861 iter 70 value 78.726669 iter 80 value 78.566182 iter 90 value 78.467991 iter 100 value 78.455603 final value 78.455603 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.972701 iter 10 value 94.484954 iter 20 value 90.075032 iter 30 value 87.342008 iter 40 value 80.904715 iter 50 value 79.634033 iter 60 value 79.109963 iter 70 value 78.955073 iter 80 value 78.900118 iter 90 value 78.872213 iter 100 value 78.870324 final value 78.870324 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.860902 iter 10 value 91.997061 iter 20 value 86.557532 iter 30 value 84.265656 iter 40 value 83.566683 iter 50 value 83.111433 iter 60 value 81.820917 iter 70 value 81.154940 iter 80 value 80.748761 iter 90 value 80.683312 iter 100 value 79.431851 final value 79.431851 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.353198 iter 10 value 95.860843 iter 20 value 92.130600 iter 30 value 85.608585 iter 40 value 84.211930 iter 50 value 83.163040 iter 60 value 80.731232 iter 70 value 79.620192 iter 80 value 78.943167 iter 90 value 78.633112 iter 100 value 78.530938 final value 78.530938 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.147149 iter 10 value 94.479662 iter 20 value 84.320826 iter 30 value 83.372175 iter 40 value 83.137499 iter 50 value 82.397642 iter 60 value 82.210782 iter 70 value 82.145434 iter 80 value 81.706163 iter 90 value 80.628458 iter 100 value 80.382660 final value 80.382660 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.385952 iter 10 value 94.452101 iter 20 value 93.887504 iter 30 value 87.071274 iter 40 value 84.070659 iter 50 value 83.395379 iter 60 value 83.151382 iter 70 value 82.548349 iter 80 value 81.793453 iter 90 value 80.870908 iter 100 value 80.109714 final value 80.109714 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.738968 iter 10 value 94.515645 iter 20 value 94.461278 iter 30 value 92.212965 iter 40 value 91.513022 iter 50 value 83.851040 iter 60 value 81.285280 iter 70 value 81.003940 iter 80 value 80.692112 iter 90 value 80.601360 iter 100 value 80.558041 final value 80.558041 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.601202 iter 10 value 94.468530 iter 20 value 94.466861 iter 30 value 94.448984 iter 40 value 90.563019 iter 50 value 90.255603 iter 60 value 90.243355 final value 90.243153 converged Fitting Repeat 2 # weights: 103 initial value 102.195409 iter 10 value 94.485853 iter 20 value 94.484068 iter 30 value 94.440715 iter 40 value 91.819890 iter 50 value 91.807948 iter 60 value 91.148331 iter 70 value 91.146163 final value 91.144803 converged Fitting Repeat 3 # weights: 103 initial value 95.105197 final value 94.430557 converged Fitting Repeat 4 # weights: 103 initial value 96.266574 final value 94.486004 converged Fitting Repeat 5 # weights: 103 initial value 108.963690 final value 94.486147 converged Fitting Repeat 1 # weights: 305 initial value 99.483122 iter 10 value 94.488628 iter 20 value 94.483534 iter 30 value 82.406995 iter 40 value 81.391634 iter 50 value 81.273402 iter 60 value 81.272778 final value 81.272776 converged Fitting Repeat 2 # weights: 305 initial value 97.392481 iter 10 value 94.471956 iter 20 value 94.467248 iter 30 value 93.938694 iter 40 value 91.673883 iter 50 value 91.365463 iter 60 value 91.310327 iter 70 value 91.306355 iter 80 value 91.300763 iter 90 value 84.110673 iter 100 value 83.763221 final value 83.763221 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.555084 iter 10 value 94.488457 iter 20 value 93.931631 iter 30 value 82.317041 iter 40 value 81.636244 iter 50 value 81.593284 iter 60 value 80.852302 iter 70 value 80.849832 iter 80 value 80.847623 iter 90 value 80.843704 iter 100 value 80.462413 final value 80.462413 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.506813 iter 10 value 94.488944 iter 20 value 94.209854 iter 30 value 92.707216 iter 40 value 92.607188 iter 50 value 92.606993 iter 60 value 92.605415 iter 70 value 92.387471 iter 80 value 91.928486 iter 90 value 91.927619 iter 100 value 91.884154 final value 91.884154 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.275764 iter 10 value 94.481412 iter 20 value 93.144918 iter 30 value 87.534902 iter 40 value 83.502143 iter 50 value 83.276794 iter 60 value 82.145250 iter 70 value 82.056842 final value 82.036940 converged Fitting Repeat 1 # weights: 507 initial value 102.188644 iter 10 value 94.492523 iter 20 value 94.484844 iter 30 value 84.549124 final value 83.983390 converged Fitting Repeat 2 # weights: 507 initial value 100.344794 iter 10 value 94.437109 iter 20 value 87.126699 iter 30 value 86.960779 iter 40 value 85.817247 iter 50 value 85.146177 final value 85.146145 converged Fitting Repeat 3 # weights: 507 initial value 95.234372 iter 10 value 94.475151 iter 20 value 94.470401 iter 30 value 94.466980 iter 40 value 94.138188 iter 50 value 84.133069 iter 60 value 82.203999 iter 70 value 82.195471 final value 82.195326 converged Fitting Repeat 4 # weights: 507 initial value 107.198495 iter 10 value 94.439421 iter 20 value 93.649014 iter 30 value 93.642061 iter 40 value 93.639470 iter 50 value 93.638144 iter 60 value 86.388249 iter 70 value 84.158089 iter 80 value 84.080987 iter 90 value 84.080104 iter 100 value 84.078600 final value 84.078600 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.763920 iter 10 value 94.475177 iter 20 value 91.659453 iter 30 value 91.655521 iter 40 value 91.643685 iter 50 value 91.502040 iter 60 value 90.908218 iter 70 value 90.816192 iter 80 value 90.801604 iter 90 value 90.270253 iter 100 value 90.176957 final value 90.176957 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 131.490033 iter 10 value 118.801237 iter 20 value 110.448014 iter 30 value 104.421986 iter 40 value 102.856241 iter 50 value 102.486906 iter 60 value 101.810208 iter 70 value 101.560248 iter 80 value 100.913724 iter 90 value 100.773908 iter 100 value 100.726228 final value 100.726228 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.183025 iter 10 value 120.471022 iter 20 value 117.623163 iter 30 value 108.307935 iter 40 value 107.392715 iter 50 value 107.298289 iter 60 value 105.717495 iter 70 value 104.797927 iter 80 value 103.325610 iter 90 value 101.199460 iter 100 value 100.532128 final value 100.532128 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 126.886641 iter 10 value 118.058679 iter 20 value 117.342239 iter 30 value 109.390970 iter 40 value 106.395509 iter 50 value 105.747197 iter 60 value 103.506239 iter 70 value 101.686398 iter 80 value 101.448508 iter 90 value 101.302630 iter 100 value 101.106358 final value 101.106358 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 142.969529 iter 10 value 117.931132 iter 20 value 116.952106 iter 30 value 109.105095 iter 40 value 107.321465 iter 50 value 103.298108 iter 60 value 103.100424 iter 70 value 101.980615 iter 80 value 101.679454 iter 90 value 101.467761 iter 100 value 101.176732 final value 101.176732 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.230264 iter 10 value 117.726156 iter 20 value 107.399090 iter 30 value 105.895983 iter 40 value 105.627968 iter 50 value 103.599421 iter 60 value 102.356921 iter 70 value 101.942970 iter 80 value 101.176400 iter 90 value 101.054879 iter 100 value 100.992626 final value 100.992626 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Nov 20 04:30:26 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 30.925 0.777 44.218
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 25.711 | 0.272 | 25.989 | |
FreqInteractors | 0.157 | 0.012 | 0.169 | |
calculateAAC | 0.016 | 0.015 | 0.031 | |
calculateAutocor | 0.221 | 0.028 | 0.250 | |
calculateCTDC | 0.055 | 0.000 | 0.055 | |
calculateCTDD | 0.378 | 0.000 | 0.382 | |
calculateCTDT | 0.131 | 0.000 | 0.131 | |
calculateCTriad | 0.240 | 0.020 | 0.261 | |
calculateDC | 0.063 | 0.002 | 0.065 | |
calculateF | 0.220 | 0.006 | 0.226 | |
calculateKSAAP | 0.067 | 0.002 | 0.069 | |
calculateQD_Sm | 1.215 | 0.029 | 1.280 | |
calculateTC | 1.311 | 0.041 | 1.355 | |
calculateTC_Sm | 0.202 | 0.002 | 0.205 | |
corr_plot | 24.653 | 0.125 | 24.950 | |
enrichfindP | 0.321 | 0.040 | 14.086 | |
enrichfind_hp | 0.052 | 0.003 | 1.218 | |
enrichplot | 0.252 | 0.002 | 0.255 | |
filter_missing_values | 0.000 | 0.000 | 0.001 | |
getFASTA | 0.186 | 0.012 | 3.589 | |
getHPI | 0.000 | 0.001 | 0.000 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.045 | 0.000 | 0.045 | |
pred_ensembel | 9.448 | 0.181 | 8.649 | |
var_imp | 26.097 | 0.422 | 26.531 | |