Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-12-02 12:03 -0500 (Mon, 02 Dec 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4739 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4482 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4510 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4462 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-29 01:15:21 -0500 (Fri, 29 Nov 2024) |
EndedAt: 2024-11-29 01:36:08 -0500 (Fri, 29 Nov 2024) |
EllapsedTime: 1246.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 32.936 0.443 33.380 FSmethod 32.267 0.394 32.661 corr_plot 31.918 0.073 31.994 pred_ensembel 12.342 0.160 11.250 enrichfindP 0.512 0.027 8.563 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.577515 final value 94.427577 converged Fitting Repeat 2 # weights: 103 initial value 110.256965 final value 94.484210 converged Fitting Repeat 3 # weights: 103 initial value 97.102398 iter 10 value 94.467532 final value 94.466823 converged Fitting Repeat 4 # weights: 103 initial value 106.632448 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.318471 final value 94.052435 converged Fitting Repeat 1 # weights: 305 initial value 96.947638 iter 10 value 87.334204 iter 20 value 84.470718 iter 30 value 84.468070 final value 84.468069 converged Fitting Repeat 2 # weights: 305 initial value 98.287095 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.114475 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.233339 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.875600 iter 10 value 92.608651 final value 92.608648 converged Fitting Repeat 1 # weights: 507 initial value 111.603477 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.754328 iter 10 value 93.468468 iter 20 value 92.315417 iter 30 value 91.483269 iter 40 value 90.482046 iter 50 value 90.464958 final value 90.464816 converged Fitting Repeat 3 # weights: 507 initial value 120.828315 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 113.779018 iter 10 value 94.466823 iter 10 value 94.466823 iter 10 value 94.466823 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 107.146443 iter 10 value 94.387430 iter 10 value 94.387430 iter 10 value 94.387430 final value 94.387430 converged Fitting Repeat 1 # weights: 103 initial value 96.371197 iter 10 value 94.488061 iter 20 value 94.457524 iter 30 value 85.537867 iter 40 value 83.918812 iter 50 value 83.783031 iter 60 value 83.281702 iter 70 value 83.194385 final value 83.194297 converged Fitting Repeat 2 # weights: 103 initial value 110.248059 iter 10 value 94.389088 iter 20 value 93.034660 iter 30 value 90.377131 iter 40 value 89.831353 iter 50 value 89.101393 iter 60 value 85.295764 iter 70 value 84.027467 iter 80 value 83.810740 iter 90 value 83.449246 iter 100 value 82.701139 final value 82.701139 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 104.231769 iter 10 value 94.429724 iter 20 value 89.458027 iter 30 value 85.907465 iter 40 value 85.785837 iter 50 value 85.050220 iter 60 value 82.108393 iter 70 value 81.444440 iter 80 value 80.901977 iter 90 value 80.793285 iter 100 value 80.791653 final value 80.791653 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.294817 iter 10 value 94.487126 iter 20 value 94.168326 iter 30 value 93.508195 iter 40 value 84.081898 iter 50 value 83.443867 iter 60 value 81.747215 iter 70 value 81.233187 iter 80 value 80.859340 final value 80.791648 converged Fitting Repeat 5 # weights: 103 initial value 111.198484 iter 10 value 94.486943 final value 94.486432 converged Fitting Repeat 1 # weights: 305 initial value 121.986559 iter 10 value 93.370585 iter 20 value 86.702067 iter 30 value 85.955034 iter 40 value 85.194274 iter 50 value 84.962585 iter 60 value 83.105309 iter 70 value 82.890074 iter 80 value 81.552766 iter 90 value 80.187709 iter 100 value 79.979086 final value 79.979086 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.643197 iter 10 value 94.477463 iter 20 value 93.235489 iter 30 value 89.573097 iter 40 value 87.291717 iter 50 value 84.081626 iter 60 value 83.228075 iter 70 value 82.950124 iter 80 value 82.536386 iter 90 value 81.547908 iter 100 value 80.474228 final value 80.474228 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.912013 iter 10 value 94.579556 iter 20 value 94.382024 iter 30 value 91.553433 iter 40 value 91.337488 iter 50 value 89.025565 iter 60 value 83.805324 iter 70 value 81.703058 iter 80 value 80.678819 iter 90 value 79.948247 iter 100 value 79.762288 final value 79.762288 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.010926 iter 10 value 94.601478 iter 20 value 94.490595 iter 30 value 94.445910 iter 40 value 91.321942 iter 50 value 84.600552 iter 60 value 82.314131 iter 70 value 81.752050 iter 80 value 81.081197 iter 90 value 80.218334 iter 100 value 79.900931 final value 79.900931 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.176210 iter 10 value 94.690427 iter 20 value 94.632504 iter 30 value 94.490234 iter 40 value 87.567695 iter 50 value 87.017522 iter 60 value 84.737113 iter 70 value 84.360012 iter 80 value 84.170439 iter 90 value 84.035263 iter 100 value 83.950544 final value 83.950544 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.571273 iter 10 value 93.484786 iter 20 value 85.969004 iter 30 value 83.547306 iter 40 value 81.990464 iter 50 value 80.048187 iter 60 value 79.712779 iter 70 value 79.631808 iter 80 value 79.536034 iter 90 value 79.363099 iter 100 value 79.276165 final value 79.276165 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.954573 iter 10 value 90.880092 iter 20 value 87.205356 iter 30 value 84.608545 iter 40 value 82.985399 iter 50 value 82.621952 iter 60 value 81.656044 iter 70 value 81.470207 iter 80 value 80.836333 iter 90 value 80.256393 iter 100 value 79.775732 final value 79.775732 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.130666 iter 10 value 94.614587 iter 20 value 91.710649 iter 30 value 85.653528 iter 40 value 84.434969 iter 50 value 83.089636 iter 60 value 81.919282 iter 70 value 81.581487 iter 80 value 81.175493 iter 90 value 80.029749 iter 100 value 79.707038 final value 79.707038 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.259713 iter 10 value 94.513657 iter 20 value 93.522439 iter 30 value 92.523037 iter 40 value 92.275733 iter 50 value 91.586039 iter 60 value 90.356933 iter 70 value 87.669678 iter 80 value 83.840374 iter 90 value 83.290678 iter 100 value 81.881558 final value 81.881558 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.037365 iter 10 value 94.395383 iter 20 value 85.568825 iter 30 value 85.198294 iter 40 value 84.787984 iter 50 value 83.348777 iter 60 value 82.956347 iter 70 value 82.933957 iter 80 value 82.175300 iter 90 value 81.230948 iter 100 value 80.430894 final value 80.430894 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 109.261804 iter 10 value 94.485804 iter 20 value 94.484226 iter 30 value 91.187364 iter 40 value 91.182999 iter 50 value 85.005473 iter 60 value 83.213903 iter 70 value 82.599169 iter 80 value 82.208626 iter 90 value 81.590640 iter 100 value 81.567196 final value 81.567196 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.565659 final value 94.485879 converged Fitting Repeat 3 # weights: 103 initial value 100.723031 final value 94.485888 converged Fitting Repeat 4 # weights: 103 initial value 100.842052 final value 94.485718 converged Fitting Repeat 5 # weights: 103 initial value 95.171085 final value 94.485820 converged Fitting Repeat 1 # weights: 305 initial value 96.003348 iter 10 value 94.488735 iter 20 value 94.484357 iter 30 value 88.953230 iter 40 value 86.390574 iter 50 value 86.142082 iter 60 value 85.810790 iter 70 value 85.808185 final value 85.808151 converged Fitting Repeat 2 # weights: 305 initial value 103.221320 iter 10 value 94.471410 iter 20 value 94.198213 iter 30 value 88.516068 iter 40 value 87.155859 iter 50 value 87.116713 iter 60 value 87.115092 iter 70 value 86.965481 iter 80 value 86.135121 iter 90 value 86.130519 iter 100 value 86.127980 final value 86.127980 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.523058 iter 10 value 94.472089 iter 20 value 94.423256 final value 92.615006 converged Fitting Repeat 4 # weights: 305 initial value 98.461637 iter 10 value 94.492643 iter 20 value 94.464525 iter 30 value 91.020020 iter 40 value 90.971913 iter 50 value 90.963534 iter 60 value 86.479770 iter 70 value 84.181788 iter 80 value 83.994044 iter 90 value 83.981377 iter 100 value 83.303870 final value 83.303870 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 98.448633 iter 10 value 94.471907 iter 20 value 93.162555 iter 30 value 91.183710 iter 40 value 91.181866 iter 50 value 90.797929 iter 60 value 81.395258 iter 70 value 80.503721 iter 80 value 80.256950 iter 90 value 79.680143 iter 100 value 79.494259 final value 79.494259 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.944630 iter 10 value 94.474749 iter 20 value 91.400459 iter 30 value 85.990470 iter 40 value 85.965708 final value 85.965623 converged Fitting Repeat 2 # weights: 507 initial value 112.142790 iter 10 value 94.439776 iter 20 value 94.436360 iter 30 value 86.295669 iter 40 value 83.633275 iter 50 value 83.506572 iter 60 value 83.373433 iter 70 value 83.348204 final value 83.347988 converged Fitting Repeat 3 # weights: 507 initial value 104.550296 iter 10 value 94.491347 iter 20 value 94.250746 iter 30 value 92.136533 iter 40 value 84.791749 iter 50 value 84.198636 iter 60 value 84.198294 iter 70 value 84.159717 iter 80 value 83.717658 iter 90 value 83.032263 iter 100 value 80.843484 final value 80.843484 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.696460 iter 10 value 92.617258 iter 20 value 92.609873 iter 30 value 90.748076 iter 40 value 84.527055 iter 50 value 82.665046 iter 60 value 82.336007 iter 70 value 79.597179 iter 80 value 79.467304 iter 90 value 79.298045 iter 100 value 79.214178 final value 79.214178 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.683581 iter 10 value 94.451001 iter 20 value 94.437265 final value 94.428679 converged Fitting Repeat 1 # weights: 103 initial value 104.119975 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.128393 final value 94.448052 converged Fitting Repeat 3 # weights: 103 initial value 97.935091 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.981078 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.771040 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.281186 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.328758 iter 10 value 84.675887 final value 83.509340 converged Fitting Repeat 3 # weights: 305 initial value 100.360936 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 109.968711 iter 10 value 94.218811 final value 93.864373 converged Fitting Repeat 5 # weights: 305 initial value 111.025298 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 129.037982 iter 10 value 94.277902 final value 94.229692 converged Fitting Repeat 2 # weights: 507 initial value 107.091093 iter 10 value 94.112923 iter 20 value 94.070346 final value 94.066446 converged Fitting Repeat 3 # weights: 507 initial value 96.981775 iter 10 value 91.225177 iter 20 value 83.004963 iter 30 value 82.634060 iter 40 value 82.426323 final value 82.425399 converged Fitting Repeat 4 # weights: 507 initial value 130.029089 iter 10 value 94.029675 final value 94.029451 converged Fitting Repeat 5 # weights: 507 initial value 95.184571 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 97.118647 iter 10 value 94.486890 iter 20 value 94.292028 iter 30 value 93.970066 iter 40 value 93.961310 iter 50 value 93.961130 iter 60 value 93.957032 iter 70 value 92.307981 iter 80 value 84.034842 iter 90 value 83.590620 iter 100 value 83.506767 final value 83.506767 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.386220 iter 10 value 94.464240 iter 20 value 93.442309 iter 30 value 86.300635 iter 40 value 84.004929 iter 50 value 83.828357 iter 60 value 83.511175 iter 70 value 82.729130 iter 80 value 82.723568 final value 82.723564 converged Fitting Repeat 3 # weights: 103 initial value 104.840055 iter 10 value 94.486817 iter 20 value 94.053202 iter 30 value 86.725187 iter 40 value 84.954215 iter 50 value 84.435451 iter 60 value 81.951819 iter 70 value 81.249439 iter 80 value 81.006329 iter 90 value 80.958515 iter 100 value 80.893365 final value 80.893365 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.455054 iter 10 value 94.236567 iter 20 value 93.710050 iter 30 value 89.779848 iter 40 value 86.112053 iter 50 value 83.310397 iter 60 value 82.688091 iter 70 value 81.858847 iter 80 value 81.551876 iter 90 value 81.517525 iter 100 value 81.317617 final value 81.317617 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.714912 iter 10 value 94.486759 iter 20 value 94.353993 iter 30 value 87.840701 iter 40 value 85.898898 iter 50 value 83.594134 iter 60 value 82.818236 iter 70 value 82.026170 iter 80 value 81.516155 iter 90 value 80.866428 final value 80.855876 converged Fitting Repeat 1 # weights: 305 initial value 107.835179 iter 10 value 94.492996 iter 20 value 88.798346 iter 30 value 84.073254 iter 40 value 83.995094 iter 50 value 82.629247 iter 60 value 82.402065 iter 70 value 82.246338 iter 80 value 81.931092 iter 90 value 80.535725 iter 100 value 80.127006 final value 80.127006 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.747674 iter 10 value 94.491865 iter 20 value 94.457511 iter 30 value 93.726135 iter 40 value 86.532782 iter 50 value 85.630794 iter 60 value 84.681343 iter 70 value 84.075909 iter 80 value 83.936587 iter 90 value 83.897478 iter 100 value 83.798894 final value 83.798894 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.790510 iter 10 value 91.157993 iter 20 value 84.084321 iter 30 value 83.445158 iter 40 value 83.261838 iter 50 value 82.739806 iter 60 value 81.234376 iter 70 value 80.529566 iter 80 value 79.800294 iter 90 value 79.636231 iter 100 value 79.594485 final value 79.594485 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.213559 iter 10 value 94.423166 iter 20 value 93.822564 iter 30 value 90.689310 iter 40 value 86.360800 iter 50 value 85.753220 iter 60 value 84.678158 iter 70 value 84.330604 iter 80 value 83.951804 iter 90 value 82.813986 iter 100 value 81.624956 final value 81.624956 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.502159 iter 10 value 94.351530 iter 20 value 84.586628 iter 30 value 83.426899 iter 40 value 80.960533 iter 50 value 80.720783 iter 60 value 80.418438 iter 70 value 80.032089 iter 80 value 79.665724 iter 90 value 79.574975 iter 100 value 79.559284 final value 79.559284 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.640875 iter 10 value 95.193343 iter 20 value 94.350048 iter 30 value 86.196893 iter 40 value 85.212622 iter 50 value 84.599997 iter 60 value 83.729892 iter 70 value 83.120375 iter 80 value 81.128221 iter 90 value 80.784049 iter 100 value 80.165473 final value 80.165473 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.182523 iter 10 value 94.318956 iter 20 value 87.322503 iter 30 value 83.119782 iter 40 value 82.327621 iter 50 value 81.237505 iter 60 value 80.621817 iter 70 value 80.496236 iter 80 value 80.071591 iter 90 value 79.875145 iter 100 value 79.831088 final value 79.831088 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.197997 iter 10 value 97.453094 iter 20 value 92.031030 iter 30 value 91.543456 iter 40 value 90.712130 iter 50 value 90.478003 iter 60 value 88.847280 iter 70 value 86.410937 iter 80 value 85.494996 iter 90 value 83.073544 iter 100 value 82.124015 final value 82.124015 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.106920 iter 10 value 94.749000 iter 20 value 93.998822 iter 30 value 90.979328 iter 40 value 88.830166 iter 50 value 87.366231 iter 60 value 86.882146 iter 70 value 85.524478 iter 80 value 82.814813 iter 90 value 82.159989 iter 100 value 81.412711 final value 81.412711 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.754613 iter 10 value 95.277716 iter 20 value 94.149186 iter 30 value 84.038201 iter 40 value 83.728592 iter 50 value 83.011360 iter 60 value 82.277113 iter 70 value 80.671338 iter 80 value 79.501262 iter 90 value 79.303562 iter 100 value 79.215366 final value 79.215366 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.463378 final value 94.485899 converged Fitting Repeat 2 # weights: 103 initial value 98.706179 final value 94.486011 converged Fitting Repeat 3 # weights: 103 initial value 98.184733 final value 94.486122 converged Fitting Repeat 4 # weights: 103 initial value 107.890399 iter 10 value 92.938948 iter 20 value 92.768667 final value 92.766877 converged Fitting Repeat 5 # weights: 103 initial value 99.199110 iter 10 value 94.486038 iter 20 value 94.484228 final value 94.484213 converged Fitting Repeat 1 # weights: 305 initial value 98.640601 iter 10 value 94.280305 iter 20 value 94.275641 final value 94.275505 converged Fitting Repeat 2 # weights: 305 initial value 108.677297 iter 10 value 94.489947 iter 20 value 94.452173 iter 30 value 92.914856 iter 40 value 91.795301 iter 50 value 91.702844 final value 91.702601 converged Fitting Repeat 3 # weights: 305 initial value 103.887885 iter 10 value 94.489235 iter 20 value 93.868053 iter 30 value 91.965834 iter 40 value 91.941718 iter 50 value 82.870290 final value 82.762922 converged Fitting Repeat 4 # weights: 305 initial value 110.069249 iter 10 value 94.327520 iter 20 value 94.319918 iter 30 value 93.787866 iter 40 value 93.783945 iter 50 value 86.192321 iter 60 value 85.678841 iter 70 value 85.649780 iter 80 value 84.436242 iter 90 value 83.708684 iter 100 value 83.690636 final value 83.690636 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.752553 iter 10 value 93.946068 iter 20 value 93.928761 iter 30 value 93.867621 iter 40 value 93.864711 iter 40 value 93.864710 iter 40 value 93.864710 final value 93.864710 converged Fitting Repeat 1 # weights: 507 initial value 96.938941 iter 10 value 94.491489 iter 20 value 94.472132 iter 30 value 84.006954 iter 40 value 83.431020 iter 50 value 82.426897 iter 60 value 81.952064 iter 70 value 81.947029 iter 80 value 81.275290 iter 90 value 79.800619 iter 100 value 79.659570 final value 79.659570 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.942271 iter 10 value 94.456412 iter 20 value 85.125747 iter 30 value 82.838874 iter 40 value 81.791062 iter 50 value 81.780279 iter 60 value 81.596165 iter 70 value 81.595171 iter 80 value 81.592809 final value 81.591085 converged Fitting Repeat 3 # weights: 507 initial value 124.821925 iter 10 value 94.283952 iter 20 value 94.269901 iter 30 value 89.208832 iter 40 value 83.510365 iter 50 value 82.445997 final value 82.443395 converged Fitting Repeat 4 # weights: 507 initial value 105.876598 iter 10 value 94.492028 iter 20 value 94.470096 iter 30 value 83.171494 iter 40 value 82.362538 iter 50 value 82.338824 iter 60 value 82.248593 iter 70 value 82.132855 iter 80 value 81.893293 iter 90 value 80.217713 iter 100 value 78.145916 final value 78.145916 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.960225 iter 10 value 94.283698 iter 20 value 93.862437 iter 30 value 84.305348 iter 40 value 83.220054 iter 50 value 83.162979 iter 60 value 82.783161 iter 70 value 82.448658 iter 80 value 82.427022 final value 82.426973 converged Fitting Repeat 1 # weights: 103 initial value 99.314400 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.305938 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.230115 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.165387 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.433996 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.205344 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.549334 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 125.352763 final value 94.035088 converged Fitting Repeat 4 # weights: 305 initial value 97.111116 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.565462 final value 94.032967 converged Fitting Repeat 1 # weights: 507 initial value 111.375627 iter 10 value 94.034835 final value 94.032967 converged Fitting Repeat 2 # weights: 507 initial value 95.526525 iter 10 value 93.330419 final value 93.330380 converged Fitting Repeat 3 # weights: 507 initial value 111.486477 final value 94.035088 converged Fitting Repeat 4 # weights: 507 initial value 123.947904 final value 93.851170 converged Fitting Repeat 5 # weights: 507 initial value 105.820002 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.313976 iter 10 value 94.048286 iter 20 value 91.885962 iter 30 value 87.789403 iter 40 value 85.809005 iter 50 value 85.226929 iter 60 value 84.936481 iter 60 value 84.936480 final value 84.936480 converged Fitting Repeat 2 # weights: 103 initial value 106.575308 iter 10 value 94.051257 iter 20 value 92.944727 iter 30 value 85.762510 iter 40 value 84.694037 iter 50 value 84.602759 iter 60 value 84.553510 iter 70 value 83.764688 iter 80 value 82.993072 iter 90 value 82.707397 iter 100 value 82.503720 final value 82.503720 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.118030 iter 10 value 93.871831 iter 20 value 86.253628 iter 30 value 84.754567 iter 40 value 84.586942 iter 50 value 84.543435 iter 60 value 84.477855 iter 70 value 82.627876 iter 80 value 82.477954 iter 90 value 82.477200 iter 100 value 82.469568 final value 82.469568 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.197689 iter 10 value 94.056857 iter 20 value 91.811176 iter 30 value 87.195423 iter 40 value 86.911433 iter 50 value 85.363453 iter 60 value 84.961501 iter 70 value 84.800918 iter 80 value 84.781749 final value 84.778831 converged Fitting Repeat 5 # weights: 103 initial value 98.052860 iter 10 value 94.056734 iter 20 value 89.577373 iter 30 value 85.929948 iter 40 value 84.957098 iter 50 value 84.543955 iter 60 value 83.152540 iter 70 value 82.748150 iter 80 value 82.482846 iter 90 value 82.478566 iter 100 value 82.473763 final value 82.473763 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 115.745825 iter 10 value 94.226608 iter 20 value 94.024554 iter 30 value 91.524547 iter 40 value 89.964916 iter 50 value 89.293448 iter 60 value 84.769410 iter 70 value 83.564671 iter 80 value 82.388752 iter 90 value 81.893495 iter 100 value 81.520423 final value 81.520423 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.258864 iter 10 value 90.500492 iter 20 value 89.021549 iter 30 value 85.741752 iter 40 value 84.698683 iter 50 value 83.138146 iter 60 value 81.656709 iter 70 value 81.413106 iter 80 value 81.207113 iter 90 value 81.179978 iter 100 value 81.179367 final value 81.179367 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.610798 iter 10 value 94.050715 iter 20 value 92.926618 iter 30 value 88.063626 iter 40 value 86.588286 iter 50 value 85.896827 iter 60 value 85.012654 iter 70 value 84.182316 iter 80 value 83.239790 iter 90 value 82.878771 iter 100 value 82.425374 final value 82.425374 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.605246 iter 10 value 93.313012 iter 20 value 88.384012 iter 30 value 85.998245 iter 40 value 84.673689 iter 50 value 84.434315 iter 60 value 84.234307 iter 70 value 83.017451 iter 80 value 81.193425 iter 90 value 80.877276 iter 100 value 80.676372 final value 80.676372 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.604415 iter 10 value 94.074448 iter 20 value 90.018298 iter 30 value 88.440406 iter 40 value 86.781584 iter 50 value 85.481605 iter 60 value 85.176854 iter 70 value 85.014509 iter 80 value 84.679320 iter 90 value 84.535496 iter 100 value 84.443786 final value 84.443786 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.287455 iter 10 value 93.987937 iter 20 value 92.163713 iter 30 value 87.259040 iter 40 value 84.986359 iter 50 value 84.059382 iter 60 value 82.774691 iter 70 value 81.667996 iter 80 value 81.442122 iter 90 value 81.252991 iter 100 value 80.636139 final value 80.636139 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.455469 iter 10 value 93.278268 iter 20 value 89.242260 iter 30 value 85.921217 iter 40 value 84.490564 iter 50 value 83.231998 iter 60 value 81.402848 iter 70 value 80.945466 iter 80 value 80.772501 iter 90 value 80.725389 iter 100 value 80.499321 final value 80.499321 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.807653 iter 10 value 94.331214 iter 20 value 93.971424 iter 30 value 87.138058 iter 40 value 86.681850 iter 50 value 86.323365 iter 60 value 85.643956 iter 70 value 85.047929 iter 80 value 83.844501 iter 90 value 82.872410 iter 100 value 81.763283 final value 81.763283 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.835374 iter 10 value 94.240613 iter 20 value 92.763897 iter 30 value 92.313584 iter 40 value 92.237001 iter 50 value 90.406480 iter 60 value 83.806965 iter 70 value 82.599297 iter 80 value 82.115750 iter 90 value 82.022565 iter 100 value 81.837486 final value 81.837486 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.811707 iter 10 value 94.096176 iter 20 value 88.800172 iter 30 value 86.374401 iter 40 value 86.132865 iter 50 value 85.999211 iter 60 value 85.712014 iter 70 value 85.583656 iter 80 value 85.306424 iter 90 value 83.267961 iter 100 value 82.265563 final value 82.265563 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 111.259504 iter 10 value 94.054774 iter 20 value 94.052938 iter 30 value 93.992340 iter 40 value 92.293306 iter 50 value 92.278386 iter 60 value 92.171552 iter 70 value 92.167794 iter 80 value 89.498674 iter 90 value 87.427898 iter 100 value 86.927704 final value 86.927704 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 94.279788 final value 94.054506 converged Fitting Repeat 3 # weights: 103 initial value 97.703926 final value 94.059875 converged Fitting Repeat 4 # weights: 103 initial value 99.618285 final value 94.054169 converged Fitting Repeat 5 # weights: 103 initial value 101.397364 final value 94.054803 converged Fitting Repeat 1 # weights: 305 initial value 97.152838 iter 10 value 87.563933 iter 20 value 86.930445 iter 30 value 86.824998 iter 40 value 86.824448 iter 50 value 86.253355 iter 60 value 85.556398 iter 70 value 83.988192 iter 80 value 83.968248 iter 90 value 83.968176 final value 83.967085 converged Fitting Repeat 2 # weights: 305 initial value 95.890014 iter 10 value 93.864930 iter 20 value 92.216882 iter 30 value 92.214626 iter 40 value 92.212585 iter 40 value 92.212585 iter 40 value 92.212585 final value 92.212585 converged Fitting Repeat 3 # weights: 305 initial value 94.463965 iter 10 value 94.051619 iter 20 value 91.261742 final value 89.802918 converged Fitting Repeat 4 # weights: 305 initial value 96.406916 iter 10 value 94.038024 iter 20 value 94.034093 iter 30 value 94.029776 iter 40 value 91.265101 iter 50 value 86.922175 iter 60 value 86.213338 final value 86.210255 converged Fitting Repeat 5 # weights: 305 initial value 112.036334 iter 10 value 94.057436 iter 20 value 94.052917 iter 30 value 88.793443 iter 40 value 84.257917 final value 84.254735 converged Fitting Repeat 1 # weights: 507 initial value 99.936958 iter 10 value 93.875721 iter 20 value 93.556502 iter 30 value 88.397041 iter 40 value 85.731099 iter 50 value 85.497702 iter 60 value 83.624442 iter 70 value 83.393808 iter 80 value 83.291781 iter 90 value 82.569976 iter 100 value 81.880818 final value 81.880818 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.157766 iter 10 value 94.060601 iter 20 value 89.673212 iter 30 value 87.590977 iter 40 value 87.560809 final value 87.560743 converged Fitting Repeat 3 # weights: 507 initial value 97.451588 iter 10 value 94.060432 iter 20 value 92.067585 iter 30 value 90.750955 iter 40 value 90.727307 iter 50 value 90.727165 iter 60 value 90.727093 iter 70 value 90.726471 final value 90.726464 converged Fitting Repeat 4 # weights: 507 initial value 94.389893 iter 10 value 94.050720 iter 20 value 94.044466 final value 94.043748 converged Fitting Repeat 5 # weights: 507 initial value 98.237915 iter 10 value 94.060972 iter 20 value 94.032949 iter 30 value 92.520278 iter 40 value 92.480947 iter 50 value 90.559329 iter 60 value 88.399677 iter 70 value 88.095190 iter 80 value 85.973116 iter 90 value 85.876405 iter 100 value 85.868308 final value 85.868308 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.951853 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.266536 final value 93.836066 converged Fitting Repeat 3 # weights: 103 initial value 98.490017 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.770475 final value 93.604520 converged Fitting Repeat 5 # weights: 103 initial value 105.203437 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.300676 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 115.929156 final value 94.025289 converged Fitting Repeat 3 # weights: 305 initial value 96.447895 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 120.858532 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 95.511315 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 94.585009 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 99.944757 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 127.289784 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 127.340553 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 103.759569 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.676098 iter 10 value 94.054927 iter 20 value 87.665496 iter 30 value 86.894173 iter 40 value 86.776143 iter 50 value 86.382230 iter 60 value 86.343879 iter 60 value 86.343878 iter 60 value 86.343878 final value 86.343878 converged Fitting Repeat 2 # weights: 103 initial value 99.847519 iter 10 value 94.049606 iter 20 value 93.892616 iter 30 value 93.890068 iter 40 value 92.264329 iter 50 value 89.431417 iter 60 value 87.700823 iter 70 value 87.161511 iter 80 value 86.931766 iter 90 value 86.527866 iter 100 value 86.268178 final value 86.268178 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.599277 iter 10 value 94.067509 iter 20 value 88.189350 iter 30 value 87.381236 iter 40 value 87.030948 iter 50 value 86.438840 iter 60 value 86.382664 iter 70 value 86.352311 final value 86.343878 converged Fitting Repeat 4 # weights: 103 initial value 102.921534 iter 10 value 94.004397 iter 20 value 91.734351 iter 30 value 90.241688 iter 40 value 88.851313 iter 50 value 86.342072 iter 60 value 85.860620 iter 70 value 85.741897 iter 80 value 85.394995 iter 90 value 84.919238 iter 100 value 83.585982 final value 83.585982 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.868087 iter 10 value 93.810978 iter 20 value 88.030157 iter 30 value 87.160225 iter 40 value 86.608624 iter 50 value 86.150414 iter 60 value 85.730869 iter 70 value 85.685450 final value 85.685357 converged Fitting Repeat 1 # weights: 305 initial value 128.267620 iter 10 value 93.966009 iter 20 value 89.443101 iter 30 value 88.489180 iter 40 value 87.207724 iter 50 value 86.898843 iter 60 value 82.990105 iter 70 value 82.591667 iter 80 value 82.414712 iter 90 value 82.078189 iter 100 value 81.795385 final value 81.795385 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.710597 iter 10 value 94.055508 iter 20 value 93.238928 iter 30 value 88.444800 iter 40 value 87.510772 iter 50 value 86.005665 iter 60 value 85.301381 iter 70 value 83.419680 iter 80 value 82.707198 iter 90 value 82.512342 iter 100 value 82.297299 final value 82.297299 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.369251 iter 10 value 94.094225 iter 20 value 93.654408 iter 30 value 90.977178 iter 40 value 87.313773 iter 50 value 86.622577 iter 60 value 85.799653 iter 70 value 84.569157 iter 80 value 83.227681 iter 90 value 82.925786 iter 100 value 82.894462 final value 82.894462 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.463124 iter 10 value 93.946794 iter 20 value 89.358142 iter 30 value 88.294650 iter 40 value 88.016243 iter 50 value 87.061236 iter 60 value 85.639353 iter 70 value 85.408897 iter 80 value 83.493663 iter 90 value 82.793325 iter 100 value 82.505742 final value 82.505742 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.487758 iter 10 value 92.799069 iter 20 value 89.358648 iter 30 value 87.024261 iter 40 value 86.523337 iter 50 value 86.428850 iter 60 value 85.475307 iter 70 value 83.259082 iter 80 value 82.767317 iter 90 value 82.636768 iter 100 value 82.301828 final value 82.301828 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.888439 iter 10 value 94.396149 iter 20 value 93.438452 iter 30 value 87.597833 iter 40 value 86.893141 iter 50 value 86.550032 iter 60 value 86.246349 iter 70 value 85.808825 iter 80 value 84.744844 iter 90 value 84.491085 iter 100 value 83.477646 final value 83.477646 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.634340 iter 10 value 93.819512 iter 20 value 88.116500 iter 30 value 86.887878 iter 40 value 86.622562 iter 50 value 86.376497 iter 60 value 86.176324 iter 70 value 85.430077 iter 80 value 84.158850 iter 90 value 83.636113 iter 100 value 83.148348 final value 83.148348 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.223879 iter 10 value 93.775627 iter 20 value 90.818283 iter 30 value 90.190435 iter 40 value 88.428769 iter 50 value 84.651844 iter 60 value 83.130264 iter 70 value 82.586520 iter 80 value 82.169305 iter 90 value 82.105209 iter 100 value 82.002578 final value 82.002578 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.206744 iter 10 value 94.381284 iter 20 value 94.149406 iter 30 value 93.984286 iter 40 value 93.519096 iter 50 value 91.476488 iter 60 value 87.349023 iter 70 value 86.742461 iter 80 value 86.336373 iter 90 value 85.691458 iter 100 value 85.137757 final value 85.137757 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.542436 iter 10 value 94.033867 iter 20 value 93.664418 iter 30 value 88.604570 iter 40 value 87.061253 iter 50 value 85.752319 iter 60 value 83.439809 iter 70 value 83.062907 iter 80 value 82.980932 iter 90 value 82.829364 iter 100 value 82.640366 final value 82.640366 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.558689 final value 94.054522 converged Fitting Repeat 2 # weights: 103 initial value 95.033335 final value 94.054736 converged Fitting Repeat 3 # weights: 103 initial value 94.817036 final value 94.054631 converged Fitting Repeat 4 # weights: 103 initial value 103.171464 final value 94.054633 converged Fitting Repeat 5 # weights: 103 initial value 97.568951 iter 10 value 93.837849 iter 20 value 93.823605 iter 30 value 93.556897 iter 40 value 93.503168 iter 50 value 89.430486 iter 60 value 86.287720 iter 70 value 85.577462 iter 80 value 83.972409 iter 90 value 83.960954 final value 83.960925 converged Fitting Repeat 1 # weights: 305 initial value 103.399977 iter 10 value 93.805870 iter 20 value 93.803688 iter 30 value 93.724656 iter 40 value 93.506620 iter 50 value 93.504002 final value 93.503976 converged Fitting Repeat 2 # weights: 305 initial value 94.184243 iter 10 value 94.057992 iter 20 value 93.961652 iter 30 value 86.955466 iter 40 value 86.914186 iter 50 value 86.630839 iter 60 value 86.134647 final value 86.134642 converged Fitting Repeat 3 # weights: 305 initial value 96.351478 iter 10 value 93.841372 iter 20 value 93.836374 final value 93.836242 converged Fitting Repeat 4 # weights: 305 initial value 102.676813 iter 10 value 94.057715 iter 20 value 94.038064 iter 30 value 93.706076 final value 93.705042 converged Fitting Repeat 5 # weights: 305 initial value 110.553747 iter 10 value 94.058236 iter 20 value 94.020146 iter 30 value 88.439581 iter 40 value 86.710737 iter 50 value 86.669795 final value 86.669760 converged Fitting Repeat 1 # weights: 507 initial value 99.341057 iter 10 value 94.060634 iter 20 value 94.053516 iter 30 value 93.051128 iter 40 value 90.054794 iter 50 value 88.119308 iter 60 value 87.917567 iter 70 value 87.826802 final value 87.823498 converged Fitting Repeat 2 # weights: 507 initial value 96.782939 iter 10 value 93.810375 iter 20 value 93.806220 iter 30 value 93.662095 iter 40 value 87.240996 final value 87.056904 converged Fitting Repeat 3 # weights: 507 initial value 117.550912 iter 10 value 94.061602 iter 20 value 93.902180 iter 30 value 87.485815 iter 40 value 85.700908 iter 50 value 85.564565 iter 60 value 85.432739 iter 70 value 85.415210 iter 80 value 85.413723 iter 90 value 85.412971 final value 85.412915 converged Fitting Repeat 4 # weights: 507 initial value 103.284783 iter 10 value 93.715027 iter 20 value 93.713762 iter 30 value 93.642946 iter 40 value 93.642082 iter 50 value 88.578981 iter 60 value 87.863575 iter 70 value 87.862934 iter 80 value 87.862567 iter 80 value 87.862566 iter 80 value 87.862566 final value 87.862566 converged Fitting Repeat 5 # weights: 507 initial value 107.000655 iter 10 value 93.844333 iter 20 value 93.837417 iter 30 value 93.837249 iter 40 value 93.829958 iter 50 value 93.486395 iter 60 value 89.342646 iter 70 value 88.861337 iter 80 value 87.268048 final value 87.267298 converged Fitting Repeat 1 # weights: 103 initial value 94.684443 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.699022 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 110.323049 iter 10 value 93.943272 final value 93.943263 converged Fitting Repeat 4 # weights: 103 initial value 96.935141 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.371333 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.138882 final value 94.088889 converged Fitting Repeat 2 # weights: 305 initial value 99.981261 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 99.654038 final value 94.088889 converged Fitting Repeat 4 # weights: 305 initial value 102.340704 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 109.125885 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 120.209097 iter 10 value 94.470585 iter 20 value 91.006929 iter 30 value 86.139246 iter 40 value 86.130630 iter 50 value 86.050811 iter 60 value 85.011540 iter 70 value 84.717861 iter 80 value 84.694109 iter 90 value 84.693094 final value 84.693015 converged Fitting Repeat 2 # weights: 507 initial value 101.366844 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 106.425459 iter 10 value 94.377544 final value 94.275362 converged Fitting Repeat 4 # weights: 507 initial value 103.199519 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 110.377161 iter 10 value 93.841188 iter 20 value 93.558308 final value 93.558233 converged Fitting Repeat 1 # weights: 103 initial value 105.305654 iter 10 value 97.816142 iter 20 value 94.488440 iter 30 value 94.236938 iter 40 value 94.014058 iter 50 value 93.785805 iter 60 value 93.475610 iter 70 value 93.468571 iter 80 value 93.071312 iter 90 value 88.143896 iter 100 value 82.330509 final value 82.330509 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.352903 iter 10 value 94.474467 iter 20 value 92.430946 iter 30 value 88.482841 iter 40 value 84.148212 iter 50 value 83.546717 iter 60 value 82.803980 iter 70 value 82.740419 iter 70 value 82.740419 iter 70 value 82.740419 final value 82.740419 converged Fitting Repeat 3 # weights: 103 initial value 99.346380 iter 10 value 94.483689 iter 20 value 88.628891 iter 30 value 85.190771 iter 40 value 83.713386 iter 50 value 83.682787 iter 60 value 83.226176 iter 70 value 83.178622 final value 83.178330 converged Fitting Repeat 4 # weights: 103 initial value 102.442627 iter 10 value 94.174951 iter 20 value 94.021925 iter 30 value 93.925859 iter 40 value 84.348940 iter 50 value 83.337542 iter 60 value 83.237078 iter 70 value 82.805040 iter 80 value 82.740459 final value 82.740419 converged Fitting Repeat 5 # weights: 103 initial value 102.453928 iter 10 value 94.487152 iter 20 value 87.234133 iter 30 value 84.633083 iter 40 value 84.029166 iter 50 value 83.352335 iter 60 value 83.186095 iter 70 value 83.178330 iter 70 value 83.178330 iter 70 value 83.178330 final value 83.178330 converged Fitting Repeat 1 # weights: 305 initial value 101.877274 iter 10 value 94.797480 iter 20 value 86.799263 iter 30 value 83.879774 iter 40 value 81.398511 iter 50 value 80.545984 iter 60 value 80.475519 iter 70 value 79.930431 iter 80 value 79.638053 iter 90 value 79.519545 iter 100 value 79.080943 final value 79.080943 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 116.044880 iter 10 value 94.317442 iter 20 value 89.707074 iter 30 value 84.333270 iter 40 value 81.764212 iter 50 value 81.250127 iter 60 value 81.015865 iter 70 value 80.810892 iter 80 value 80.522074 iter 90 value 80.317373 iter 100 value 80.313438 final value 80.313438 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.651655 iter 10 value 94.267838 iter 20 value 89.760055 iter 30 value 84.405408 iter 40 value 83.224993 iter 50 value 82.221959 iter 60 value 81.344357 iter 70 value 81.151403 iter 80 value 80.336909 iter 90 value 79.999299 iter 100 value 79.549269 final value 79.549269 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.581264 iter 10 value 94.601848 iter 20 value 91.182348 iter 30 value 86.161525 iter 40 value 85.749480 iter 50 value 83.613822 iter 60 value 82.292252 iter 70 value 81.788869 iter 80 value 81.267421 iter 90 value 81.190281 iter 100 value 81.102239 final value 81.102239 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.930085 iter 10 value 94.517111 iter 20 value 86.837415 iter 30 value 86.208378 iter 40 value 85.969755 iter 50 value 85.153896 iter 60 value 80.947922 iter 70 value 79.038207 iter 80 value 78.679119 iter 90 value 78.541556 iter 100 value 78.404681 final value 78.404681 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.296619 iter 10 value 94.276510 iter 20 value 87.925999 iter 30 value 84.306381 iter 40 value 83.757175 iter 50 value 82.951859 iter 60 value 82.804457 iter 70 value 80.683299 iter 80 value 80.056451 iter 90 value 79.966321 iter 100 value 79.780997 final value 79.780997 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.410206 iter 10 value 94.461265 iter 20 value 93.165049 iter 30 value 87.220980 iter 40 value 84.316584 iter 50 value 80.929822 iter 60 value 79.809643 iter 70 value 79.510314 iter 80 value 78.885527 iter 90 value 78.631099 iter 100 value 78.547662 final value 78.547662 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.205622 iter 10 value 94.577751 iter 20 value 91.138033 iter 30 value 84.421182 iter 40 value 81.194339 iter 50 value 80.119058 iter 60 value 79.005699 iter 70 value 78.942535 iter 80 value 78.937921 iter 90 value 78.906026 iter 100 value 78.725710 final value 78.725710 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.685605 iter 10 value 96.732194 iter 20 value 95.382036 iter 30 value 91.164909 iter 40 value 87.447815 iter 50 value 86.984757 iter 60 value 86.514731 iter 70 value 86.272444 iter 80 value 84.006632 iter 90 value 82.090939 iter 100 value 81.409788 final value 81.409788 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.032214 iter 10 value 94.457703 iter 20 value 88.383957 iter 30 value 87.430447 iter 40 value 83.846073 iter 50 value 81.271443 iter 60 value 79.789451 iter 70 value 78.924703 iter 80 value 78.691930 iter 90 value 78.661942 iter 100 value 78.651469 final value 78.651469 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.926133 final value 94.486025 converged Fitting Repeat 2 # weights: 103 initial value 111.050765 final value 94.485697 converged Fitting Repeat 3 # weights: 103 initial value 98.648915 iter 10 value 94.277221 iter 20 value 94.275791 iter 30 value 93.881343 iter 40 value 93.722511 iter 50 value 93.378430 iter 60 value 93.368897 iter 60 value 93.368897 final value 93.368897 converged Fitting Repeat 4 # weights: 103 initial value 102.246730 final value 94.486068 converged Fitting Repeat 5 # weights: 103 initial value 96.167544 final value 94.485829 converged Fitting Repeat 1 # weights: 305 initial value 95.536240 iter 10 value 94.488967 iter 20 value 94.481426 iter 30 value 91.405227 iter 40 value 89.821494 iter 50 value 88.871761 iter 60 value 88.866009 iter 70 value 88.865887 iter 80 value 88.865730 iter 80 value 88.865729 final value 88.865729 converged Fitting Repeat 2 # weights: 305 initial value 113.799932 iter 10 value 92.725841 iter 20 value 89.335695 final value 89.282411 converged Fitting Repeat 3 # weights: 305 initial value 117.600080 iter 10 value 94.280855 iter 20 value 94.276398 iter 30 value 94.271608 iter 40 value 90.127171 iter 50 value 85.172730 iter 60 value 80.622989 iter 70 value 80.407808 final value 80.401027 converged Fitting Repeat 4 # weights: 305 initial value 97.414029 iter 10 value 94.488222 iter 20 value 94.472092 iter 30 value 93.914744 iter 40 value 93.912950 iter 50 value 91.122222 iter 60 value 90.009616 final value 90.009615 converged Fitting Repeat 5 # weights: 305 initial value 96.300521 iter 10 value 93.940076 iter 20 value 93.938705 iter 30 value 93.938167 iter 40 value 93.936078 iter 50 value 93.883647 iter 60 value 93.481505 iter 70 value 89.537126 iter 80 value 87.864717 iter 90 value 86.489640 iter 100 value 86.434906 final value 86.434906 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.707901 iter 10 value 94.492193 iter 20 value 94.483054 iter 30 value 93.909756 iter 40 value 92.661436 iter 50 value 86.947354 iter 60 value 81.179984 iter 70 value 79.685942 iter 80 value 78.909936 final value 78.905862 converged Fitting Repeat 2 # weights: 507 initial value 98.985501 iter 10 value 94.493296 iter 20 value 94.257030 iter 30 value 83.040337 final value 82.998487 converged Fitting Repeat 3 # weights: 507 initial value 106.117732 iter 10 value 94.097363 iter 20 value 88.028830 iter 30 value 83.383696 iter 40 value 82.841942 iter 50 value 82.824883 final value 82.824107 converged Fitting Repeat 4 # weights: 507 initial value 104.648718 iter 10 value 90.773295 iter 20 value 90.157733 iter 30 value 89.748636 iter 40 value 89.231192 iter 50 value 89.225679 iter 60 value 87.302513 iter 70 value 86.302803 iter 80 value 86.295764 final value 86.295733 converged Fitting Repeat 5 # weights: 507 initial value 124.044103 iter 10 value 94.236615 iter 20 value 93.202508 iter 30 value 93.022088 iter 40 value 92.897838 iter 50 value 92.575636 iter 60 value 92.570947 iter 70 value 92.570173 iter 80 value 92.568679 iter 90 value 92.567369 iter 100 value 90.429830 final value 90.429830 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 125.902053 iter 10 value 117.763831 iter 20 value 117.615987 iter 30 value 113.858755 iter 40 value 113.773582 final value 113.773568 converged Fitting Repeat 2 # weights: 305 initial value 129.972029 iter 10 value 117.894846 iter 20 value 117.879009 iter 30 value 108.822025 iter 40 value 107.006816 iter 50 value 107.006705 final value 107.006652 converged Fitting Repeat 3 # weights: 305 initial value 132.262071 iter 10 value 117.895349 iter 20 value 117.758861 iter 30 value 117.316438 iter 40 value 108.015250 iter 50 value 106.030920 iter 60 value 105.925149 final value 105.924254 converged Fitting Repeat 4 # weights: 305 initial value 119.026495 iter 10 value 117.763339 iter 20 value 117.550532 iter 30 value 113.352834 iter 40 value 106.872525 iter 50 value 102.614922 iter 60 value 101.709834 iter 70 value 101.527257 iter 80 value 100.960169 iter 90 value 99.939789 iter 100 value 99.778181 final value 99.778181 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 128.563674 iter 10 value 117.774934 iter 20 value 117.499517 iter 30 value 105.614823 iter 40 value 102.544102 iter 50 value 101.250881 iter 60 value 100.756768 iter 70 value 100.563361 iter 80 value 100.442847 iter 90 value 100.375299 iter 100 value 100.373438 final value 100.373438 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Nov 29 01:26:46 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 36.995 1.203 44.232
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.267 | 0.394 | 32.661 | |
FreqInteractors | 0.194 | 0.012 | 0.206 | |
calculateAAC | 0.032 | 0.003 | 0.035 | |
calculateAutocor | 0.269 | 0.015 | 0.284 | |
calculateCTDC | 0.064 | 0.000 | 0.063 | |
calculateCTDD | 0.469 | 0.000 | 0.468 | |
calculateCTDT | 0.180 | 0.000 | 0.179 | |
calculateCTriad | 0.387 | 0.013 | 0.400 | |
calculateDC | 0.078 | 0.001 | 0.079 | |
calculateF | 0.265 | 0.002 | 0.267 | |
calculateKSAAP | 0.080 | 0.003 | 0.084 | |
calculateQD_Sm | 1.503 | 0.019 | 1.523 | |
calculateTC | 1.335 | 0.032 | 1.368 | |
calculateTC_Sm | 0.265 | 0.002 | 0.267 | |
corr_plot | 31.918 | 0.073 | 31.994 | |
enrichfindP | 0.512 | 0.027 | 8.563 | |
enrichfind_hp | 0.096 | 0.001 | 0.995 | |
enrichplot | 0.302 | 0.002 | 0.304 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.481 | 0.007 | 3.760 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.001 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.001 | 0.001 | |
plotPPI | 0.073 | 0.001 | 0.075 | |
pred_ensembel | 12.342 | 0.160 | 11.250 | |
var_imp | 32.936 | 0.443 | 33.380 | |