Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-16 12:08 -0500 (Thu, 16 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4489 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4387 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | ERROR | skipped | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-14 04:40:06 -0500 (Tue, 14 Jan 2025) |
EndedAt: 2025-01-14 04:49:09 -0500 (Tue, 14 Jan 2025) |
EllapsedTime: 542.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 51.817 2.036 58.303 corr_plot 50.901 1.913 54.660 FSmethod 50.564 1.821 53.831 pred_ensembel 24.962 0.446 23.765 calculateTC 4.605 0.439 5.211 enrichfindP 0.899 0.079 15.392 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.619586 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.293076 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.629497 iter 10 value 94.837972 iter 20 value 92.382284 iter 30 value 92.358052 final value 92.358027 converged Fitting Repeat 4 # weights: 103 initial value 94.291363 final value 94.052911 converged Fitting Repeat 5 # weights: 103 initial value 97.433915 iter 10 value 94.015368 final value 94.015114 converged Fitting Repeat 1 # weights: 305 initial value 94.873133 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 132.817248 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 104.164304 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 98.552930 iter 10 value 91.793244 iter 20 value 85.048562 final value 85.046865 converged Fitting Repeat 5 # weights: 305 initial value 95.976861 iter 10 value 93.755673 iter 20 value 87.056633 iter 30 value 82.913431 iter 40 value 82.863089 iter 50 value 82.862404 iter 50 value 82.862404 iter 50 value 82.862404 final value 82.862404 converged Fitting Repeat 1 # weights: 507 initial value 99.978976 iter 10 value 93.735833 final value 93.735800 converged Fitting Repeat 2 # weights: 507 initial value 120.240853 iter 10 value 93.494554 iter 20 value 82.911315 iter 30 value 82.904446 final value 82.904404 converged Fitting Repeat 3 # weights: 507 initial value 112.898323 iter 10 value 93.925754 iter 20 value 88.317396 iter 30 value 86.837513 iter 40 value 85.665292 final value 85.629610 converged Fitting Repeat 4 # weights: 507 initial value 102.288100 iter 10 value 93.563109 final value 93.501545 converged Fitting Repeat 5 # weights: 507 initial value 118.799655 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 103.667466 iter 10 value 94.057325 iter 20 value 89.714425 iter 30 value 86.147819 iter 40 value 85.477202 iter 50 value 84.632884 final value 84.575622 converged Fitting Repeat 2 # weights: 103 initial value 98.959652 iter 10 value 94.058878 iter 20 value 93.469229 iter 30 value 86.077030 iter 40 value 85.339719 iter 50 value 84.508139 iter 60 value 84.103425 final value 84.101247 converged Fitting Repeat 3 # weights: 103 initial value 103.732531 iter 10 value 94.056816 iter 20 value 94.021037 iter 30 value 93.806757 iter 40 value 93.795732 iter 50 value 93.789275 iter 60 value 87.816386 iter 70 value 85.706508 iter 80 value 85.375574 iter 90 value 85.156628 iter 100 value 84.922601 final value 84.922601 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.496318 iter 10 value 93.995196 iter 20 value 84.569381 iter 30 value 83.147491 iter 40 value 82.962805 iter 50 value 82.201482 iter 60 value 81.952000 iter 70 value 81.859373 iter 80 value 81.680913 iter 90 value 81.564450 iter 100 value 81.502197 final value 81.502197 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.726466 iter 10 value 93.124203 iter 20 value 86.009427 iter 30 value 85.786903 iter 40 value 85.588672 iter 50 value 85.316177 iter 60 value 84.830196 iter 70 value 84.670418 iter 80 value 84.646024 iter 90 value 84.633715 final value 84.630435 converged Fitting Repeat 1 # weights: 305 initial value 113.222616 iter 10 value 96.154697 iter 20 value 94.059310 iter 30 value 93.314660 iter 40 value 86.871908 iter 50 value 83.477952 iter 60 value 82.864952 iter 70 value 82.484328 iter 80 value 81.865305 iter 90 value 81.721049 iter 100 value 81.599146 final value 81.599146 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.062002 iter 10 value 94.112711 iter 20 value 93.993579 iter 30 value 86.534633 iter 40 value 84.806748 iter 50 value 83.308592 iter 60 value 82.578214 iter 70 value 82.431647 iter 80 value 82.366234 iter 90 value 81.656008 iter 100 value 80.810072 final value 80.810072 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 135.253794 iter 10 value 94.104314 iter 20 value 90.757840 iter 30 value 88.999448 iter 40 value 86.589948 iter 50 value 84.713679 iter 60 value 83.513241 iter 70 value 83.074833 iter 80 value 82.506559 iter 90 value 80.731463 iter 100 value 80.590494 final value 80.590494 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.324379 iter 10 value 94.130146 iter 20 value 94.042240 iter 30 value 89.645334 iter 40 value 89.090827 iter 50 value 85.361833 iter 60 value 82.297771 iter 70 value 81.206817 iter 80 value 81.078024 iter 90 value 80.958449 iter 100 value 80.926746 final value 80.926746 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.713848 iter 10 value 94.211835 iter 20 value 90.277618 iter 30 value 89.925429 iter 40 value 88.924034 iter 50 value 86.749111 iter 60 value 85.915255 iter 70 value 84.123429 iter 80 value 82.321399 iter 90 value 80.701051 iter 100 value 80.576098 final value 80.576098 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.221844 iter 10 value 93.758528 iter 20 value 85.621336 iter 30 value 85.076966 iter 40 value 84.354491 iter 50 value 83.605834 iter 60 value 83.057541 iter 70 value 82.822754 iter 80 value 82.091937 iter 90 value 82.018315 iter 100 value 81.816360 final value 81.816360 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.797124 iter 10 value 94.410541 iter 20 value 92.713726 iter 30 value 87.576315 iter 40 value 84.271503 iter 50 value 82.367190 iter 60 value 81.837166 iter 70 value 81.051569 iter 80 value 80.567604 iter 90 value 80.385622 iter 100 value 80.145103 final value 80.145103 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.905453 iter 10 value 93.899826 iter 20 value 85.542634 iter 30 value 83.538449 iter 40 value 83.276847 iter 50 value 83.131428 iter 60 value 83.013849 iter 70 value 82.967091 iter 80 value 82.462364 iter 90 value 81.864965 iter 100 value 81.281307 final value 81.281307 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.088828 iter 10 value 95.768545 iter 20 value 90.112400 iter 30 value 84.976371 iter 40 value 84.511787 iter 50 value 83.638148 iter 60 value 81.629255 iter 70 value 80.937814 iter 80 value 80.655009 iter 90 value 80.460015 iter 100 value 80.285348 final value 80.285348 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.671481 iter 10 value 94.042146 iter 20 value 84.227904 iter 30 value 83.237351 iter 40 value 82.826328 iter 50 value 81.742630 iter 60 value 81.403539 iter 70 value 80.779702 iter 80 value 80.586033 iter 90 value 80.398603 iter 100 value 80.272149 final value 80.272149 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.733459 final value 94.054498 converged Fitting Repeat 2 # weights: 103 initial value 98.300187 final value 94.054454 converged Fitting Repeat 3 # weights: 103 initial value 100.344963 final value 94.034522 converged Fitting Repeat 4 # weights: 103 initial value 101.127349 final value 94.054489 converged Fitting Repeat 5 # weights: 103 initial value 95.585380 final value 94.054586 converged Fitting Repeat 1 # weights: 305 initial value 100.019922 iter 10 value 94.037732 iter 20 value 93.768270 iter 30 value 90.990111 iter 40 value 85.220326 iter 50 value 84.766130 iter 60 value 82.959481 iter 70 value 82.826096 iter 80 value 82.825619 final value 82.825139 converged Fitting Repeat 2 # weights: 305 initial value 109.908232 iter 10 value 94.057728 iter 20 value 94.048040 iter 30 value 88.352136 iter 40 value 87.065584 iter 50 value 87.060845 iter 60 value 85.753726 final value 85.644432 converged Fitting Repeat 3 # weights: 305 initial value 98.171330 iter 10 value 94.057815 iter 20 value 92.466951 iter 30 value 85.598296 iter 40 value 85.502014 iter 50 value 85.501746 iter 50 value 85.501745 iter 50 value 85.501745 final value 85.501745 converged Fitting Repeat 4 # weights: 305 initial value 99.572864 iter 10 value 94.037344 iter 20 value 91.590405 iter 30 value 89.919441 iter 40 value 85.120076 iter 50 value 84.782734 iter 60 value 84.782221 final value 84.782166 converged Fitting Repeat 5 # weights: 305 initial value 97.099494 iter 10 value 94.057561 iter 20 value 94.032151 iter 30 value 86.346128 iter 40 value 83.510754 iter 50 value 82.816304 final value 82.815190 converged Fitting Repeat 1 # weights: 507 initial value 103.280672 iter 10 value 94.061803 iter 20 value 94.042814 iter 30 value 93.849834 iter 40 value 93.691937 final value 93.691814 converged Fitting Repeat 2 # weights: 507 initial value 109.109906 iter 10 value 93.827191 iter 20 value 93.819305 iter 30 value 93.782944 final value 93.782903 converged Fitting Repeat 3 # weights: 507 initial value 120.796406 iter 10 value 94.041201 iter 20 value 94.033025 iter 30 value 85.753962 iter 40 value 85.608208 final value 85.608190 converged Fitting Repeat 4 # weights: 507 initial value 95.334474 iter 10 value 94.041339 iter 20 value 94.032672 iter 30 value 87.884063 iter 40 value 87.579239 iter 50 value 86.734052 iter 60 value 86.298421 iter 70 value 86.295308 iter 70 value 86.295308 final value 86.295308 converged Fitting Repeat 5 # weights: 507 initial value 100.470794 iter 10 value 85.457834 iter 20 value 85.445845 iter 30 value 85.253310 iter 40 value 83.782110 iter 50 value 83.696682 iter 60 value 83.691674 iter 70 value 82.887009 iter 80 value 82.793642 iter 90 value 82.793162 iter 100 value 82.793049 final value 82.793049 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.833279 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.303759 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.595902 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.415263 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.544778 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.393458 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.592344 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.874953 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.683072 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.763362 iter 10 value 93.893191 final value 93.888891 converged Fitting Repeat 1 # weights: 507 initial value 108.571960 iter 10 value 93.336718 iter 20 value 91.107614 iter 30 value 91.082954 iter 40 value 89.608239 iter 50 value 89.475767 iter 50 value 89.475767 iter 50 value 89.475767 final value 89.475767 converged Fitting Repeat 2 # weights: 507 initial value 117.788051 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 117.749249 iter 10 value 91.147136 iter 20 value 91.050890 final value 91.050726 converged Fitting Repeat 4 # weights: 507 initial value 121.380285 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 96.879197 iter 10 value 94.476471 iter 10 value 94.476471 iter 10 value 94.476471 final value 94.476471 converged Fitting Repeat 1 # weights: 103 initial value 96.369276 iter 10 value 94.350796 iter 20 value 93.358826 iter 30 value 91.398935 iter 40 value 84.939994 iter 50 value 81.882170 iter 60 value 81.782547 iter 70 value 81.511152 iter 80 value 81.265162 iter 90 value 81.260573 final value 81.260549 converged Fitting Repeat 2 # weights: 103 initial value 96.222614 iter 10 value 94.301012 iter 20 value 85.453535 iter 30 value 84.300101 iter 40 value 83.947171 iter 50 value 81.975785 iter 60 value 81.298717 iter 70 value 81.262130 iter 80 value 81.260800 iter 90 value 81.260550 iter 90 value 81.260549 iter 90 value 81.260549 final value 81.260549 converged Fitting Repeat 3 # weights: 103 initial value 120.600944 iter 10 value 94.329198 iter 20 value 89.137454 iter 30 value 85.002571 iter 40 value 81.880899 iter 50 value 81.343014 iter 60 value 81.276189 iter 70 value 81.260972 final value 81.260549 converged Fitting Repeat 4 # weights: 103 initial value 102.335613 iter 10 value 94.263902 iter 20 value 85.691687 iter 30 value 81.835306 iter 40 value 81.747012 iter 50 value 81.303966 iter 60 value 81.260666 final value 81.260549 converged Fitting Repeat 5 # weights: 103 initial value 101.494134 iter 10 value 94.488598 iter 20 value 94.462409 iter 30 value 94.164603 iter 40 value 90.553811 iter 50 value 81.627145 iter 60 value 79.717770 iter 70 value 79.356307 iter 80 value 78.906416 iter 90 value 78.776358 iter 100 value 78.707360 final value 78.707360 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.429307 iter 10 value 94.815444 iter 20 value 93.871984 iter 30 value 92.850777 iter 40 value 92.748792 iter 50 value 88.271685 iter 60 value 84.958360 iter 70 value 83.228154 iter 80 value 79.765315 iter 90 value 79.237546 iter 100 value 78.510456 final value 78.510456 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.021303 iter 10 value 94.565245 iter 20 value 91.899099 iter 30 value 89.425236 iter 40 value 84.710315 iter 50 value 81.327138 iter 60 value 79.582197 iter 70 value 78.773748 iter 80 value 78.274765 iter 90 value 77.918098 iter 100 value 77.830602 final value 77.830602 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.602731 iter 10 value 94.258902 iter 20 value 86.900327 iter 30 value 85.144980 iter 40 value 82.515958 iter 50 value 81.567949 iter 60 value 81.062693 iter 70 value 80.371362 iter 80 value 79.029439 iter 90 value 78.062752 iter 100 value 77.640764 final value 77.640764 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.238221 iter 10 value 94.492113 iter 20 value 91.639723 iter 30 value 84.535754 iter 40 value 81.542906 iter 50 value 81.473400 iter 60 value 80.836553 iter 70 value 78.942003 iter 80 value 78.181151 iter 90 value 77.403649 iter 100 value 77.025829 final value 77.025829 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.208135 iter 10 value 94.689745 iter 20 value 86.970127 iter 30 value 84.731056 iter 40 value 84.487315 iter 50 value 81.374532 iter 60 value 80.256913 iter 70 value 79.726891 iter 80 value 79.410399 iter 90 value 78.739243 iter 100 value 78.404426 final value 78.404426 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.625735 iter 10 value 96.258429 iter 20 value 95.278080 iter 30 value 92.160524 iter 40 value 91.432265 iter 50 value 81.676129 iter 60 value 80.219181 iter 70 value 78.832402 iter 80 value 78.513790 iter 90 value 77.541824 iter 100 value 77.390310 final value 77.390310 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.693370 iter 10 value 94.241512 iter 20 value 94.024906 iter 30 value 92.227931 iter 40 value 81.875998 iter 50 value 79.773283 iter 60 value 78.894799 iter 70 value 78.440269 iter 80 value 77.998549 iter 90 value 77.612590 iter 100 value 77.257079 final value 77.257079 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.863868 iter 10 value 94.568160 iter 20 value 93.185173 iter 30 value 83.928272 iter 40 value 83.611715 iter 50 value 81.579007 iter 60 value 79.350711 iter 70 value 79.027220 iter 80 value 78.884545 iter 90 value 78.805310 iter 100 value 78.235531 final value 78.235531 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.901197 iter 10 value 94.350586 iter 20 value 91.486665 iter 30 value 86.101262 iter 40 value 85.109655 iter 50 value 82.754788 iter 60 value 81.891430 iter 70 value 80.793644 iter 80 value 79.061699 iter 90 value 78.557361 iter 100 value 77.884142 final value 77.884142 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.818847 iter 10 value 94.235961 iter 20 value 87.611759 iter 30 value 83.465308 iter 40 value 82.861034 iter 50 value 81.758265 iter 60 value 81.148221 iter 70 value 80.728145 iter 80 value 79.201326 iter 90 value 77.890346 iter 100 value 77.067725 final value 77.067725 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.850314 final value 94.485808 converged Fitting Repeat 2 # weights: 103 initial value 108.795127 final value 94.485777 converged Fitting Repeat 3 # weights: 103 initial value 100.567518 final value 94.485481 converged Fitting Repeat 4 # weights: 103 initial value 99.252324 final value 94.486223 converged Fitting Repeat 5 # weights: 103 initial value 99.182289 final value 94.485860 converged Fitting Repeat 1 # weights: 305 initial value 94.791451 iter 10 value 93.927256 iter 20 value 93.926609 iter 30 value 93.920325 iter 40 value 91.948414 iter 50 value 91.734260 final value 91.733926 converged Fitting Repeat 2 # weights: 305 initial value 95.822465 iter 10 value 94.489135 iter 20 value 94.484240 final value 94.484208 converged Fitting Repeat 3 # weights: 305 initial value 107.643485 iter 10 value 94.489069 iter 20 value 94.445049 iter 30 value 85.613403 iter 40 value 80.961514 iter 50 value 78.177703 iter 60 value 76.837957 iter 70 value 76.694165 iter 80 value 76.693196 iter 90 value 76.693026 final value 76.692563 converged Fitting Repeat 4 # weights: 305 initial value 114.269045 iter 10 value 94.280152 iter 20 value 93.474893 iter 30 value 80.597635 iter 40 value 80.148481 iter 50 value 80.140282 iter 60 value 80.139267 iter 70 value 79.858515 iter 80 value 79.825539 iter 90 value 79.825023 final value 79.824974 converged Fitting Repeat 5 # weights: 305 initial value 118.235883 iter 10 value 94.489392 iter 20 value 94.386467 iter 30 value 93.235483 iter 40 value 93.211378 final value 93.211259 converged Fitting Repeat 1 # weights: 507 initial value 99.271158 iter 10 value 93.616397 iter 20 value 93.614383 iter 30 value 93.545521 iter 40 value 93.535662 iter 50 value 93.534924 iter 60 value 93.533648 iter 70 value 92.604568 iter 80 value 90.760239 iter 90 value 84.238739 iter 100 value 80.184013 final value 80.184013 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.558634 iter 10 value 94.491404 iter 20 value 94.279047 iter 30 value 92.445407 iter 40 value 92.345095 iter 50 value 92.344780 iter 60 value 90.527843 iter 70 value 89.003971 iter 80 value 86.660057 iter 90 value 81.726872 iter 100 value 77.571311 final value 77.571311 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.401290 iter 10 value 94.105003 iter 20 value 94.060275 iter 30 value 93.500927 iter 40 value 84.661212 iter 50 value 79.142063 iter 60 value 76.015074 iter 70 value 75.954241 iter 80 value 75.945191 iter 90 value 75.662786 iter 100 value 75.550288 final value 75.550288 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.867853 iter 10 value 93.788612 iter 20 value 93.786634 iter 30 value 93.785026 iter 40 value 93.765721 iter 50 value 93.721758 iter 60 value 92.027810 iter 70 value 91.989920 final value 91.989844 converged Fitting Repeat 5 # weights: 507 initial value 95.655137 iter 10 value 91.495906 iter 20 value 90.029522 iter 30 value 89.394796 iter 40 value 88.623302 iter 50 value 88.619104 final value 88.613944 converged Fitting Repeat 1 # weights: 103 initial value 96.366748 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.344078 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.515391 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 104.289217 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 109.287149 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 105.878449 iter 10 value 92.936829 iter 20 value 92.933350 final value 92.933334 converged Fitting Repeat 2 # weights: 305 initial value 100.994112 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.083315 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.063563 iter 10 value 93.673014 final value 93.672974 converged Fitting Repeat 5 # weights: 305 initial value 98.562890 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.902086 iter 10 value 94.046531 iter 20 value 94.044448 final value 94.044445 converged Fitting Repeat 2 # weights: 507 initial value 103.988840 iter 10 value 92.134908 iter 20 value 92.134734 final value 92.134731 converged Fitting Repeat 3 # weights: 507 initial value 100.226059 iter 10 value 91.646136 final value 91.644444 converged Fitting Repeat 4 # weights: 507 initial value 108.403749 iter 10 value 90.981663 iter 20 value 83.397877 iter 30 value 82.029609 final value 81.846670 converged Fitting Repeat 5 # weights: 507 initial value 102.040452 final value 93.868966 converged Fitting Repeat 1 # weights: 103 initial value 104.187329 iter 10 value 94.070065 iter 20 value 94.053225 iter 30 value 93.158442 iter 40 value 85.141348 iter 50 value 84.242086 iter 60 value 83.893925 iter 70 value 83.341181 iter 80 value 82.839583 iter 90 value 81.427943 final value 81.359669 converged Fitting Repeat 2 # weights: 103 initial value 99.164118 iter 10 value 94.185111 iter 20 value 94.056182 iter 30 value 93.236238 iter 40 value 93.159277 iter 50 value 93.143624 iter 60 value 93.143400 iter 70 value 93.124738 iter 80 value 93.124322 iter 90 value 89.096806 iter 100 value 86.778239 final value 86.778239 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.287274 iter 10 value 93.989627 iter 20 value 91.441881 iter 30 value 88.812224 iter 40 value 86.318630 iter 50 value 85.805099 iter 60 value 85.160529 iter 70 value 84.200564 iter 80 value 83.017685 iter 90 value 82.372446 iter 100 value 81.626222 final value 81.626222 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.218314 iter 10 value 94.050839 iter 20 value 87.229271 iter 30 value 86.690465 iter 40 value 83.558334 iter 50 value 83.053174 iter 60 value 81.805089 iter 70 value 81.187525 iter 80 value 81.180298 final value 81.180100 converged Fitting Repeat 5 # weights: 103 initial value 102.719106 iter 10 value 94.058610 iter 20 value 93.959272 iter 30 value 93.804002 iter 40 value 93.799192 iter 50 value 86.361938 iter 60 value 85.876107 iter 70 value 85.498985 iter 80 value 84.153443 iter 90 value 83.725979 iter 100 value 83.238355 final value 83.238355 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.671001 iter 10 value 93.763071 iter 20 value 88.549497 iter 30 value 87.545351 iter 40 value 84.142731 iter 50 value 81.700216 iter 60 value 80.760956 iter 70 value 80.573287 iter 80 value 80.392835 iter 90 value 80.292743 iter 100 value 80.227893 final value 80.227893 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.727089 iter 10 value 94.036591 iter 20 value 93.842212 iter 30 value 92.439381 iter 40 value 86.430333 iter 50 value 85.862672 iter 60 value 83.432330 iter 70 value 81.915382 iter 80 value 81.093379 iter 90 value 80.640638 iter 100 value 80.414874 final value 80.414874 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.970014 iter 10 value 94.076230 iter 20 value 88.254382 iter 30 value 86.896628 iter 40 value 85.639550 iter 50 value 84.427053 iter 60 value 81.342025 iter 70 value 80.991945 iter 80 value 80.673037 iter 90 value 80.590591 iter 100 value 80.435341 final value 80.435341 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.893046 iter 10 value 88.384168 iter 20 value 84.891544 iter 30 value 84.429727 iter 40 value 83.236049 iter 50 value 82.364951 iter 60 value 81.993814 iter 70 value 81.225965 iter 80 value 80.341502 iter 90 value 79.969674 iter 100 value 79.783397 final value 79.783397 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.255720 iter 10 value 94.019916 iter 20 value 90.022806 iter 30 value 89.133855 iter 40 value 88.741729 iter 50 value 87.806425 iter 60 value 84.381199 iter 70 value 82.492904 iter 80 value 80.574891 iter 90 value 79.935156 iter 100 value 79.886075 final value 79.886075 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.649044 iter 10 value 95.067920 iter 20 value 93.734103 iter 30 value 87.699695 iter 40 value 83.734654 iter 50 value 83.122367 iter 60 value 81.888353 iter 70 value 81.519515 iter 80 value 80.874286 iter 90 value 80.578217 iter 100 value 80.221837 final value 80.221837 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.499464 iter 10 value 94.000906 iter 20 value 91.420305 iter 30 value 87.005616 iter 40 value 84.061251 iter 50 value 81.576093 iter 60 value 80.720299 iter 70 value 80.539073 iter 80 value 80.330622 iter 90 value 80.296313 iter 100 value 80.164853 final value 80.164853 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 151.863121 iter 10 value 105.221824 iter 20 value 101.858959 iter 30 value 95.270934 iter 40 value 93.795913 iter 50 value 86.659416 iter 60 value 84.542592 iter 70 value 82.876588 iter 80 value 81.778606 iter 90 value 81.254356 iter 100 value 81.061226 final value 81.061226 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.525824 iter 10 value 94.133383 iter 20 value 92.220284 iter 30 value 88.708759 iter 40 value 84.730024 iter 50 value 83.364718 iter 60 value 83.300247 iter 70 value 82.819666 iter 80 value 82.478534 iter 90 value 81.979239 iter 100 value 81.901400 final value 81.901400 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.357554 iter 10 value 95.061287 iter 20 value 87.484496 iter 30 value 85.029686 iter 40 value 83.796825 iter 50 value 83.435258 iter 60 value 82.740794 iter 70 value 82.482661 iter 80 value 82.433828 iter 90 value 82.222352 iter 100 value 81.033820 final value 81.033820 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.304975 iter 10 value 94.072179 iter 20 value 94.065618 iter 30 value 91.825982 iter 40 value 85.389727 iter 50 value 82.833280 iter 60 value 82.518982 iter 70 value 82.478956 iter 80 value 82.474155 iter 90 value 82.389919 iter 100 value 82.275436 final value 82.275436 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.548432 iter 10 value 93.675171 iter 20 value 93.674675 iter 30 value 93.673239 iter 40 value 93.276913 iter 50 value 85.627182 iter 60 value 84.116756 iter 70 value 83.770691 iter 80 value 83.769874 final value 83.769823 converged Fitting Repeat 3 # weights: 103 initial value 95.070990 final value 94.054565 converged Fitting Repeat 4 # weights: 103 initial value 101.168518 final value 94.054579 converged Fitting Repeat 5 # weights: 103 initial value 98.563977 final value 94.054397 converged Fitting Repeat 1 # weights: 305 initial value 102.712703 iter 10 value 93.663131 iter 20 value 93.206463 iter 30 value 87.057893 iter 40 value 84.250665 final value 84.238453 converged Fitting Repeat 2 # weights: 305 initial value 98.082991 iter 10 value 93.746808 iter 20 value 93.584013 iter 30 value 93.170203 iter 40 value 92.936848 iter 50 value 92.935280 iter 60 value 92.534676 iter 70 value 92.510610 iter 80 value 92.509772 iter 90 value 92.509623 iter 100 value 91.888678 final value 91.888678 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.106164 iter 10 value 93.677447 iter 20 value 93.100538 iter 30 value 92.894419 iter 40 value 89.545978 iter 50 value 85.785474 iter 60 value 83.144572 iter 70 value 83.127989 iter 80 value 83.091601 iter 90 value 82.464986 iter 100 value 82.449775 final value 82.449775 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.026298 iter 10 value 93.678675 iter 20 value 93.675050 iter 30 value 93.506597 iter 40 value 92.955339 iter 50 value 92.925613 iter 60 value 90.880682 iter 70 value 90.875978 iter 80 value 90.510331 iter 90 value 90.298260 iter 100 value 90.263701 final value 90.263701 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.834711 iter 10 value 94.084662 iter 20 value 94.068116 iter 30 value 92.959398 iter 40 value 92.943222 iter 50 value 92.458678 iter 60 value 86.147992 iter 70 value 84.233127 iter 80 value 84.182426 iter 90 value 84.182149 iter 100 value 84.179775 final value 84.179775 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.518268 iter 10 value 93.681584 iter 20 value 93.675268 iter 30 value 93.476846 iter 40 value 92.934460 iter 50 value 92.933986 iter 60 value 92.579077 iter 70 value 91.304676 final value 91.304670 converged Fitting Repeat 2 # weights: 507 initial value 102.655009 iter 10 value 94.040753 iter 20 value 94.040146 iter 30 value 94.035878 iter 40 value 91.820952 iter 50 value 91.592080 iter 60 value 91.196129 iter 70 value 91.080198 iter 80 value 91.074800 iter 90 value 90.034340 iter 100 value 85.066690 final value 85.066690 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 135.388449 iter 10 value 94.060473 iter 20 value 93.899409 final value 92.934687 converged Fitting Repeat 4 # weights: 507 initial value 99.341674 iter 10 value 94.057313 iter 20 value 93.881420 iter 30 value 85.821706 iter 40 value 84.876084 iter 50 value 84.747815 iter 60 value 84.675565 iter 70 value 83.331310 iter 80 value 79.731966 iter 90 value 78.875338 iter 100 value 78.808628 final value 78.808628 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.332175 iter 10 value 94.057855 iter 20 value 93.979473 iter 30 value 93.629906 iter 40 value 93.464689 iter 50 value 85.843292 iter 60 value 83.045862 iter 70 value 82.215519 iter 80 value 81.488864 final value 81.306386 converged Fitting Repeat 1 # weights: 103 initial value 111.768996 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.652127 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.204398 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.824511 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 111.810940 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.597194 iter 10 value 93.681191 iter 20 value 88.930016 iter 30 value 86.251108 iter 40 value 85.787170 iter 50 value 85.783567 final value 85.783533 converged Fitting Repeat 2 # weights: 305 initial value 114.246138 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 112.984669 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 120.003426 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 97.758105 final value 94.466821 converged Fitting Repeat 1 # weights: 507 initial value 105.891747 iter 10 value 92.976875 iter 20 value 92.750894 iter 30 value 92.603577 final value 92.602314 converged Fitting Repeat 2 # weights: 507 initial value 102.536199 iter 10 value 94.484143 final value 94.484137 converged Fitting Repeat 3 # weights: 507 initial value 94.852197 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 104.241449 final value 94.484210 converged Fitting Repeat 5 # weights: 507 initial value 97.723374 iter 10 value 92.907001 iter 20 value 92.874557 iter 20 value 92.874557 final value 92.874557 converged Fitting Repeat 1 # weights: 103 initial value 99.479671 iter 10 value 94.490097 iter 20 value 94.416898 iter 30 value 87.289645 iter 40 value 86.806221 iter 50 value 85.875214 iter 60 value 85.125733 iter 70 value 85.014459 iter 80 value 84.890826 iter 90 value 84.797678 iter 100 value 84.791672 final value 84.791672 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.620049 iter 10 value 94.486405 iter 20 value 87.341525 iter 30 value 86.605584 iter 40 value 86.201753 iter 50 value 85.936132 iter 60 value 85.803521 iter 70 value 85.728295 final value 85.728279 converged Fitting Repeat 3 # weights: 103 initial value 98.398263 iter 10 value 94.488749 iter 20 value 94.486627 iter 30 value 92.345505 iter 40 value 88.971248 iter 50 value 86.750168 iter 60 value 84.441986 iter 70 value 84.145485 iter 80 value 83.849030 iter 90 value 83.259135 iter 100 value 82.848606 final value 82.848606 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.799885 iter 10 value 93.580157 iter 20 value 92.257785 iter 30 value 87.000618 iter 40 value 86.760750 iter 50 value 85.730641 iter 60 value 85.455437 iter 70 value 85.440327 iter 80 value 85.186565 iter 90 value 84.911741 iter 100 value 84.849032 final value 84.849032 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.846596 iter 10 value 94.520811 iter 20 value 94.482928 iter 30 value 91.296641 iter 40 value 90.712938 iter 50 value 90.469359 iter 60 value 90.239604 iter 70 value 90.184329 iter 80 value 90.168265 final value 90.167284 converged Fitting Repeat 1 # weights: 305 initial value 102.935809 iter 10 value 93.062075 iter 20 value 86.446849 iter 30 value 85.641978 iter 40 value 85.104964 iter 50 value 83.312475 iter 60 value 83.050140 iter 70 value 82.841320 iter 80 value 82.740265 iter 90 value 82.720858 iter 100 value 82.701526 final value 82.701526 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.585227 iter 10 value 94.537409 iter 20 value 91.004036 iter 30 value 90.104249 iter 40 value 87.786458 iter 50 value 84.855295 iter 60 value 83.166547 iter 70 value 82.899032 iter 80 value 82.315256 iter 90 value 82.163237 iter 100 value 82.027405 final value 82.027405 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.864424 iter 10 value 94.500940 iter 20 value 90.268814 iter 30 value 89.679191 iter 40 value 89.532090 iter 50 value 85.225273 iter 60 value 84.874230 iter 70 value 84.425745 iter 80 value 82.853102 iter 90 value 81.747891 iter 100 value 81.564331 final value 81.564331 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.232057 iter 10 value 94.298655 iter 20 value 91.168852 iter 30 value 88.082743 iter 40 value 85.278532 iter 50 value 84.217944 iter 60 value 84.092352 iter 70 value 83.979474 iter 80 value 83.955227 iter 90 value 83.802314 iter 100 value 83.466847 final value 83.466847 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.652978 iter 10 value 94.528646 iter 20 value 87.445547 iter 30 value 86.060758 iter 40 value 85.760299 iter 50 value 85.219559 iter 60 value 84.908439 iter 70 value 82.869975 iter 80 value 82.686851 iter 90 value 82.117580 iter 100 value 81.717457 final value 81.717457 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.225128 iter 10 value 94.630916 iter 20 value 89.260535 iter 30 value 86.557797 iter 40 value 86.112943 iter 50 value 85.892347 iter 60 value 85.434966 iter 70 value 84.759716 iter 80 value 83.529725 iter 90 value 82.301784 iter 100 value 82.026507 final value 82.026507 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.447350 iter 10 value 94.590813 iter 20 value 92.680133 iter 30 value 88.993414 iter 40 value 86.038973 iter 50 value 85.305001 iter 60 value 84.987719 iter 70 value 84.055155 iter 80 value 83.133279 iter 90 value 82.897767 iter 100 value 82.729028 final value 82.729028 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.837854 iter 10 value 95.009670 iter 20 value 94.131763 iter 30 value 86.962364 iter 40 value 86.063014 iter 50 value 85.307285 iter 60 value 85.191341 iter 70 value 85.116118 iter 80 value 84.876653 iter 90 value 82.993765 iter 100 value 82.087362 final value 82.087362 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.754690 iter 10 value 95.225305 iter 20 value 91.835489 iter 30 value 90.376288 iter 40 value 86.686415 iter 50 value 83.405067 iter 60 value 83.151039 iter 70 value 83.024447 iter 80 value 82.471118 iter 90 value 81.956412 iter 100 value 81.800266 final value 81.800266 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.636892 iter 10 value 94.649398 iter 20 value 94.117357 iter 30 value 90.968893 iter 40 value 90.565642 iter 50 value 89.390014 iter 60 value 87.663156 iter 70 value 87.277492 iter 80 value 85.030875 iter 90 value 84.538035 iter 100 value 84.440836 final value 84.440836 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.890126 final value 94.485753 converged Fitting Repeat 2 # weights: 103 initial value 97.203436 final value 94.485766 converged Fitting Repeat 3 # weights: 103 initial value 96.721729 final value 94.486041 converged Fitting Repeat 4 # weights: 103 initial value 101.616945 final value 94.468521 converged Fitting Repeat 5 # weights: 103 initial value 95.860889 final value 94.485882 converged Fitting Repeat 1 # weights: 305 initial value 114.811982 iter 10 value 94.489014 iter 20 value 94.473107 iter 30 value 90.513351 iter 40 value 89.970054 iter 50 value 89.888620 iter 60 value 89.887016 final value 89.887008 converged Fitting Repeat 2 # weights: 305 initial value 98.099395 iter 10 value 94.489247 iter 20 value 94.433415 iter 30 value 89.696767 iter 40 value 89.647168 iter 50 value 89.457122 iter 60 value 89.163891 iter 70 value 89.159906 iter 80 value 88.124927 iter 90 value 84.915291 iter 100 value 82.340016 final value 82.340016 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.432098 iter 10 value 94.489485 iter 20 value 94.309264 iter 30 value 88.678133 iter 40 value 86.181085 iter 50 value 86.167775 final value 86.167706 converged Fitting Repeat 4 # weights: 305 initial value 132.744199 iter 10 value 94.472343 iter 20 value 94.429497 iter 30 value 94.425310 iter 40 value 94.424349 final value 94.424233 converged Fitting Repeat 5 # weights: 305 initial value 108.999930 iter 10 value 94.489165 iter 20 value 93.460865 iter 30 value 86.344342 iter 40 value 86.342429 iter 50 value 86.175377 iter 60 value 86.130379 iter 70 value 86.129761 iter 80 value 86.129311 final value 86.129098 converged Fitting Repeat 1 # weights: 507 initial value 106.160000 iter 10 value 94.086642 iter 20 value 88.490830 iter 30 value 85.197770 iter 40 value 84.590215 iter 50 value 83.142605 iter 60 value 82.386678 iter 70 value 82.234309 iter 80 value 81.892850 iter 90 value 81.852392 iter 100 value 81.184801 final value 81.184801 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.442181 iter 10 value 94.474735 iter 20 value 94.419757 iter 30 value 91.208154 iter 40 value 91.183872 iter 50 value 90.416240 iter 60 value 87.367545 iter 70 value 82.467670 iter 80 value 81.673767 iter 90 value 81.642889 iter 100 value 81.532630 final value 81.532630 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.232182 iter 10 value 92.421575 iter 20 value 90.465627 iter 30 value 90.427073 iter 40 value 90.426527 iter 50 value 90.425662 iter 60 value 90.066969 iter 70 value 90.041244 iter 80 value 90.035666 iter 90 value 89.613344 iter 100 value 87.698349 final value 87.698349 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.934916 iter 10 value 90.309691 iter 20 value 85.556681 iter 30 value 85.555722 iter 40 value 85.455703 iter 50 value 85.453326 iter 60 value 85.433406 iter 70 value 84.912593 iter 80 value 84.479568 iter 90 value 84.478839 iter 100 value 84.478738 final value 84.478738 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 101.495860 iter 10 value 94.474420 iter 20 value 94.341529 iter 30 value 91.997566 iter 40 value 87.761425 iter 50 value 87.510698 iter 60 value 87.498552 iter 70 value 87.420137 iter 80 value 87.413626 final value 87.413588 converged Fitting Repeat 1 # weights: 103 initial value 95.631673 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.142130 iter 10 value 87.269539 iter 20 value 84.997069 final value 84.996944 converged Fitting Repeat 3 # weights: 103 initial value 95.679592 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.562847 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.395142 final value 94.354396 converged Fitting Repeat 1 # weights: 305 initial value 105.667844 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 100.726122 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 108.046582 final value 94.484209 converged Fitting Repeat 4 # weights: 305 initial value 97.491660 iter 10 value 83.376923 iter 20 value 83.337442 iter 30 value 83.336236 final value 83.336235 converged Fitting Repeat 5 # weights: 305 initial value 107.226787 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.196375 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.838322 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 96.096161 final value 94.354394 converged Fitting Repeat 4 # weights: 507 initial value 106.898155 iter 10 value 93.988095 iter 10 value 93.988095 iter 10 value 93.988095 final value 93.988095 converged Fitting Repeat 5 # weights: 507 initial value 96.803904 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.017354 iter 10 value 94.079637 iter 20 value 93.323936 iter 30 value 85.383405 iter 40 value 84.617076 iter 50 value 82.100965 iter 60 value 81.648444 iter 70 value 81.371727 final value 81.352866 converged Fitting Repeat 2 # weights: 103 initial value 100.819864 iter 10 value 94.511364 iter 20 value 94.211392 iter 30 value 86.428525 iter 40 value 84.713164 iter 50 value 84.147426 iter 60 value 83.993414 iter 70 value 83.796901 iter 80 value 83.785030 final value 83.784385 converged Fitting Repeat 3 # weights: 103 initial value 100.124971 iter 10 value 94.496045 iter 20 value 86.606663 iter 30 value 84.638016 iter 40 value 84.349648 iter 50 value 84.287699 iter 60 value 84.255325 iter 70 value 83.801888 final value 83.790039 converged Fitting Repeat 4 # weights: 103 initial value 98.778227 iter 10 value 89.792603 iter 20 value 85.764009 iter 30 value 85.145778 iter 40 value 84.340503 iter 50 value 83.818409 iter 60 value 83.784392 final value 83.784385 converged Fitting Repeat 5 # weights: 103 initial value 103.641490 iter 10 value 94.353754 iter 20 value 93.987660 iter 30 value 93.980010 iter 40 value 93.978289 iter 50 value 93.978065 iter 60 value 93.977835 iter 70 value 93.977593 iter 80 value 93.976996 iter 80 value 93.976995 iter 90 value 92.714959 iter 100 value 84.548370 final value 84.548370 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.922309 iter 10 value 94.011335 iter 20 value 87.497987 iter 30 value 87.240848 iter 40 value 86.222982 iter 50 value 83.632905 iter 60 value 81.926471 iter 70 value 80.936116 iter 80 value 80.821906 iter 90 value 80.803184 iter 100 value 80.569765 final value 80.569765 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.052581 iter 10 value 94.491966 iter 20 value 94.025180 iter 30 value 93.975426 iter 40 value 93.196571 iter 50 value 89.918713 iter 60 value 86.911793 iter 70 value 81.981834 iter 80 value 80.615072 iter 90 value 79.926431 iter 100 value 79.388974 final value 79.388974 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.869179 iter 10 value 94.498376 iter 20 value 94.336373 iter 30 value 86.853593 iter 40 value 84.436512 iter 50 value 84.191114 iter 60 value 83.821403 iter 70 value 83.625269 iter 80 value 83.567382 iter 90 value 83.545519 iter 100 value 83.356345 final value 83.356345 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.625150 iter 10 value 94.562040 iter 20 value 94.320152 iter 30 value 90.754001 iter 40 value 84.760733 iter 50 value 84.218576 iter 60 value 82.709634 iter 70 value 81.375015 iter 80 value 80.153307 iter 90 value 79.895724 iter 100 value 79.661827 final value 79.661827 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.799322 iter 10 value 94.455864 iter 20 value 92.988049 iter 30 value 91.364528 iter 40 value 87.936027 iter 50 value 84.366273 iter 60 value 84.076280 iter 70 value 82.264084 iter 80 value 81.736058 iter 90 value 81.486975 iter 100 value 81.341199 final value 81.341199 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.102494 iter 10 value 96.891515 iter 20 value 94.225709 iter 30 value 93.647011 iter 40 value 87.539035 iter 50 value 86.627869 iter 60 value 83.324332 iter 70 value 82.818789 iter 80 value 82.407558 iter 90 value 80.595644 iter 100 value 79.705846 final value 79.705846 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.004952 iter 10 value 94.990364 iter 20 value 92.084379 iter 30 value 85.911126 iter 40 value 82.815181 iter 50 value 81.546476 iter 60 value 79.680108 iter 70 value 79.150616 iter 80 value 79.078142 iter 90 value 79.010612 iter 100 value 78.910566 final value 78.910566 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.911057 iter 10 value 92.992036 iter 20 value 87.793697 iter 30 value 85.472836 iter 40 value 83.457909 iter 50 value 81.066240 iter 60 value 80.600734 iter 70 value 79.857196 iter 80 value 79.552315 iter 90 value 79.494186 iter 100 value 79.348978 final value 79.348978 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 127.706220 iter 10 value 95.537783 iter 20 value 93.852904 iter 30 value 87.433770 iter 40 value 84.627713 iter 50 value 80.845764 iter 60 value 80.088966 iter 70 value 79.973457 iter 80 value 79.929977 iter 90 value 79.688467 iter 100 value 79.370228 final value 79.370228 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.256760 iter 10 value 94.830714 iter 20 value 91.065955 iter 30 value 85.693433 iter 40 value 85.410001 iter 50 value 84.289295 iter 60 value 82.650634 iter 70 value 80.915049 iter 80 value 80.547415 iter 90 value 80.290571 iter 100 value 79.678605 final value 79.678605 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.294443 final value 94.485779 converged Fitting Repeat 2 # weights: 103 initial value 95.872164 final value 94.486167 converged Fitting Repeat 3 # weights: 103 initial value 109.012797 final value 94.485750 converged Fitting Repeat 4 # weights: 103 initial value 101.418002 final value 94.485648 converged Fitting Repeat 5 # weights: 103 initial value 101.593859 final value 94.486053 converged Fitting Repeat 1 # weights: 305 initial value 95.210564 iter 10 value 91.471265 iter 20 value 91.469182 iter 30 value 91.462254 iter 40 value 90.910106 iter 50 value 90.883904 iter 60 value 90.883445 iter 70 value 90.883094 iter 80 value 90.882531 iter 80 value 90.882530 iter 80 value 90.882530 final value 90.882530 converged Fitting Repeat 2 # weights: 305 initial value 102.085279 iter 10 value 94.488677 iter 20 value 94.484342 final value 94.484213 converged Fitting Repeat 3 # weights: 305 initial value 95.962876 iter 10 value 94.488733 iter 20 value 94.484262 iter 30 value 93.315004 final value 93.301011 converged Fitting Repeat 4 # weights: 305 initial value 112.970501 iter 10 value 93.993271 iter 20 value 93.989793 iter 30 value 93.268526 iter 40 value 86.469898 iter 50 value 84.918678 iter 60 value 84.742883 iter 70 value 84.741987 iter 80 value 84.737362 iter 90 value 84.736895 final value 84.736806 converged Fitting Repeat 5 # weights: 305 initial value 99.521780 iter 10 value 94.358917 final value 94.356534 converged Fitting Repeat 1 # weights: 507 initial value 119.413457 iter 10 value 94.492851 iter 20 value 94.443147 iter 30 value 93.996789 iter 40 value 91.493281 iter 50 value 83.281820 iter 60 value 81.726809 iter 70 value 81.147741 iter 80 value 80.246177 iter 90 value 80.241887 iter 100 value 80.215717 final value 80.215717 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.421605 iter 10 value 94.363718 iter 20 value 94.355606 iter 30 value 93.064215 iter 40 value 86.676278 iter 50 value 85.347161 iter 60 value 85.318950 iter 70 value 82.841113 iter 80 value 81.942177 iter 90 value 80.741480 iter 100 value 80.735041 final value 80.735041 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.521124 iter 10 value 94.362622 iter 20 value 94.104328 iter 30 value 86.273463 final value 86.273363 converged Fitting Repeat 4 # weights: 507 initial value 98.245974 iter 10 value 94.492350 iter 20 value 94.310525 final value 93.931758 converged Fitting Repeat 5 # weights: 507 initial value 101.501085 iter 10 value 94.489992 iter 20 value 93.399148 iter 30 value 89.960276 iter 40 value 87.447520 iter 50 value 84.300260 iter 60 value 82.668982 iter 70 value 82.660561 iter 80 value 82.659113 iter 80 value 82.659112 iter 80 value 82.659112 final value 82.659112 converged Fitting Repeat 1 # weights: 103 initial value 126.296842 iter 10 value 117.935179 iter 20 value 113.196238 iter 30 value 110.570271 iter 40 value 108.853164 iter 50 value 108.108863 iter 60 value 106.932960 iter 70 value 106.296276 iter 80 value 106.084020 iter 90 value 105.800889 iter 100 value 105.315809 final value 105.315809 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 130.913362 iter 10 value 117.903887 iter 20 value 117.700361 iter 30 value 117.657662 iter 40 value 117.590056 iter 50 value 117.521587 iter 60 value 117.518733 iter 70 value 117.513542 iter 80 value 116.007827 iter 90 value 107.685124 iter 100 value 106.190986 final value 106.190986 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 123.694323 iter 10 value 117.887195 iter 20 value 117.798208 iter 30 value 113.319421 iter 40 value 107.754223 iter 50 value 106.084292 iter 60 value 105.994247 iter 70 value 105.584750 iter 80 value 105.263632 final value 105.258333 converged Fitting Repeat 4 # weights: 103 initial value 132.303052 iter 10 value 118.013089 iter 20 value 117.329454 iter 30 value 115.374043 iter 40 value 115.224186 iter 50 value 113.766313 iter 60 value 106.700262 iter 70 value 104.459443 iter 80 value 104.437705 iter 90 value 104.417896 iter 100 value 104.130049 final value 104.130049 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 120.267537 iter 10 value 117.879557 iter 20 value 109.677121 iter 30 value 105.581575 iter 40 value 103.759585 iter 50 value 103.128970 iter 60 value 103.091812 iter 70 value 103.007291 iter 80 value 102.568024 final value 102.565868 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Jan 14 04:48:55 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 75.374 2.293 137.743
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.564 | 1.821 | 53.831 | |
FreqInteractors | 0.483 | 0.028 | 0.561 | |
calculateAAC | 0.074 | 0.016 | 0.093 | |
calculateAutocor | 0.863 | 0.129 | 1.062 | |
calculateCTDC | 0.144 | 0.008 | 0.152 | |
calculateCTDD | 1.223 | 0.048 | 1.296 | |
calculateCTDT | 0.441 | 0.015 | 0.591 | |
calculateCTriad | 0.797 | 0.037 | 0.949 | |
calculateDC | 0.246 | 0.028 | 0.285 | |
calculateF | 0.696 | 0.020 | 0.740 | |
calculateKSAAP | 0.286 | 0.022 | 0.324 | |
calculateQD_Sm | 3.582 | 0.186 | 3.865 | |
calculateTC | 4.605 | 0.439 | 5.211 | |
calculateTC_Sm | 0.525 | 0.024 | 0.561 | |
corr_plot | 50.901 | 1.913 | 54.660 | |
enrichfindP | 0.899 | 0.079 | 15.392 | |
enrichfind_hp | 0.132 | 0.033 | 1.106 | |
enrichplot | 0.800 | 0.011 | 0.820 | |
filter_missing_values | 0.002 | 0.001 | 0.003 | |
getFASTA | 0.118 | 0.020 | 3.476 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.003 | 0.002 | 0.005 | |
plotPPI | 0.140 | 0.005 | 0.148 | |
pred_ensembel | 24.962 | 0.446 | 23.765 | |
var_imp | 51.817 | 2.036 | 58.303 | |