Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-24 12:06 -0400 (Mon, 24 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4763
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4494
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4521
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4448
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4414
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-03-20 13:00 -0400 (Thu, 20 Mar 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
StartedAt: 2025-03-21 02:31:30 -0400 (Fri, 21 Mar 2025)
EndedAt: 2025-03-21 02:37:17 -0400 (Fri, 21 Mar 2025)
EllapsedTime: 346.6 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.3 (2025-02-28 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.12.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       35.16   1.46   36.61
FSmethod      34.56   1.85   36.42
corr_plot     34.47   1.85   36.37
pred_ensembel 14.21   0.42   13.05
enrichfindP    0.75   0.09   13.77
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.3 (2025-02-28 ucrt) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.178187 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.868128 
final  value 94.400000 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.700032 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.077698 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.974551 
final  value 94.484210 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.474673 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.740664 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.349770 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.740541 
iter  10 value 85.440769
iter  20 value 83.789197
iter  30 value 83.783361
final  value 83.783302 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.142395 
iter  10 value 93.982194
iter  20 value 93.935266
final  value 93.935239 
converged
Fitting Repeat 1 

# weights:  507
initial  value 117.770121 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.400652 
iter  10 value 89.695896
iter  20 value 81.332111
iter  30 value 81.181906
iter  40 value 81.176188
iter  50 value 81.158580
final  value 81.144105 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.861512 
iter  10 value 92.148621
iter  20 value 91.960649
final  value 91.960591 
converged
Fitting Repeat 4 

# weights:  507
initial  value 111.264941 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.542808 
iter  10 value 94.299937
final  value 94.299824 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.152985 
iter  10 value 94.478629
iter  20 value 85.319700
iter  30 value 83.964553
iter  40 value 83.906631
iter  50 value 83.869191
iter  60 value 83.270084
iter  70 value 83.036693
final  value 83.036059 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.300220 
iter  10 value 94.531248
final  value 94.488541 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.801181 
iter  10 value 94.508351
iter  20 value 94.487127
iter  30 value 94.455015
iter  40 value 94.015609
iter  50 value 89.992545
iter  60 value 84.936624
iter  70 value 83.878012
iter  80 value 83.231174
iter  90 value 83.096049
iter 100 value 83.093598
final  value 83.093598 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 97.502349 
iter  10 value 94.356231
iter  20 value 91.028120
iter  30 value 88.749227
iter  40 value 84.559991
iter  50 value 84.066654
iter  60 value 83.327797
iter  70 value 83.109604
iter  80 value 83.093620
final  value 83.093595 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.446996 
iter  10 value 94.489292
iter  20 value 94.163224
iter  30 value 86.980051
iter  40 value 86.431272
iter  50 value 86.126423
iter  60 value 85.941007
iter  70 value 83.693967
iter  80 value 83.110186
final  value 83.093596 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.980765 
iter  10 value 94.489065
iter  20 value 94.242803
iter  30 value 93.919387
iter  40 value 92.071700
iter  50 value 85.138184
iter  60 value 83.858120
iter  70 value 83.336743
iter  80 value 82.649885
iter  90 value 82.505016
iter 100 value 80.890118
final  value 80.890118 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.313369 
iter  10 value 94.352932
iter  20 value 89.682088
iter  30 value 83.806266
iter  40 value 83.034351
iter  50 value 82.684164
iter  60 value 82.582519
iter  70 value 82.354195
iter  80 value 81.991270
iter  90 value 81.802789
iter 100 value 81.669545
final  value 81.669545 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 125.154345 
iter  10 value 93.719593
iter  20 value 89.805611
iter  30 value 84.126321
iter  40 value 81.599641
iter  50 value 80.821167
iter  60 value 80.540239
iter  70 value 80.451710
iter  80 value 80.319169
iter  90 value 80.296844
iter 100 value 80.262528
final  value 80.262528 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.614795 
iter  10 value 92.532260
iter  20 value 88.730689
iter  30 value 85.788699
iter  40 value 85.581768
iter  50 value 84.049798
iter  60 value 80.054330
iter  70 value 78.842954
iter  80 value 78.462375
iter  90 value 78.311605
iter 100 value 78.253851
final  value 78.253851 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.086828 
iter  10 value 91.263037
iter  20 value 85.138393
iter  30 value 84.577699
iter  40 value 84.088305
iter  50 value 83.363200
iter  60 value 82.975045
iter  70 value 82.584999
iter  80 value 82.328033
iter  90 value 81.061987
iter 100 value 80.116788
final  value 80.116788 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.025141 
iter  10 value 94.495627
iter  20 value 94.164653
iter  30 value 85.002980
iter  40 value 83.811751
iter  50 value 82.849435
iter  60 value 82.738646
iter  70 value 82.511170
iter  80 value 81.492693
iter  90 value 80.630541
iter 100 value 80.144775
final  value 80.144775 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.259577 
iter  10 value 94.431478
iter  20 value 89.858307
iter  30 value 86.985459
iter  40 value 86.100262
iter  50 value 85.432435
iter  60 value 84.779166
iter  70 value 81.859102
iter  80 value 79.911192
iter  90 value 78.996199
iter 100 value 78.836241
final  value 78.836241 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 117.737978 
iter  10 value 94.238464
iter  20 value 86.171230
iter  30 value 84.097868
iter  40 value 83.612829
iter  50 value 80.435864
iter  60 value 79.887997
iter  70 value 79.633701
iter  80 value 79.384148
iter  90 value 79.119458
iter 100 value 79.051356
final  value 79.051356 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 118.553825 
iter  10 value 94.542356
iter  20 value 86.949833
iter  30 value 84.625321
iter  40 value 82.713997
iter  50 value 81.895277
iter  60 value 80.863013
iter  70 value 80.212245
iter  80 value 80.025385
iter  90 value 79.120429
iter 100 value 78.494787
final  value 78.494787 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 111.226692 
iter  10 value 94.546614
iter  20 value 91.828272
iter  30 value 83.739302
iter  40 value 82.417282
iter  50 value 81.262692
iter  60 value 80.630778
iter  70 value 80.248617
iter  80 value 79.936370
iter  90 value 79.297323
iter 100 value 78.964276
final  value 78.964276 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.409667 
final  value 94.485853 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.457428 
iter  10 value 94.485864
final  value 94.484297 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.737357 
final  value 94.485741 
converged
Fitting Repeat 4 

# weights:  103
initial  value 111.899576 
final  value 94.485542 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.112800 
final  value 94.485962 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.265973 
iter  10 value 94.489423
iter  20 value 93.788643
iter  30 value 93.786858
iter  40 value 83.470728
final  value 83.378766 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.520516 
iter  10 value 94.489049
iter  20 value 94.276183
iter  30 value 92.314003
iter  40 value 82.402547
iter  50 value 81.825250
iter  60 value 81.724320
final  value 81.724226 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.525496 
iter  10 value 94.149887
iter  20 value 94.015041
iter  30 value 93.747584
iter  40 value 85.771466
iter  50 value 85.446133
iter  60 value 85.422031
final  value 85.416268 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.069361 
final  value 94.489099 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.739452 
iter  10 value 94.489031
iter  20 value 94.484221
iter  20 value 94.484221
final  value 94.484221 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.459965 
iter  10 value 94.475067
iter  20 value 94.395118
iter  30 value 87.941526
iter  40 value 84.822827
final  value 84.815244 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.936139 
iter  10 value 94.474956
iter  20 value 94.400596
iter  30 value 91.715914
iter  40 value 87.100702
iter  50 value 87.100502
iter  60 value 86.890131
final  value 86.888969 
converged
Fitting Repeat 3 

# weights:  507
initial  value 115.203004 
iter  10 value 94.492245
iter  20 value 94.365655
iter  30 value 84.359482
iter  40 value 84.358432
iter  50 value 83.937885
iter  60 value 81.206179
iter  70 value 79.613265
iter  80 value 79.482224
iter  90 value 79.472641
iter 100 value 79.472515
final  value 79.472515 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 95.093127 
iter  10 value 94.060104
iter  20 value 93.979167
iter  30 value 84.247533
iter  40 value 83.833708
iter  50 value 82.689356
iter  60 value 82.551181
iter  70 value 82.550017
iter  80 value 82.549766
final  value 82.549556 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.417159 
iter  10 value 94.492866
iter  20 value 94.441866
iter  30 value 85.551166
iter  40 value 83.406398
iter  50 value 83.397374
iter  60 value 83.377094
iter  70 value 83.368014
iter  80 value 82.011927
iter  90 value 81.318505
iter 100 value 81.250474
final  value 81.250474 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.296289 
iter  10 value 94.472208
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.584147 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  103
initial  value 109.253625 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.509511 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.542842 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.770619 
iter  10 value 93.941305
iter  10 value 93.941305
iter  10 value 93.941305
final  value 93.941305 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.618198 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.725985 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.086928 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.115731 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.437638 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.864213 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.288332 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.252277 
iter  10 value 83.811637
iter  20 value 83.380647
iter  30 value 83.281483
final  value 83.281468 
converged
Fitting Repeat 5 

# weights:  507
initial  value 124.235235 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.860867 
iter  10 value 94.456131
iter  20 value 93.483686
iter  30 value 85.337410
iter  40 value 84.015127
iter  50 value 83.770027
iter  60 value 83.416806
iter  70 value 83.102596
iter  80 value 82.423412
iter  90 value 81.767695
iter 100 value 81.516796
final  value 81.516796 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.892527 
iter  10 value 94.468028
iter  20 value 86.508076
iter  30 value 84.295870
iter  40 value 83.722945
iter  50 value 83.286220
iter  60 value 82.799907
iter  70 value 82.460710
iter  80 value 82.166392
iter  90 value 81.818824
iter 100 value 81.746311
final  value 81.746311 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.178185 
iter  10 value 94.487716
iter  20 value 93.978086
iter  30 value 86.922102
iter  40 value 84.973551
iter  50 value 84.643748
iter  60 value 84.461677
iter  70 value 84.272621
iter  80 value 84.167845
final  value 84.163312 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.799622 
iter  10 value 90.974466
iter  20 value 84.799963
iter  30 value 84.270099
iter  40 value 84.086671
iter  50 value 83.997034
iter  60 value 83.952958
final  value 83.951675 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.617435 
iter  10 value 94.401799
iter  20 value 88.129098
iter  30 value 87.101293
iter  40 value 86.561426
iter  50 value 86.323979
iter  60 value 83.634487
iter  70 value 83.566947
iter  80 value 83.508129
iter  90 value 83.490989
iter 100 value 83.440059
final  value 83.440059 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 108.648135 
iter  10 value 93.454778
iter  20 value 84.655549
iter  30 value 84.604671
iter  40 value 84.448236
iter  50 value 84.287797
iter  60 value 84.130850
iter  70 value 83.436773
iter  80 value 82.148960
iter  90 value 80.536198
iter 100 value 80.473546
final  value 80.473546 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.490593 
iter  10 value 94.531219
iter  20 value 85.351694
iter  30 value 85.023644
iter  40 value 84.421649
iter  50 value 82.854934
iter  60 value 81.190836
iter  70 value 80.566946
iter  80 value 80.422332
iter  90 value 80.301693
iter 100 value 80.067706
final  value 80.067706 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.660076 
iter  10 value 94.310588
iter  20 value 94.249240
iter  30 value 88.501778
iter  40 value 84.886745
iter  50 value 84.554486
iter  60 value 84.263449
iter  70 value 84.079526
iter  80 value 83.684200
iter  90 value 83.349860
iter 100 value 82.417561
final  value 82.417561 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.133250 
iter  10 value 95.597516
iter  20 value 92.518222
iter  30 value 92.383618
iter  40 value 92.129806
iter  50 value 89.982929
iter  60 value 87.442932
iter  70 value 84.197391
iter  80 value 83.688905
iter  90 value 83.607651
iter 100 value 83.367249
final  value 83.367249 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 110.242813 
iter  10 value 94.487319
iter  20 value 94.445224
iter  30 value 93.789346
iter  40 value 92.211577
iter  50 value 85.038053
iter  60 value 84.167149
iter  70 value 82.941339
iter  80 value 81.962948
iter  90 value 81.805475
iter 100 value 80.878974
final  value 80.878974 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.714075 
iter  10 value 91.148654
iter  20 value 86.745242
iter  30 value 86.609361
iter  40 value 83.998989
iter  50 value 82.600318
iter  60 value 81.346766
iter  70 value 80.560100
iter  80 value 80.436417
iter  90 value 80.403660
iter 100 value 80.395817
final  value 80.395817 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.118276 
iter  10 value 94.357793
iter  20 value 86.196642
iter  30 value 84.881628
iter  40 value 83.731891
iter  50 value 81.897072
iter  60 value 81.084442
iter  70 value 80.741779
iter  80 value 80.523067
iter  90 value 80.054588
iter 100 value 79.869444
final  value 79.869444 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 122.073406 
iter  10 value 95.089979
iter  20 value 87.528520
iter  30 value 84.935935
iter  40 value 84.586600
iter  50 value 84.273505
iter  60 value 83.979026
iter  70 value 83.551650
iter  80 value 82.540872
iter  90 value 81.976025
iter 100 value 81.854986
final  value 81.854986 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.117705 
iter  10 value 94.363029
iter  20 value 87.757545
iter  30 value 84.597160
iter  40 value 83.248757
iter  50 value 82.453119
iter  60 value 82.170506
iter  70 value 81.953631
iter  80 value 81.630331
iter  90 value 80.713621
iter 100 value 80.223555
final  value 80.223555 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.036589 
iter  10 value 94.424119
iter  20 value 87.220058
iter  30 value 86.176594
iter  40 value 84.389207
iter  50 value 83.927889
iter  60 value 83.873289
iter  70 value 82.566070
iter  80 value 81.797711
iter  90 value 81.184156
iter 100 value 81.065693
final  value 81.065693 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.961332 
iter  10 value 94.485797
iter  20 value 94.482521
iter  30 value 94.385703
iter  40 value 94.258975
final  value 94.214055 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.593003 
final  value 94.485965 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.655481 
final  value 94.485794 
converged
Fitting Repeat 4 

# weights:  103
initial  value 107.698793 
iter  10 value 94.485643
iter  20 value 94.466776
iter  30 value 93.980774
iter  40 value 91.186356
final  value 91.177436 
converged
Fitting Repeat 5 

# weights:  103
initial  value 114.591636 
final  value 94.486096 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.826301 
iter  10 value 88.481170
iter  20 value 88.143439
iter  30 value 87.774925
iter  40 value 87.494513
iter  50 value 87.488791
final  value 87.488527 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.288818 
iter  10 value 94.494321
iter  20 value 91.780835
iter  30 value 83.646103
iter  40 value 82.964876
iter  50 value 82.841762
iter  60 value 82.756526
iter  70 value 82.600650
iter  80 value 81.303004
iter  90 value 80.583555
iter 100 value 80.252174
final  value 80.252174 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 96.666270 
iter  10 value 94.471708
iter  20 value 92.682442
iter  30 value 84.621204
iter  40 value 83.714728
iter  50 value 83.692174
final  value 83.692077 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.967401 
iter  10 value 94.248826
iter  20 value 94.217783
iter  30 value 92.732359
iter  40 value 85.241905
iter  50 value 85.036051
iter  60 value 85.028833
iter  70 value 85.004330
final  value 84.994900 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.775788 
iter  10 value 94.619733
iter  20 value 94.484558
iter  30 value 94.215920
final  value 94.214249 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.958099 
iter  10 value 94.178727
iter  20 value 94.164049
iter  30 value 88.225212
iter  40 value 83.060836
iter  50 value 82.628912
iter  60 value 82.531366
iter  70 value 82.141964
iter  80 value 82.025928
iter  90 value 82.025297
final  value 82.025004 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.690599 
iter  10 value 94.492320
iter  20 value 94.455872
iter  30 value 92.856847
iter  40 value 92.812008
iter  50 value 89.133577
iter  60 value 83.956029
iter  70 value 83.949590
iter  80 value 83.536421
iter  90 value 83.466136
iter 100 value 83.459100
final  value 83.459100 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.159742 
iter  10 value 94.347565
iter  20 value 94.345405
iter  30 value 94.338103
iter  40 value 85.916930
iter  50 value 82.961262
iter  60 value 82.958780
final  value 82.958709 
converged
Fitting Repeat 4 

# weights:  507
initial  value 119.281140 
iter  10 value 94.475049
iter  20 value 94.245387
iter  30 value 89.088528
iter  40 value 88.262504
iter  50 value 85.271271
iter  60 value 85.101083
iter  70 value 85.096836
iter  80 value 85.092277
iter  90 value 85.029941
iter 100 value 84.987749
final  value 84.987749 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 100.395455 
iter  10 value 94.488655
iter  20 value 92.044793
iter  30 value 83.012454
iter  40 value 82.933840
iter  50 value 81.861280
iter  60 value 81.813628
iter  70 value 81.806210
iter  80 value 81.804842
iter  90 value 81.701697
iter 100 value 81.681461
final  value 81.681461 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.345969 
iter  10 value 93.328263
iter  10 value 93.328262
iter  10 value 93.328262
final  value 93.328262 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.850345 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.083820 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.219053 
final  value 93.860363 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.721210 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.429402 
final  value 94.052874 
converged
Fitting Repeat 2 

# weights:  305
initial  value 118.732668 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.640890 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 112.442441 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.245524 
final  value 94.052907 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.371238 
iter  10 value 84.051812
iter  20 value 83.825766
iter  30 value 83.816107
iter  40 value 83.791704
iter  50 value 83.728842
iter  60 value 83.705556
iter  60 value 83.705556
iter  60 value 83.705556
final  value 83.705556 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.667569 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.515027 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.831942 
iter  10 value 86.300941
iter  20 value 86.021362
iter  30 value 86.018728
final  value 86.018717 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.853551 
iter  10 value 84.113150
iter  20 value 83.656404
final  value 83.627418 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.382804 
iter  10 value 93.943177
iter  20 value 89.928079
iter  30 value 85.462095
iter  40 value 83.846840
iter  50 value 81.587905
iter  60 value 81.364848
iter  70 value 80.983109
iter  80 value 80.639670
iter  90 value 80.633004
iter 100 value 80.628045
final  value 80.628045 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 99.261996 
iter  10 value 94.045502
iter  20 value 93.143058
iter  30 value 90.632696
iter  40 value 85.257854
iter  50 value 83.815483
iter  60 value 81.232545
iter  70 value 80.988410
iter  80 value 80.660389
iter  90 value 80.375470
final  value 80.372091 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.009077 
iter  10 value 94.056740
iter  20 value 90.992201
iter  30 value 83.508547
iter  40 value 83.341392
iter  50 value 83.237008
iter  60 value 83.211576
final  value 83.209253 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.546324 
iter  10 value 94.482877
iter  20 value 93.707369
iter  30 value 90.713780
iter  40 value 90.649807
iter  50 value 89.751029
iter  60 value 86.205894
iter  70 value 83.627288
iter  80 value 83.506137
iter  90 value 83.261618
iter 100 value 83.212804
final  value 83.212804 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.135768 
iter  10 value 94.044197
iter  20 value 93.573124
iter  30 value 85.587079
iter  40 value 83.533050
iter  50 value 83.301329
iter  60 value 83.076601
iter  70 value 83.015195
iter  80 value 83.004081
iter  90 value 82.982276
final  value 82.979048 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.960509 
iter  10 value 94.063154
iter  20 value 85.533161
iter  30 value 83.571557
iter  40 value 82.908077
iter  50 value 82.840468
final  value 82.832179 
converged
Fitting Repeat 2 

# weights:  305
initial  value 114.001231 
iter  10 value 93.992049
iter  20 value 93.787785
iter  30 value 91.238731
iter  40 value 85.916757
iter  50 value 84.776621
iter  60 value 83.369753
iter  70 value 82.882286
iter  80 value 81.668407
iter  90 value 80.308590
iter 100 value 79.813318
final  value 79.813318 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.940124 
iter  10 value 94.067191
iter  20 value 85.723315
iter  30 value 83.686086
iter  40 value 83.075188
iter  50 value 82.869076
iter  60 value 82.024786
iter  70 value 80.425676
iter  80 value 80.000586
iter  90 value 79.412747
iter 100 value 79.001539
final  value 79.001539 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.037046 
iter  10 value 94.217257
iter  20 value 93.817231
iter  30 value 83.760201
iter  40 value 83.179180
iter  50 value 82.258898
iter  60 value 81.379311
iter  70 value 80.759473
iter  80 value 80.618386
iter  90 value 80.549705
iter 100 value 80.462334
final  value 80.462334 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.224808 
iter  10 value 93.765380
iter  20 value 93.205184
iter  30 value 85.228925
iter  40 value 81.988451
iter  50 value 80.877871
iter  60 value 80.144744
iter  70 value 79.776351
iter  80 value 79.650580
iter  90 value 79.486266
iter 100 value 79.143956
final  value 79.143956 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 125.300634 
iter  10 value 95.562171
iter  20 value 87.326297
iter  30 value 83.599147
iter  40 value 82.231183
iter  50 value 81.378897
iter  60 value 80.920896
iter  70 value 80.525565
iter  80 value 79.772949
iter  90 value 78.968327
iter 100 value 78.834685
final  value 78.834685 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.390716 
iter  10 value 94.348301
iter  20 value 90.960363
iter  30 value 88.809534
iter  40 value 82.056781
iter  50 value 81.216589
iter  60 value 80.745913
iter  70 value 80.024878
iter  80 value 79.211714
iter  90 value 78.833191
iter 100 value 78.743886
final  value 78.743886 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.281752 
iter  10 value 96.169972
iter  20 value 93.915272
iter  30 value 87.798140
iter  40 value 85.853552
iter  50 value 83.183380
iter  60 value 81.617064
iter  70 value 80.979625
iter  80 value 79.534557
iter  90 value 79.293579
iter 100 value 79.170579
final  value 79.170579 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 115.877243 
iter  10 value 94.404953
iter  20 value 86.027138
iter  30 value 84.432743
iter  40 value 83.158556
iter  50 value 81.034120
iter  60 value 80.478702
iter  70 value 79.698365
iter  80 value 79.308853
iter  90 value 79.287561
iter 100 value 79.209757
final  value 79.209757 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.943421 
iter  10 value 93.549495
iter  20 value 85.847996
iter  30 value 82.056287
iter  40 value 81.815723
iter  50 value 81.150267
iter  60 value 81.002829
iter  70 value 80.987802
iter  80 value 80.880838
iter  90 value 80.748108
iter 100 value 80.394632
final  value 80.394632 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.843924 
final  value 94.054580 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.411209 
final  value 94.054875 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.343035 
final  value 94.054692 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.289022 
final  value 94.054687 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.824721 
final  value 94.054696 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.585367 
iter  10 value 93.361401
iter  20 value 93.334449
iter  30 value 92.647660
iter  40 value 91.860539
iter  50 value 82.360619
final  value 82.109013 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.472526 
iter  10 value 94.057935
final  value 94.053190 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.587601 
iter  10 value 93.333574
iter  20 value 93.331979
iter  30 value 93.328298
iter  40 value 93.284035
iter  50 value 93.261989
iter  60 value 93.261954
iter  60 value 93.261953
iter  60 value 93.261953
final  value 93.261953 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.659870 
iter  10 value 93.065309
iter  20 value 92.095918
iter  30 value 92.073536
iter  40 value 88.248855
iter  50 value 87.993609
iter  60 value 87.506327
iter  70 value 87.502882
iter  80 value 87.501799
iter  90 value 87.501444
iter 100 value 83.503402
final  value 83.503402 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.008789 
iter  10 value 93.839165
iter  20 value 93.813946
iter  30 value 93.005812
iter  40 value 87.146681
iter  50 value 85.659776
iter  60 value 85.318587
iter  70 value 85.297144
iter  80 value 85.286603
iter  90 value 81.889516
iter 100 value 81.858562
final  value 81.858562 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.004025 
iter  10 value 93.336815
iter  20 value 93.335439
iter  30 value 91.576624
iter  40 value 90.538666
iter  50 value 89.765365
iter  60 value 88.014865
iter  70 value 85.180767
iter  80 value 84.035555
iter  90 value 84.025042
iter 100 value 84.024759
final  value 84.024759 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 97.613170 
iter  10 value 93.336578
iter  20 value 93.328576
iter  30 value 85.068073
iter  40 value 84.766261
iter  50 value 81.335853
iter  60 value 79.796619
iter  70 value 78.995466
iter  80 value 78.879861
iter  90 value 78.805461
iter 100 value 78.805026
final  value 78.805026 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 99.924748 
iter  10 value 93.335021
iter  20 value 93.271010
iter  30 value 89.643459
iter  40 value 85.556235
iter  50 value 83.971121
iter  60 value 83.883263
iter  70 value 83.852583
iter  80 value 83.850085
iter  90 value 83.770791
iter 100 value 83.750063
final  value 83.750063 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 94.936756 
iter  10 value 93.336599
iter  20 value 93.331560
iter  30 value 93.318780
iter  40 value 93.272655
final  value 93.272616 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.506773 
iter  10 value 93.759980
iter  20 value 93.469709
iter  30 value 93.467937
iter  40 value 93.302665
iter  50 value 93.264851
iter  60 value 93.261574
iter  70 value 93.162480
iter  80 value 91.429497
iter  90 value 90.773931
iter 100 value 90.771447
final  value 90.771447 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.524541 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.637612 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.162940 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.910879 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.030687 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.072576 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.625945 
final  value 93.915746 
converged
Fitting Repeat 3 

# weights:  305
initial  value 118.231267 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.268110 
final  value 93.913920 
converged
Fitting Repeat 5 

# weights:  305
initial  value 91.340349 
iter  10 value 87.488113
final  value 87.487179 
converged
Fitting Repeat 1 

# weights:  507
initial  value 136.757826 
final  value 93.628453 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.623239 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.674326 
final  value 93.913919 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.182349 
iter  10 value 92.933043
iter  20 value 92.693164
iter  30 value 92.692687
iter  30 value 92.692686
iter  30 value 92.692686
final  value 92.692686 
converged
Fitting Repeat 5 

# weights:  507
initial  value 115.730814 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.812155 
iter  10 value 93.435744
iter  20 value 86.350447
iter  30 value 83.908442
iter  40 value 83.491348
iter  50 value 82.248831
iter  60 value 81.936765
iter  70 value 81.822339
iter  70 value 81.822338
iter  70 value 81.822338
final  value 81.822338 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.751911 
iter  10 value 94.064040
iter  20 value 93.826371
iter  30 value 92.435335
iter  40 value 88.736024
iter  50 value 84.032882
iter  60 value 83.627095
iter  70 value 83.496711
iter  80 value 82.293820
iter  90 value 81.776221
iter 100 value 81.647516
final  value 81.647516 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 96.228561 
iter  10 value 92.205310
iter  20 value 91.802983
iter  30 value 91.504821
iter  40 value 91.335675
iter  50 value 91.305609
iter  60 value 91.297524
iter  60 value 91.297524
final  value 91.297524 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.713187 
iter  10 value 96.292032
iter  20 value 94.056579
iter  30 value 91.269095
iter  40 value 86.982950
iter  50 value 86.001173
iter  60 value 85.495991
iter  70 value 85.174214
iter  80 value 84.064615
iter  90 value 83.975157
final  value 83.974066 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.103256 
iter  10 value 94.054829
iter  20 value 92.775346
iter  30 value 85.905240
iter  40 value 85.147198
iter  50 value 84.965690
iter  60 value 84.394496
iter  70 value 84.129048
iter  80 value 83.946258
iter  90 value 83.663268
iter 100 value 83.544041
final  value 83.544041 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 104.274656 
iter  10 value 94.154713
iter  20 value 93.212445
iter  30 value 85.554831
iter  40 value 85.374210
iter  50 value 84.662558
iter  60 value 83.909654
iter  70 value 83.804771
iter  80 value 83.755762
iter  90 value 83.214714
iter 100 value 81.234590
final  value 81.234590 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.334265 
iter  10 value 92.906785
iter  20 value 86.351631
iter  30 value 84.600207
iter  40 value 83.868816
iter  50 value 83.329093
iter  60 value 82.165630
iter  70 value 81.852265
iter  80 value 81.505260
iter  90 value 81.348764
iter 100 value 81.124584
final  value 81.124584 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.230236 
iter  10 value 94.951539
iter  20 value 89.529060
iter  30 value 88.267537
iter  40 value 85.159227
iter  50 value 84.364180
iter  60 value 84.035073
iter  70 value 82.491992
iter  80 value 82.209577
iter  90 value 81.978482
iter 100 value 81.127007
final  value 81.127007 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 113.735582 
iter  10 value 93.953539
iter  20 value 86.606732
iter  30 value 84.978758
iter  40 value 83.853832
iter  50 value 83.778013
iter  60 value 83.753850
iter  70 value 83.345561
iter  80 value 82.204499
iter  90 value 81.649882
iter 100 value 81.180610
final  value 81.180610 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.545649 
iter  10 value 94.076387
iter  20 value 89.553215
iter  30 value 87.110239
iter  40 value 84.460140
iter  50 value 82.966517
iter  60 value 81.432577
iter  70 value 81.326006
iter  80 value 80.827092
iter  90 value 80.419422
iter 100 value 80.304739
final  value 80.304739 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.107554 
iter  10 value 94.121141
iter  20 value 89.258012
iter  30 value 86.557113
iter  40 value 83.095539
iter  50 value 82.342987
iter  60 value 82.125699
iter  70 value 81.478602
iter  80 value 81.197347
iter  90 value 80.888089
iter 100 value 80.755361
final  value 80.755361 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.814296 
iter  10 value 94.645825
iter  20 value 94.066957
iter  30 value 87.633629
iter  40 value 84.192886
iter  50 value 83.257187
iter  60 value 82.270414
iter  70 value 81.808211
iter  80 value 81.053515
iter  90 value 80.557251
iter 100 value 80.301602
final  value 80.301602 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 137.403340 
iter  10 value 102.932386
iter  20 value 100.077476
iter  30 value 96.099065
iter  40 value 89.887329
iter  50 value 87.885263
iter  60 value 84.290335
iter  70 value 81.970722
iter  80 value 81.421190
iter  90 value 80.892554
iter 100 value 80.473887
final  value 80.473887 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.983805 
iter  10 value 94.063923
iter  20 value 93.971902
iter  30 value 93.950286
iter  40 value 89.625979
iter  50 value 88.467943
iter  60 value 86.421304
iter  70 value 83.632435
iter  80 value 83.319961
iter  90 value 83.176311
iter 100 value 81.830245
final  value 81.830245 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 115.719198 
iter  10 value 93.449497
iter  20 value 86.032967
iter  30 value 83.208833
iter  40 value 81.117795
iter  50 value 80.249898
iter  60 value 79.990476
iter  70 value 79.914873
iter  80 value 79.887527
iter  90 value 79.865477
iter 100 value 79.839881
final  value 79.839881 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.347247 
iter  10 value 90.858729
iter  20 value 85.867315
iter  30 value 85.821306
iter  40 value 85.820681
iter  50 value 85.820463
final  value 85.820339 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.195408 
final  value 94.054286 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.276528 
final  value 93.871460 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.119942 
iter  10 value 94.054643
final  value 94.052987 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.764843 
final  value 94.054483 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.822050 
iter  10 value 94.060223
iter  20 value 93.936749
iter  30 value 93.879476
iter  40 value 89.188833
final  value 87.796971 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.928527 
iter  10 value 94.101018
iter  20 value 90.180715
iter  30 value 86.229733
iter  40 value 86.221296
iter  50 value 86.219358
iter  60 value 85.488772
iter  70 value 85.033552
iter  80 value 85.029833
final  value 85.029779 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.322672 
iter  10 value 94.055014
iter  20 value 92.262635
iter  30 value 92.252979
final  value 92.252951 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.957071 
iter  10 value 94.057788
iter  20 value 94.052537
iter  30 value 88.200161
iter  40 value 87.118229
iter  50 value 84.533202
iter  60 value 84.282469
final  value 84.282336 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.867365 
iter  10 value 93.909247
iter  20 value 83.545258
iter  30 value 80.707032
iter  40 value 79.807783
iter  50 value 79.792213
iter  60 value 79.789733
iter  70 value 79.761640
iter  80 value 79.689919
iter  90 value 79.399949
iter 100 value 79.188509
final  value 79.188509 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 94.528658 
iter  10 value 94.060861
iter  20 value 93.793280
iter  30 value 89.260970
iter  40 value 84.587436
iter  50 value 84.391943
iter  60 value 84.024322
iter  70 value 83.802916
iter  80 value 83.441874
iter  90 value 80.628457
iter 100 value 80.044547
final  value 80.044547 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.243463 
iter  10 value 93.924246
iter  20 value 93.916462
iter  30 value 88.781685
iter  40 value 85.828682
iter  50 value 85.816754
iter  60 value 85.792722
iter  70 value 84.654637
iter  80 value 84.602572
iter  90 value 84.582090
iter 100 value 84.450592
final  value 84.450592 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 120.763084 
iter  10 value 85.281761
iter  20 value 85.085794
iter  30 value 84.643973
iter  40 value 84.580984
iter  50 value 84.577233
iter  60 value 83.763799
iter  70 value 83.493076
final  value 83.491316 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.085554 
iter  10 value 93.923673
iter  20 value 93.917161
iter  30 value 93.856759
iter  40 value 89.732504
iter  50 value 87.349886
iter  60 value 87.348171
iter  70 value 87.347363
iter  80 value 85.749071
iter  90 value 85.713046
final  value 85.712150 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.286036 
iter  10 value 94.061363
iter  20 value 93.784387
iter  30 value 91.482223
iter  40 value 91.471144
iter  50 value 91.450054
iter  60 value 84.512905
iter  70 value 84.452300
iter  80 value 84.450729
final  value 84.450556 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.626269 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.773743 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.163111 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.269898 
final  value 94.443243 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.280592 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.393350 
iter  10 value 94.347952
iter  20 value 94.346670
final  value 94.346669 
converged
Fitting Repeat 2 

# weights:  305
initial  value 109.997706 
final  value 94.443243 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.810303 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.287121 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.905683 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.206062 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.478165 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.104553 
iter  10 value 94.443243
iter  10 value 94.443243
iter  10 value 94.443243
final  value 94.443243 
converged
Fitting Repeat 4 

# weights:  507
initial  value 118.293885 
iter  10 value 93.682166
iter  20 value 91.890395
iter  30 value 91.861848
iter  30 value 91.861847
iter  30 value 91.861847
final  value 91.861847 
converged
Fitting Repeat 5 

# weights:  507
initial  value 112.875028 
iter  10 value 93.750014
iter  20 value 93.672865
final  value 93.672727 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.174591 
iter  10 value 94.390175
iter  20 value 93.928706
iter  30 value 93.857660
iter  40 value 90.480913
iter  50 value 89.307237
iter  60 value 87.282662
iter  70 value 86.703472
iter  80 value 86.390505
iter  90 value 86.339460
iter 100 value 86.326858
final  value 86.326858 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 98.610693 
iter  10 value 94.492115
iter  20 value 94.444892
iter  30 value 87.829352
iter  40 value 87.233613
iter  50 value 86.912016
iter  60 value 86.761749
iter  70 value 86.712575
iter  80 value 86.680023
final  value 86.678090 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.243629 
iter  10 value 94.470886
iter  20 value 93.809539
iter  30 value 91.916365
iter  40 value 91.404031
iter  50 value 91.242224
iter  60 value 91.216104
iter  70 value 91.215827
iter  70 value 91.215826
iter  70 value 91.215826
final  value 91.215826 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.367242 
iter  10 value 94.486601
iter  20 value 94.107668
iter  30 value 92.591786
iter  40 value 91.807990
iter  50 value 87.080962
iter  60 value 86.788265
iter  70 value 86.679483
iter  80 value 86.678102
final  value 86.678092 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.317051 
iter  10 value 95.099977
iter  20 value 94.461819
iter  30 value 92.463453
iter  40 value 91.540485
iter  50 value 87.415640
iter  60 value 87.180334
iter  70 value 87.057240
iter  80 value 85.898971
iter  90 value 84.592713
iter 100 value 84.478057
final  value 84.478057 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 114.165640 
iter  10 value 94.289499
iter  20 value 90.857774
iter  30 value 87.156717
iter  40 value 86.159838
iter  50 value 84.621472
iter  60 value 84.311689
iter  70 value 83.812785
iter  80 value 83.620362
iter  90 value 83.495696
iter 100 value 83.483348
final  value 83.483348 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.935986 
iter  10 value 94.450514
iter  20 value 90.313316
iter  30 value 89.091882
iter  40 value 87.172858
iter  50 value 85.541415
iter  60 value 85.369014
iter  70 value 85.111897
iter  80 value 84.986701
iter  90 value 84.591584
iter 100 value 83.746462
final  value 83.746462 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.252645 
iter  10 value 93.996655
iter  20 value 89.706605
iter  30 value 86.980561
iter  40 value 85.183588
iter  50 value 84.608521
iter  60 value 84.303384
iter  70 value 84.147523
iter  80 value 83.701119
iter  90 value 83.438991
iter 100 value 83.395822
final  value 83.395822 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.710776 
iter  10 value 94.424243
iter  20 value 92.914590
iter  30 value 89.089168
iter  40 value 87.351540
iter  50 value 86.293624
iter  60 value 86.104241
iter  70 value 86.009081
iter  80 value 85.941782
iter  90 value 85.908899
iter 100 value 85.741326
final  value 85.741326 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 118.298965 
iter  10 value 94.518087
iter  20 value 92.991963
iter  30 value 89.455379
iter  40 value 87.368871
iter  50 value 85.598960
iter  60 value 84.517645
iter  70 value 84.380781
iter  80 value 84.001708
iter  90 value 83.701667
iter 100 value 83.415384
final  value 83.415384 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 105.300453 
iter  10 value 94.428968
iter  20 value 90.922019
iter  30 value 88.431698
iter  40 value 86.038781
iter  50 value 85.607589
iter  60 value 84.686135
iter  70 value 84.481857
iter  80 value 84.309462
iter  90 value 84.298111
iter 100 value 84.194285
final  value 84.194285 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.785801 
iter  10 value 95.025058
iter  20 value 89.368062
iter  30 value 88.885559
iter  40 value 88.575212
iter  50 value 86.674954
iter  60 value 84.859249
iter  70 value 84.429426
iter  80 value 84.043876
iter  90 value 83.718966
iter 100 value 83.695101
final  value 83.695101 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.068194 
iter  10 value 94.624578
iter  20 value 94.256552
iter  30 value 90.373267
iter  40 value 87.907935
iter  50 value 87.179838
iter  60 value 85.354487
iter  70 value 84.667282
iter  80 value 84.584081
iter  90 value 84.197503
iter 100 value 83.695767
final  value 83.695767 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.847886 
iter  10 value 94.226914
iter  20 value 91.372145
iter  30 value 87.148374
iter  40 value 86.401554
iter  50 value 84.669813
iter  60 value 84.042546
iter  70 value 83.582298
iter  80 value 83.412670
iter  90 value 83.376255
iter 100 value 83.276691
final  value 83.276691 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 114.401873 
iter  10 value 94.743618
iter  20 value 92.482552
iter  30 value 89.364582
iter  40 value 86.802036
iter  50 value 86.145763
iter  60 value 85.244394
iter  70 value 84.442058
iter  80 value 83.925726
iter  90 value 83.754662
iter 100 value 83.602005
final  value 83.602005 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 104.373025 
iter  10 value 94.485809
iter  20 value 94.484016
iter  30 value 92.655256
iter  40 value 88.658764
iter  50 value 88.304535
iter  60 value 88.203526
iter  70 value 87.999255
iter  80 value 87.837510
iter  80 value 87.837510
iter  80 value 87.837510
final  value 87.837510 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.549241 
final  value 94.485693 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.484833 
final  value 94.485751 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.854838 
final  value 94.485812 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.621939 
final  value 94.485600 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.142526 
iter  10 value 94.488531
iter  20 value 94.452884
iter  30 value 92.174948
iter  40 value 92.108348
iter  50 value 90.980717
iter  60 value 90.819110
final  value 90.783961 
converged
Fitting Repeat 2 

# weights:  305
initial  value 117.343461 
iter  10 value 94.489143
iter  20 value 94.351530
iter  30 value 87.294718
iter  40 value 86.842845
iter  50 value 86.841946
iter  60 value 86.826607
iter  70 value 86.700238
iter  80 value 86.341612
iter  90 value 83.926191
iter 100 value 83.466364
final  value 83.466364 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.134191 
iter  10 value 94.489254
iter  20 value 94.454662
iter  30 value 92.047760
iter  40 value 90.538148
iter  50 value 90.536875
final  value 90.535716 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.789107 
iter  10 value 93.689225
iter  20 value 93.579627
iter  30 value 92.788746
iter  40 value 92.771217
iter  50 value 92.397803
iter  60 value 86.541261
final  value 86.056148 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.162156 
iter  10 value 94.488758
iter  20 value 94.473650
iter  30 value 93.912383
iter  40 value 91.359944
iter  50 value 90.132130
iter  60 value 89.392322
iter  70 value 89.358252
iter  80 value 89.289115
final  value 89.289054 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.581824 
iter  10 value 94.491953
iter  20 value 94.477431
iter  30 value 94.447829
iter  40 value 94.443390
iter  50 value 93.392728
iter  60 value 91.862410
iter  70 value 91.803017
iter  80 value 88.777496
iter  90 value 84.345138
iter 100 value 83.971407
final  value 83.971407 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.719275 
iter  10 value 94.451374
iter  20 value 94.444077
iter  30 value 92.826901
iter  40 value 90.728964
iter  50 value 85.509710
iter  60 value 84.255524
iter  70 value 83.427182
iter  80 value 82.990074
iter  90 value 82.988413
final  value 82.988410 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.811681 
iter  10 value 89.816891
iter  20 value 87.236239
iter  30 value 84.654031
iter  40 value 84.386731
iter  50 value 84.307851
iter  60 value 84.303319
iter  70 value 84.117194
iter  80 value 83.592355
iter  90 value 83.262960
iter 100 value 83.256890
final  value 83.256890 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.257250 
iter  10 value 94.492730
iter  20 value 94.483286
iter  30 value 89.362907
iter  40 value 88.625823
iter  50 value 88.374412
iter  60 value 84.241809
iter  70 value 84.126982
iter  80 value 84.071153
iter  90 value 84.068924
iter 100 value 84.064545
final  value 84.064545 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 95.263466 
iter  10 value 94.346070
iter  20 value 94.342778
iter  30 value 94.316558
iter  40 value 94.307918
iter  50 value 94.307843
final  value 94.307466 
converged
Fitting Repeat 1 

# weights:  305
initial  value 124.735521 
iter  10 value 117.782918
iter  20 value 111.312563
iter  30 value 105.601327
iter  40 value 102.092190
iter  50 value 101.309713
iter  60 value 101.067363
iter  70 value 100.839488
iter  80 value 100.725085
iter  90 value 100.611339
iter 100 value 100.592855
final  value 100.592855 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 138.958791 
iter  10 value 117.897852
iter  20 value 117.667995
iter  30 value 116.324043
iter  40 value 112.383480
iter  50 value 106.228063
iter  60 value 102.517600
iter  70 value 101.843749
iter  80 value 101.145067
iter  90 value 101.039465
iter 100 value 100.895773
final  value 100.895773 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 133.224977 
iter  10 value 117.920736
iter  20 value 111.933322
iter  30 value 108.215124
iter  40 value 107.691490
iter  50 value 106.924242
iter  60 value 105.725000
iter  70 value 103.291836
iter  80 value 102.671057
iter  90 value 102.331703
iter 100 value 101.391677
final  value 101.391677 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 128.652352 
iter  10 value 117.855084
iter  20 value 113.538240
iter  30 value 108.810361
iter  40 value 105.203052
iter  50 value 103.688156
iter  60 value 103.445238
iter  70 value 103.127103
iter  80 value 103.027769
iter  90 value 102.802990
iter 100 value 102.024612
final  value 102.024612 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 128.069864 
iter  10 value 117.768634
iter  20 value 114.522949
iter  30 value 111.139245
iter  40 value 108.473094
iter  50 value 106.529237
iter  60 value 103.261747
iter  70 value 103.181429
iter  80 value 101.934072
iter  90 value 101.590514
iter 100 value 101.057046
final  value 101.057046 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Mar 21 02:37:05 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  42.40    1.54   92.25 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.56 1.8536.42
FreqInteractors0.250.040.31
calculateAAC0.050.020.06
calculateAutocor0.760.060.83
calculateCTDC0.090.000.10
calculateCTDD0.750.020.76
calculateCTDT0.360.030.39
calculateCTriad0.310.060.38
calculateDC0.080.020.09
calculateF0.360.000.36
calculateKSAAP0.130.010.14
calculateQD_Sm2.090.172.27
calculateTC1.840.162.00
calculateTC_Sm0.300.030.33
corr_plot34.47 1.8536.37
enrichfindP 0.75 0.0913.77
enrichfind_hp0.110.011.08
enrichplot0.420.040.45
filter_missing_values000
getFASTA0.020.012.30
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.100.000.09
pred_ensembel14.21 0.4213.05
var_imp35.16 1.4636.61