Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-24 12:06 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4521 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4448 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4414 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-21 02:31:30 -0400 (Fri, 21 Mar 2025) |
EndedAt: 2025-03-21 02:37:17 -0400 (Fri, 21 Mar 2025) |
EllapsedTime: 346.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.3 (2025-02-28 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.16 1.46 36.61 FSmethod 34.56 1.85 36.42 corr_plot 34.47 1.85 36.37 pred_ensembel 14.21 0.42 13.05 enrichfindP 0.75 0.09 13.77 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.178187 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.868128 final value 94.400000 converged Fitting Repeat 3 # weights: 103 initial value 99.700032 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.077698 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 105.974551 final value 94.484210 converged Fitting Repeat 1 # weights: 305 initial value 101.474673 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 102.740664 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.349770 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 97.740541 iter 10 value 85.440769 iter 20 value 83.789197 iter 30 value 83.783361 final value 83.783302 converged Fitting Repeat 5 # weights: 305 initial value 100.142395 iter 10 value 93.982194 iter 20 value 93.935266 final value 93.935239 converged Fitting Repeat 1 # weights: 507 initial value 117.770121 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 107.400652 iter 10 value 89.695896 iter 20 value 81.332111 iter 30 value 81.181906 iter 40 value 81.176188 iter 50 value 81.158580 final value 81.144105 converged Fitting Repeat 3 # weights: 507 initial value 99.861512 iter 10 value 92.148621 iter 20 value 91.960649 final value 91.960591 converged Fitting Repeat 4 # weights: 507 initial value 111.264941 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 111.542808 iter 10 value 94.299937 final value 94.299824 converged Fitting Repeat 1 # weights: 103 initial value 104.152985 iter 10 value 94.478629 iter 20 value 85.319700 iter 30 value 83.964553 iter 40 value 83.906631 iter 50 value 83.869191 iter 60 value 83.270084 iter 70 value 83.036693 final value 83.036059 converged Fitting Repeat 2 # weights: 103 initial value 97.300220 iter 10 value 94.531248 final value 94.488541 converged Fitting Repeat 3 # weights: 103 initial value 101.801181 iter 10 value 94.508351 iter 20 value 94.487127 iter 30 value 94.455015 iter 40 value 94.015609 iter 50 value 89.992545 iter 60 value 84.936624 iter 70 value 83.878012 iter 80 value 83.231174 iter 90 value 83.096049 iter 100 value 83.093598 final value 83.093598 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.502349 iter 10 value 94.356231 iter 20 value 91.028120 iter 30 value 88.749227 iter 40 value 84.559991 iter 50 value 84.066654 iter 60 value 83.327797 iter 70 value 83.109604 iter 80 value 83.093620 final value 83.093595 converged Fitting Repeat 5 # weights: 103 initial value 100.446996 iter 10 value 94.489292 iter 20 value 94.163224 iter 30 value 86.980051 iter 40 value 86.431272 iter 50 value 86.126423 iter 60 value 85.941007 iter 70 value 83.693967 iter 80 value 83.110186 final value 83.093596 converged Fitting Repeat 1 # weights: 305 initial value 105.980765 iter 10 value 94.489065 iter 20 value 94.242803 iter 30 value 93.919387 iter 40 value 92.071700 iter 50 value 85.138184 iter 60 value 83.858120 iter 70 value 83.336743 iter 80 value 82.649885 iter 90 value 82.505016 iter 100 value 80.890118 final value 80.890118 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.313369 iter 10 value 94.352932 iter 20 value 89.682088 iter 30 value 83.806266 iter 40 value 83.034351 iter 50 value 82.684164 iter 60 value 82.582519 iter 70 value 82.354195 iter 80 value 81.991270 iter 90 value 81.802789 iter 100 value 81.669545 final value 81.669545 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 125.154345 iter 10 value 93.719593 iter 20 value 89.805611 iter 30 value 84.126321 iter 40 value 81.599641 iter 50 value 80.821167 iter 60 value 80.540239 iter 70 value 80.451710 iter 80 value 80.319169 iter 90 value 80.296844 iter 100 value 80.262528 final value 80.262528 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.614795 iter 10 value 92.532260 iter 20 value 88.730689 iter 30 value 85.788699 iter 40 value 85.581768 iter 50 value 84.049798 iter 60 value 80.054330 iter 70 value 78.842954 iter 80 value 78.462375 iter 90 value 78.311605 iter 100 value 78.253851 final value 78.253851 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.086828 iter 10 value 91.263037 iter 20 value 85.138393 iter 30 value 84.577699 iter 40 value 84.088305 iter 50 value 83.363200 iter 60 value 82.975045 iter 70 value 82.584999 iter 80 value 82.328033 iter 90 value 81.061987 iter 100 value 80.116788 final value 80.116788 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.025141 iter 10 value 94.495627 iter 20 value 94.164653 iter 30 value 85.002980 iter 40 value 83.811751 iter 50 value 82.849435 iter 60 value 82.738646 iter 70 value 82.511170 iter 80 value 81.492693 iter 90 value 80.630541 iter 100 value 80.144775 final value 80.144775 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.259577 iter 10 value 94.431478 iter 20 value 89.858307 iter 30 value 86.985459 iter 40 value 86.100262 iter 50 value 85.432435 iter 60 value 84.779166 iter 70 value 81.859102 iter 80 value 79.911192 iter 90 value 78.996199 iter 100 value 78.836241 final value 78.836241 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.737978 iter 10 value 94.238464 iter 20 value 86.171230 iter 30 value 84.097868 iter 40 value 83.612829 iter 50 value 80.435864 iter 60 value 79.887997 iter 70 value 79.633701 iter 80 value 79.384148 iter 90 value 79.119458 iter 100 value 79.051356 final value 79.051356 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.553825 iter 10 value 94.542356 iter 20 value 86.949833 iter 30 value 84.625321 iter 40 value 82.713997 iter 50 value 81.895277 iter 60 value 80.863013 iter 70 value 80.212245 iter 80 value 80.025385 iter 90 value 79.120429 iter 100 value 78.494787 final value 78.494787 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.226692 iter 10 value 94.546614 iter 20 value 91.828272 iter 30 value 83.739302 iter 40 value 82.417282 iter 50 value 81.262692 iter 60 value 80.630778 iter 70 value 80.248617 iter 80 value 79.936370 iter 90 value 79.297323 iter 100 value 78.964276 final value 78.964276 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.409667 final value 94.485853 converged Fitting Repeat 2 # weights: 103 initial value 97.457428 iter 10 value 94.485864 final value 94.484297 converged Fitting Repeat 3 # weights: 103 initial value 103.737357 final value 94.485741 converged Fitting Repeat 4 # weights: 103 initial value 111.899576 final value 94.485542 converged Fitting Repeat 5 # weights: 103 initial value 96.112800 final value 94.485962 converged Fitting Repeat 1 # weights: 305 initial value 97.265973 iter 10 value 94.489423 iter 20 value 93.788643 iter 30 value 93.786858 iter 40 value 83.470728 final value 83.378766 converged Fitting Repeat 2 # weights: 305 initial value 98.520516 iter 10 value 94.489049 iter 20 value 94.276183 iter 30 value 92.314003 iter 40 value 82.402547 iter 50 value 81.825250 iter 60 value 81.724320 final value 81.724226 converged Fitting Repeat 3 # weights: 305 initial value 98.525496 iter 10 value 94.149887 iter 20 value 94.015041 iter 30 value 93.747584 iter 40 value 85.771466 iter 50 value 85.446133 iter 60 value 85.422031 final value 85.416268 converged Fitting Repeat 4 # weights: 305 initial value 108.069361 final value 94.489099 converged Fitting Repeat 5 # weights: 305 initial value 100.739452 iter 10 value 94.489031 iter 20 value 94.484221 iter 20 value 94.484221 final value 94.484221 converged Fitting Repeat 1 # weights: 507 initial value 95.459965 iter 10 value 94.475067 iter 20 value 94.395118 iter 30 value 87.941526 iter 40 value 84.822827 final value 84.815244 converged Fitting Repeat 2 # weights: 507 initial value 98.936139 iter 10 value 94.474956 iter 20 value 94.400596 iter 30 value 91.715914 iter 40 value 87.100702 iter 50 value 87.100502 iter 60 value 86.890131 final value 86.888969 converged Fitting Repeat 3 # weights: 507 initial value 115.203004 iter 10 value 94.492245 iter 20 value 94.365655 iter 30 value 84.359482 iter 40 value 84.358432 iter 50 value 83.937885 iter 60 value 81.206179 iter 70 value 79.613265 iter 80 value 79.482224 iter 90 value 79.472641 iter 100 value 79.472515 final value 79.472515 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.093127 iter 10 value 94.060104 iter 20 value 93.979167 iter 30 value 84.247533 iter 40 value 83.833708 iter 50 value 82.689356 iter 60 value 82.551181 iter 70 value 82.550017 iter 80 value 82.549766 final value 82.549556 converged Fitting Repeat 5 # weights: 507 initial value 101.417159 iter 10 value 94.492866 iter 20 value 94.441866 iter 30 value 85.551166 iter 40 value 83.406398 iter 50 value 83.397374 iter 60 value 83.377094 iter 70 value 83.368014 iter 80 value 82.011927 iter 90 value 81.318505 iter 100 value 81.250474 final value 81.250474 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.296289 iter 10 value 94.472208 final value 94.466823 converged Fitting Repeat 2 # weights: 103 initial value 97.584147 final value 94.466823 converged Fitting Repeat 3 # weights: 103 initial value 109.253625 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.509511 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.542842 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.770619 iter 10 value 93.941305 iter 10 value 93.941305 iter 10 value 93.941305 final value 93.941305 converged Fitting Repeat 2 # weights: 305 initial value 96.618198 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 94.725985 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 107.086928 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.115731 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 105.437638 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.864213 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 103.288332 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 94.252277 iter 10 value 83.811637 iter 20 value 83.380647 iter 30 value 83.281483 final value 83.281468 converged Fitting Repeat 5 # weights: 507 initial value 124.235235 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.860867 iter 10 value 94.456131 iter 20 value 93.483686 iter 30 value 85.337410 iter 40 value 84.015127 iter 50 value 83.770027 iter 60 value 83.416806 iter 70 value 83.102596 iter 80 value 82.423412 iter 90 value 81.767695 iter 100 value 81.516796 final value 81.516796 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.892527 iter 10 value 94.468028 iter 20 value 86.508076 iter 30 value 84.295870 iter 40 value 83.722945 iter 50 value 83.286220 iter 60 value 82.799907 iter 70 value 82.460710 iter 80 value 82.166392 iter 90 value 81.818824 iter 100 value 81.746311 final value 81.746311 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.178185 iter 10 value 94.487716 iter 20 value 93.978086 iter 30 value 86.922102 iter 40 value 84.973551 iter 50 value 84.643748 iter 60 value 84.461677 iter 70 value 84.272621 iter 80 value 84.167845 final value 84.163312 converged Fitting Repeat 4 # weights: 103 initial value 98.799622 iter 10 value 90.974466 iter 20 value 84.799963 iter 30 value 84.270099 iter 40 value 84.086671 iter 50 value 83.997034 iter 60 value 83.952958 final value 83.951675 converged Fitting Repeat 5 # weights: 103 initial value 98.617435 iter 10 value 94.401799 iter 20 value 88.129098 iter 30 value 87.101293 iter 40 value 86.561426 iter 50 value 86.323979 iter 60 value 83.634487 iter 70 value 83.566947 iter 80 value 83.508129 iter 90 value 83.490989 iter 100 value 83.440059 final value 83.440059 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.648135 iter 10 value 93.454778 iter 20 value 84.655549 iter 30 value 84.604671 iter 40 value 84.448236 iter 50 value 84.287797 iter 60 value 84.130850 iter 70 value 83.436773 iter 80 value 82.148960 iter 90 value 80.536198 iter 100 value 80.473546 final value 80.473546 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.490593 iter 10 value 94.531219 iter 20 value 85.351694 iter 30 value 85.023644 iter 40 value 84.421649 iter 50 value 82.854934 iter 60 value 81.190836 iter 70 value 80.566946 iter 80 value 80.422332 iter 90 value 80.301693 iter 100 value 80.067706 final value 80.067706 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.660076 iter 10 value 94.310588 iter 20 value 94.249240 iter 30 value 88.501778 iter 40 value 84.886745 iter 50 value 84.554486 iter 60 value 84.263449 iter 70 value 84.079526 iter 80 value 83.684200 iter 90 value 83.349860 iter 100 value 82.417561 final value 82.417561 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.133250 iter 10 value 95.597516 iter 20 value 92.518222 iter 30 value 92.383618 iter 40 value 92.129806 iter 50 value 89.982929 iter 60 value 87.442932 iter 70 value 84.197391 iter 80 value 83.688905 iter 90 value 83.607651 iter 100 value 83.367249 final value 83.367249 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.242813 iter 10 value 94.487319 iter 20 value 94.445224 iter 30 value 93.789346 iter 40 value 92.211577 iter 50 value 85.038053 iter 60 value 84.167149 iter 70 value 82.941339 iter 80 value 81.962948 iter 90 value 81.805475 iter 100 value 80.878974 final value 80.878974 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.714075 iter 10 value 91.148654 iter 20 value 86.745242 iter 30 value 86.609361 iter 40 value 83.998989 iter 50 value 82.600318 iter 60 value 81.346766 iter 70 value 80.560100 iter 80 value 80.436417 iter 90 value 80.403660 iter 100 value 80.395817 final value 80.395817 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.118276 iter 10 value 94.357793 iter 20 value 86.196642 iter 30 value 84.881628 iter 40 value 83.731891 iter 50 value 81.897072 iter 60 value 81.084442 iter 70 value 80.741779 iter 80 value 80.523067 iter 90 value 80.054588 iter 100 value 79.869444 final value 79.869444 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.073406 iter 10 value 95.089979 iter 20 value 87.528520 iter 30 value 84.935935 iter 40 value 84.586600 iter 50 value 84.273505 iter 60 value 83.979026 iter 70 value 83.551650 iter 80 value 82.540872 iter 90 value 81.976025 iter 100 value 81.854986 final value 81.854986 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.117705 iter 10 value 94.363029 iter 20 value 87.757545 iter 30 value 84.597160 iter 40 value 83.248757 iter 50 value 82.453119 iter 60 value 82.170506 iter 70 value 81.953631 iter 80 value 81.630331 iter 90 value 80.713621 iter 100 value 80.223555 final value 80.223555 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.036589 iter 10 value 94.424119 iter 20 value 87.220058 iter 30 value 86.176594 iter 40 value 84.389207 iter 50 value 83.927889 iter 60 value 83.873289 iter 70 value 82.566070 iter 80 value 81.797711 iter 90 value 81.184156 iter 100 value 81.065693 final value 81.065693 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.961332 iter 10 value 94.485797 iter 20 value 94.482521 iter 30 value 94.385703 iter 40 value 94.258975 final value 94.214055 converged Fitting Repeat 2 # weights: 103 initial value 101.593003 final value 94.485965 converged Fitting Repeat 3 # weights: 103 initial value 99.655481 final value 94.485794 converged Fitting Repeat 4 # weights: 103 initial value 107.698793 iter 10 value 94.485643 iter 20 value 94.466776 iter 30 value 93.980774 iter 40 value 91.186356 final value 91.177436 converged Fitting Repeat 5 # weights: 103 initial value 114.591636 final value 94.486096 converged Fitting Repeat 1 # weights: 305 initial value 95.826301 iter 10 value 88.481170 iter 20 value 88.143439 iter 30 value 87.774925 iter 40 value 87.494513 iter 50 value 87.488791 final value 87.488527 converged Fitting Repeat 2 # weights: 305 initial value 96.288818 iter 10 value 94.494321 iter 20 value 91.780835 iter 30 value 83.646103 iter 40 value 82.964876 iter 50 value 82.841762 iter 60 value 82.756526 iter 70 value 82.600650 iter 80 value 81.303004 iter 90 value 80.583555 iter 100 value 80.252174 final value 80.252174 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.666270 iter 10 value 94.471708 iter 20 value 92.682442 iter 30 value 84.621204 iter 40 value 83.714728 iter 50 value 83.692174 final value 83.692077 converged Fitting Repeat 4 # weights: 305 initial value 95.967401 iter 10 value 94.248826 iter 20 value 94.217783 iter 30 value 92.732359 iter 40 value 85.241905 iter 50 value 85.036051 iter 60 value 85.028833 iter 70 value 85.004330 final value 84.994900 converged Fitting Repeat 5 # weights: 305 initial value 101.775788 iter 10 value 94.619733 iter 20 value 94.484558 iter 30 value 94.215920 final value 94.214249 converged Fitting Repeat 1 # weights: 507 initial value 98.958099 iter 10 value 94.178727 iter 20 value 94.164049 iter 30 value 88.225212 iter 40 value 83.060836 iter 50 value 82.628912 iter 60 value 82.531366 iter 70 value 82.141964 iter 80 value 82.025928 iter 90 value 82.025297 final value 82.025004 converged Fitting Repeat 2 # weights: 507 initial value 114.690599 iter 10 value 94.492320 iter 20 value 94.455872 iter 30 value 92.856847 iter 40 value 92.812008 iter 50 value 89.133577 iter 60 value 83.956029 iter 70 value 83.949590 iter 80 value 83.536421 iter 90 value 83.466136 iter 100 value 83.459100 final value 83.459100 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.159742 iter 10 value 94.347565 iter 20 value 94.345405 iter 30 value 94.338103 iter 40 value 85.916930 iter 50 value 82.961262 iter 60 value 82.958780 final value 82.958709 converged Fitting Repeat 4 # weights: 507 initial value 119.281140 iter 10 value 94.475049 iter 20 value 94.245387 iter 30 value 89.088528 iter 40 value 88.262504 iter 50 value 85.271271 iter 60 value 85.101083 iter 70 value 85.096836 iter 80 value 85.092277 iter 90 value 85.029941 iter 100 value 84.987749 final value 84.987749 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.395455 iter 10 value 94.488655 iter 20 value 92.044793 iter 30 value 83.012454 iter 40 value 82.933840 iter 50 value 81.861280 iter 60 value 81.813628 iter 70 value 81.806210 iter 80 value 81.804842 iter 90 value 81.701697 iter 100 value 81.681461 final value 81.681461 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.345969 iter 10 value 93.328263 iter 10 value 93.328262 iter 10 value 93.328262 final value 93.328262 converged Fitting Repeat 2 # weights: 103 initial value 96.850345 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.083820 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.219053 final value 93.860363 converged Fitting Repeat 5 # weights: 103 initial value 101.721210 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.429402 final value 94.052874 converged Fitting Repeat 2 # weights: 305 initial value 118.732668 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.640890 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 112.442441 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 101.245524 final value 94.052907 converged Fitting Repeat 1 # weights: 507 initial value 98.371238 iter 10 value 84.051812 iter 20 value 83.825766 iter 30 value 83.816107 iter 40 value 83.791704 iter 50 value 83.728842 iter 60 value 83.705556 iter 60 value 83.705556 iter 60 value 83.705556 final value 83.705556 converged Fitting Repeat 2 # weights: 507 initial value 114.667569 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 104.515027 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 94.831942 iter 10 value 86.300941 iter 20 value 86.021362 iter 30 value 86.018728 final value 86.018717 converged Fitting Repeat 5 # weights: 507 initial value 104.853551 iter 10 value 84.113150 iter 20 value 83.656404 final value 83.627418 converged Fitting Repeat 1 # weights: 103 initial value 98.382804 iter 10 value 93.943177 iter 20 value 89.928079 iter 30 value 85.462095 iter 40 value 83.846840 iter 50 value 81.587905 iter 60 value 81.364848 iter 70 value 80.983109 iter 80 value 80.639670 iter 90 value 80.633004 iter 100 value 80.628045 final value 80.628045 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.261996 iter 10 value 94.045502 iter 20 value 93.143058 iter 30 value 90.632696 iter 40 value 85.257854 iter 50 value 83.815483 iter 60 value 81.232545 iter 70 value 80.988410 iter 80 value 80.660389 iter 90 value 80.375470 final value 80.372091 converged Fitting Repeat 3 # weights: 103 initial value 104.009077 iter 10 value 94.056740 iter 20 value 90.992201 iter 30 value 83.508547 iter 40 value 83.341392 iter 50 value 83.237008 iter 60 value 83.211576 final value 83.209253 converged Fitting Repeat 4 # weights: 103 initial value 100.546324 iter 10 value 94.482877 iter 20 value 93.707369 iter 30 value 90.713780 iter 40 value 90.649807 iter 50 value 89.751029 iter 60 value 86.205894 iter 70 value 83.627288 iter 80 value 83.506137 iter 90 value 83.261618 iter 100 value 83.212804 final value 83.212804 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.135768 iter 10 value 94.044197 iter 20 value 93.573124 iter 30 value 85.587079 iter 40 value 83.533050 iter 50 value 83.301329 iter 60 value 83.076601 iter 70 value 83.015195 iter 80 value 83.004081 iter 90 value 82.982276 final value 82.979048 converged Fitting Repeat 1 # weights: 305 initial value 100.960509 iter 10 value 94.063154 iter 20 value 85.533161 iter 30 value 83.571557 iter 40 value 82.908077 iter 50 value 82.840468 final value 82.832179 converged Fitting Repeat 2 # weights: 305 initial value 114.001231 iter 10 value 93.992049 iter 20 value 93.787785 iter 30 value 91.238731 iter 40 value 85.916757 iter 50 value 84.776621 iter 60 value 83.369753 iter 70 value 82.882286 iter 80 value 81.668407 iter 90 value 80.308590 iter 100 value 79.813318 final value 79.813318 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.940124 iter 10 value 94.067191 iter 20 value 85.723315 iter 30 value 83.686086 iter 40 value 83.075188 iter 50 value 82.869076 iter 60 value 82.024786 iter 70 value 80.425676 iter 80 value 80.000586 iter 90 value 79.412747 iter 100 value 79.001539 final value 79.001539 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.037046 iter 10 value 94.217257 iter 20 value 93.817231 iter 30 value 83.760201 iter 40 value 83.179180 iter 50 value 82.258898 iter 60 value 81.379311 iter 70 value 80.759473 iter 80 value 80.618386 iter 90 value 80.549705 iter 100 value 80.462334 final value 80.462334 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.224808 iter 10 value 93.765380 iter 20 value 93.205184 iter 30 value 85.228925 iter 40 value 81.988451 iter 50 value 80.877871 iter 60 value 80.144744 iter 70 value 79.776351 iter 80 value 79.650580 iter 90 value 79.486266 iter 100 value 79.143956 final value 79.143956 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.300634 iter 10 value 95.562171 iter 20 value 87.326297 iter 30 value 83.599147 iter 40 value 82.231183 iter 50 value 81.378897 iter 60 value 80.920896 iter 70 value 80.525565 iter 80 value 79.772949 iter 90 value 78.968327 iter 100 value 78.834685 final value 78.834685 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.390716 iter 10 value 94.348301 iter 20 value 90.960363 iter 30 value 88.809534 iter 40 value 82.056781 iter 50 value 81.216589 iter 60 value 80.745913 iter 70 value 80.024878 iter 80 value 79.211714 iter 90 value 78.833191 iter 100 value 78.743886 final value 78.743886 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.281752 iter 10 value 96.169972 iter 20 value 93.915272 iter 30 value 87.798140 iter 40 value 85.853552 iter 50 value 83.183380 iter 60 value 81.617064 iter 70 value 80.979625 iter 80 value 79.534557 iter 90 value 79.293579 iter 100 value 79.170579 final value 79.170579 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.877243 iter 10 value 94.404953 iter 20 value 86.027138 iter 30 value 84.432743 iter 40 value 83.158556 iter 50 value 81.034120 iter 60 value 80.478702 iter 70 value 79.698365 iter 80 value 79.308853 iter 90 value 79.287561 iter 100 value 79.209757 final value 79.209757 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.943421 iter 10 value 93.549495 iter 20 value 85.847996 iter 30 value 82.056287 iter 40 value 81.815723 iter 50 value 81.150267 iter 60 value 81.002829 iter 70 value 80.987802 iter 80 value 80.880838 iter 90 value 80.748108 iter 100 value 80.394632 final value 80.394632 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.843924 final value 94.054580 converged Fitting Repeat 2 # weights: 103 initial value 94.411209 final value 94.054875 converged Fitting Repeat 3 # weights: 103 initial value 97.343035 final value 94.054692 converged Fitting Repeat 4 # weights: 103 initial value 94.289022 final value 94.054687 converged Fitting Repeat 5 # weights: 103 initial value 105.824721 final value 94.054696 converged Fitting Repeat 1 # weights: 305 initial value 105.585367 iter 10 value 93.361401 iter 20 value 93.334449 iter 30 value 92.647660 iter 40 value 91.860539 iter 50 value 82.360619 final value 82.109013 converged Fitting Repeat 2 # weights: 305 initial value 95.472526 iter 10 value 94.057935 final value 94.053190 converged Fitting Repeat 3 # weights: 305 initial value 95.587601 iter 10 value 93.333574 iter 20 value 93.331979 iter 30 value 93.328298 iter 40 value 93.284035 iter 50 value 93.261989 iter 60 value 93.261954 iter 60 value 93.261953 iter 60 value 93.261953 final value 93.261953 converged Fitting Repeat 4 # weights: 305 initial value 108.659870 iter 10 value 93.065309 iter 20 value 92.095918 iter 30 value 92.073536 iter 40 value 88.248855 iter 50 value 87.993609 iter 60 value 87.506327 iter 70 value 87.502882 iter 80 value 87.501799 iter 90 value 87.501444 iter 100 value 83.503402 final value 83.503402 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.008789 iter 10 value 93.839165 iter 20 value 93.813946 iter 30 value 93.005812 iter 40 value 87.146681 iter 50 value 85.659776 iter 60 value 85.318587 iter 70 value 85.297144 iter 80 value 85.286603 iter 90 value 81.889516 iter 100 value 81.858562 final value 81.858562 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.004025 iter 10 value 93.336815 iter 20 value 93.335439 iter 30 value 91.576624 iter 40 value 90.538666 iter 50 value 89.765365 iter 60 value 88.014865 iter 70 value 85.180767 iter 80 value 84.035555 iter 90 value 84.025042 iter 100 value 84.024759 final value 84.024759 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.613170 iter 10 value 93.336578 iter 20 value 93.328576 iter 30 value 85.068073 iter 40 value 84.766261 iter 50 value 81.335853 iter 60 value 79.796619 iter 70 value 78.995466 iter 80 value 78.879861 iter 90 value 78.805461 iter 100 value 78.805026 final value 78.805026 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.924748 iter 10 value 93.335021 iter 20 value 93.271010 iter 30 value 89.643459 iter 40 value 85.556235 iter 50 value 83.971121 iter 60 value 83.883263 iter 70 value 83.852583 iter 80 value 83.850085 iter 90 value 83.770791 iter 100 value 83.750063 final value 83.750063 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.936756 iter 10 value 93.336599 iter 20 value 93.331560 iter 30 value 93.318780 iter 40 value 93.272655 final value 93.272616 converged Fitting Repeat 5 # weights: 507 initial value 105.506773 iter 10 value 93.759980 iter 20 value 93.469709 iter 30 value 93.467937 iter 40 value 93.302665 iter 50 value 93.264851 iter 60 value 93.261574 iter 70 value 93.162480 iter 80 value 91.429497 iter 90 value 90.773931 iter 100 value 90.771447 final value 90.771447 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.524541 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.637612 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.162940 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.910879 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 100.030687 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 108.072576 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.625945 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 118.231267 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 95.268110 final value 93.913920 converged Fitting Repeat 5 # weights: 305 initial value 91.340349 iter 10 value 87.488113 final value 87.487179 converged Fitting Repeat 1 # weights: 507 initial value 136.757826 final value 93.628453 converged Fitting Repeat 2 # weights: 507 initial value 102.623239 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 104.674326 final value 93.913919 converged Fitting Repeat 4 # weights: 507 initial value 94.182349 iter 10 value 92.933043 iter 20 value 92.693164 iter 30 value 92.692687 iter 30 value 92.692686 iter 30 value 92.692686 final value 92.692686 converged Fitting Repeat 5 # weights: 507 initial value 115.730814 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 107.812155 iter 10 value 93.435744 iter 20 value 86.350447 iter 30 value 83.908442 iter 40 value 83.491348 iter 50 value 82.248831 iter 60 value 81.936765 iter 70 value 81.822339 iter 70 value 81.822338 iter 70 value 81.822338 final value 81.822338 converged Fitting Repeat 2 # weights: 103 initial value 96.751911 iter 10 value 94.064040 iter 20 value 93.826371 iter 30 value 92.435335 iter 40 value 88.736024 iter 50 value 84.032882 iter 60 value 83.627095 iter 70 value 83.496711 iter 80 value 82.293820 iter 90 value 81.776221 iter 100 value 81.647516 final value 81.647516 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.228561 iter 10 value 92.205310 iter 20 value 91.802983 iter 30 value 91.504821 iter 40 value 91.335675 iter 50 value 91.305609 iter 60 value 91.297524 iter 60 value 91.297524 final value 91.297524 converged Fitting Repeat 4 # weights: 103 initial value 101.713187 iter 10 value 96.292032 iter 20 value 94.056579 iter 30 value 91.269095 iter 40 value 86.982950 iter 50 value 86.001173 iter 60 value 85.495991 iter 70 value 85.174214 iter 80 value 84.064615 iter 90 value 83.975157 final value 83.974066 converged Fitting Repeat 5 # weights: 103 initial value 102.103256 iter 10 value 94.054829 iter 20 value 92.775346 iter 30 value 85.905240 iter 40 value 85.147198 iter 50 value 84.965690 iter 60 value 84.394496 iter 70 value 84.129048 iter 80 value 83.946258 iter 90 value 83.663268 iter 100 value 83.544041 final value 83.544041 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.274656 iter 10 value 94.154713 iter 20 value 93.212445 iter 30 value 85.554831 iter 40 value 85.374210 iter 50 value 84.662558 iter 60 value 83.909654 iter 70 value 83.804771 iter 80 value 83.755762 iter 90 value 83.214714 iter 100 value 81.234590 final value 81.234590 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.334265 iter 10 value 92.906785 iter 20 value 86.351631 iter 30 value 84.600207 iter 40 value 83.868816 iter 50 value 83.329093 iter 60 value 82.165630 iter 70 value 81.852265 iter 80 value 81.505260 iter 90 value 81.348764 iter 100 value 81.124584 final value 81.124584 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.230236 iter 10 value 94.951539 iter 20 value 89.529060 iter 30 value 88.267537 iter 40 value 85.159227 iter 50 value 84.364180 iter 60 value 84.035073 iter 70 value 82.491992 iter 80 value 82.209577 iter 90 value 81.978482 iter 100 value 81.127007 final value 81.127007 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.735582 iter 10 value 93.953539 iter 20 value 86.606732 iter 30 value 84.978758 iter 40 value 83.853832 iter 50 value 83.778013 iter 60 value 83.753850 iter 70 value 83.345561 iter 80 value 82.204499 iter 90 value 81.649882 iter 100 value 81.180610 final value 81.180610 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.545649 iter 10 value 94.076387 iter 20 value 89.553215 iter 30 value 87.110239 iter 40 value 84.460140 iter 50 value 82.966517 iter 60 value 81.432577 iter 70 value 81.326006 iter 80 value 80.827092 iter 90 value 80.419422 iter 100 value 80.304739 final value 80.304739 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.107554 iter 10 value 94.121141 iter 20 value 89.258012 iter 30 value 86.557113 iter 40 value 83.095539 iter 50 value 82.342987 iter 60 value 82.125699 iter 70 value 81.478602 iter 80 value 81.197347 iter 90 value 80.888089 iter 100 value 80.755361 final value 80.755361 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.814296 iter 10 value 94.645825 iter 20 value 94.066957 iter 30 value 87.633629 iter 40 value 84.192886 iter 50 value 83.257187 iter 60 value 82.270414 iter 70 value 81.808211 iter 80 value 81.053515 iter 90 value 80.557251 iter 100 value 80.301602 final value 80.301602 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 137.403340 iter 10 value 102.932386 iter 20 value 100.077476 iter 30 value 96.099065 iter 40 value 89.887329 iter 50 value 87.885263 iter 60 value 84.290335 iter 70 value 81.970722 iter 80 value 81.421190 iter 90 value 80.892554 iter 100 value 80.473887 final value 80.473887 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.983805 iter 10 value 94.063923 iter 20 value 93.971902 iter 30 value 93.950286 iter 40 value 89.625979 iter 50 value 88.467943 iter 60 value 86.421304 iter 70 value 83.632435 iter 80 value 83.319961 iter 90 value 83.176311 iter 100 value 81.830245 final value 81.830245 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.719198 iter 10 value 93.449497 iter 20 value 86.032967 iter 30 value 83.208833 iter 40 value 81.117795 iter 50 value 80.249898 iter 60 value 79.990476 iter 70 value 79.914873 iter 80 value 79.887527 iter 90 value 79.865477 iter 100 value 79.839881 final value 79.839881 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.347247 iter 10 value 90.858729 iter 20 value 85.867315 iter 30 value 85.821306 iter 40 value 85.820681 iter 50 value 85.820463 final value 85.820339 converged Fitting Repeat 2 # weights: 103 initial value 94.195408 final value 94.054286 converged Fitting Repeat 3 # weights: 103 initial value 95.276528 final value 93.871460 converged Fitting Repeat 4 # weights: 103 initial value 98.119942 iter 10 value 94.054643 final value 94.052987 converged Fitting Repeat 5 # weights: 103 initial value 96.764843 final value 94.054483 converged Fitting Repeat 1 # weights: 305 initial value 95.822050 iter 10 value 94.060223 iter 20 value 93.936749 iter 30 value 93.879476 iter 40 value 89.188833 final value 87.796971 converged Fitting Repeat 2 # weights: 305 initial value 101.928527 iter 10 value 94.101018 iter 20 value 90.180715 iter 30 value 86.229733 iter 40 value 86.221296 iter 50 value 86.219358 iter 60 value 85.488772 iter 70 value 85.033552 iter 80 value 85.029833 final value 85.029779 converged Fitting Repeat 3 # weights: 305 initial value 97.322672 iter 10 value 94.055014 iter 20 value 92.262635 iter 30 value 92.252979 final value 92.252951 converged Fitting Repeat 4 # weights: 305 initial value 107.957071 iter 10 value 94.057788 iter 20 value 94.052537 iter 30 value 88.200161 iter 40 value 87.118229 iter 50 value 84.533202 iter 60 value 84.282469 final value 84.282336 converged Fitting Repeat 5 # weights: 305 initial value 96.867365 iter 10 value 93.909247 iter 20 value 83.545258 iter 30 value 80.707032 iter 40 value 79.807783 iter 50 value 79.792213 iter 60 value 79.789733 iter 70 value 79.761640 iter 80 value 79.689919 iter 90 value 79.399949 iter 100 value 79.188509 final value 79.188509 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 94.528658 iter 10 value 94.060861 iter 20 value 93.793280 iter 30 value 89.260970 iter 40 value 84.587436 iter 50 value 84.391943 iter 60 value 84.024322 iter 70 value 83.802916 iter 80 value 83.441874 iter 90 value 80.628457 iter 100 value 80.044547 final value 80.044547 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.243463 iter 10 value 93.924246 iter 20 value 93.916462 iter 30 value 88.781685 iter 40 value 85.828682 iter 50 value 85.816754 iter 60 value 85.792722 iter 70 value 84.654637 iter 80 value 84.602572 iter 90 value 84.582090 iter 100 value 84.450592 final value 84.450592 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.763084 iter 10 value 85.281761 iter 20 value 85.085794 iter 30 value 84.643973 iter 40 value 84.580984 iter 50 value 84.577233 iter 60 value 83.763799 iter 70 value 83.493076 final value 83.491316 converged Fitting Repeat 4 # weights: 507 initial value 101.085554 iter 10 value 93.923673 iter 20 value 93.917161 iter 30 value 93.856759 iter 40 value 89.732504 iter 50 value 87.349886 iter 60 value 87.348171 iter 70 value 87.347363 iter 80 value 85.749071 iter 90 value 85.713046 final value 85.712150 converged Fitting Repeat 5 # weights: 507 initial value 111.286036 iter 10 value 94.061363 iter 20 value 93.784387 iter 30 value 91.482223 iter 40 value 91.471144 iter 50 value 91.450054 iter 60 value 84.512905 iter 70 value 84.452300 iter 80 value 84.450729 final value 84.450556 converged Fitting Repeat 1 # weights: 103 initial value 99.626269 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.773743 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.163111 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.269898 final value 94.443243 converged Fitting Repeat 5 # weights: 103 initial value 96.280592 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.393350 iter 10 value 94.347952 iter 20 value 94.346670 final value 94.346669 converged Fitting Repeat 2 # weights: 305 initial value 109.997706 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 96.810303 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.287121 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 104.905683 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.206062 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 110.478165 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 99.104553 iter 10 value 94.443243 iter 10 value 94.443243 iter 10 value 94.443243 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 118.293885 iter 10 value 93.682166 iter 20 value 91.890395 iter 30 value 91.861848 iter 30 value 91.861847 iter 30 value 91.861847 final value 91.861847 converged Fitting Repeat 5 # weights: 507 initial value 112.875028 iter 10 value 93.750014 iter 20 value 93.672865 final value 93.672727 converged Fitting Repeat 1 # weights: 103 initial value 102.174591 iter 10 value 94.390175 iter 20 value 93.928706 iter 30 value 93.857660 iter 40 value 90.480913 iter 50 value 89.307237 iter 60 value 87.282662 iter 70 value 86.703472 iter 80 value 86.390505 iter 90 value 86.339460 iter 100 value 86.326858 final value 86.326858 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.610693 iter 10 value 94.492115 iter 20 value 94.444892 iter 30 value 87.829352 iter 40 value 87.233613 iter 50 value 86.912016 iter 60 value 86.761749 iter 70 value 86.712575 iter 80 value 86.680023 final value 86.678090 converged Fitting Repeat 3 # weights: 103 initial value 102.243629 iter 10 value 94.470886 iter 20 value 93.809539 iter 30 value 91.916365 iter 40 value 91.404031 iter 50 value 91.242224 iter 60 value 91.216104 iter 70 value 91.215827 iter 70 value 91.215826 iter 70 value 91.215826 final value 91.215826 converged Fitting Repeat 4 # weights: 103 initial value 102.367242 iter 10 value 94.486601 iter 20 value 94.107668 iter 30 value 92.591786 iter 40 value 91.807990 iter 50 value 87.080962 iter 60 value 86.788265 iter 70 value 86.679483 iter 80 value 86.678102 final value 86.678092 converged Fitting Repeat 5 # weights: 103 initial value 102.317051 iter 10 value 95.099977 iter 20 value 94.461819 iter 30 value 92.463453 iter 40 value 91.540485 iter 50 value 87.415640 iter 60 value 87.180334 iter 70 value 87.057240 iter 80 value 85.898971 iter 90 value 84.592713 iter 100 value 84.478057 final value 84.478057 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.165640 iter 10 value 94.289499 iter 20 value 90.857774 iter 30 value 87.156717 iter 40 value 86.159838 iter 50 value 84.621472 iter 60 value 84.311689 iter 70 value 83.812785 iter 80 value 83.620362 iter 90 value 83.495696 iter 100 value 83.483348 final value 83.483348 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.935986 iter 10 value 94.450514 iter 20 value 90.313316 iter 30 value 89.091882 iter 40 value 87.172858 iter 50 value 85.541415 iter 60 value 85.369014 iter 70 value 85.111897 iter 80 value 84.986701 iter 90 value 84.591584 iter 100 value 83.746462 final value 83.746462 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.252645 iter 10 value 93.996655 iter 20 value 89.706605 iter 30 value 86.980561 iter 40 value 85.183588 iter 50 value 84.608521 iter 60 value 84.303384 iter 70 value 84.147523 iter 80 value 83.701119 iter 90 value 83.438991 iter 100 value 83.395822 final value 83.395822 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.710776 iter 10 value 94.424243 iter 20 value 92.914590 iter 30 value 89.089168 iter 40 value 87.351540 iter 50 value 86.293624 iter 60 value 86.104241 iter 70 value 86.009081 iter 80 value 85.941782 iter 90 value 85.908899 iter 100 value 85.741326 final value 85.741326 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.298965 iter 10 value 94.518087 iter 20 value 92.991963 iter 30 value 89.455379 iter 40 value 87.368871 iter 50 value 85.598960 iter 60 value 84.517645 iter 70 value 84.380781 iter 80 value 84.001708 iter 90 value 83.701667 iter 100 value 83.415384 final value 83.415384 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.300453 iter 10 value 94.428968 iter 20 value 90.922019 iter 30 value 88.431698 iter 40 value 86.038781 iter 50 value 85.607589 iter 60 value 84.686135 iter 70 value 84.481857 iter 80 value 84.309462 iter 90 value 84.298111 iter 100 value 84.194285 final value 84.194285 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.785801 iter 10 value 95.025058 iter 20 value 89.368062 iter 30 value 88.885559 iter 40 value 88.575212 iter 50 value 86.674954 iter 60 value 84.859249 iter 70 value 84.429426 iter 80 value 84.043876 iter 90 value 83.718966 iter 100 value 83.695101 final value 83.695101 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.068194 iter 10 value 94.624578 iter 20 value 94.256552 iter 30 value 90.373267 iter 40 value 87.907935 iter 50 value 87.179838 iter 60 value 85.354487 iter 70 value 84.667282 iter 80 value 84.584081 iter 90 value 84.197503 iter 100 value 83.695767 final value 83.695767 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.847886 iter 10 value 94.226914 iter 20 value 91.372145 iter 30 value 87.148374 iter 40 value 86.401554 iter 50 value 84.669813 iter 60 value 84.042546 iter 70 value 83.582298 iter 80 value 83.412670 iter 90 value 83.376255 iter 100 value 83.276691 final value 83.276691 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.401873 iter 10 value 94.743618 iter 20 value 92.482552 iter 30 value 89.364582 iter 40 value 86.802036 iter 50 value 86.145763 iter 60 value 85.244394 iter 70 value 84.442058 iter 80 value 83.925726 iter 90 value 83.754662 iter 100 value 83.602005 final value 83.602005 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.373025 iter 10 value 94.485809 iter 20 value 94.484016 iter 30 value 92.655256 iter 40 value 88.658764 iter 50 value 88.304535 iter 60 value 88.203526 iter 70 value 87.999255 iter 80 value 87.837510 iter 80 value 87.837510 iter 80 value 87.837510 final value 87.837510 converged Fitting Repeat 2 # weights: 103 initial value 102.549241 final value 94.485693 converged Fitting Repeat 3 # weights: 103 initial value 102.484833 final value 94.485751 converged Fitting Repeat 4 # weights: 103 initial value 96.854838 final value 94.485812 converged Fitting Repeat 5 # weights: 103 initial value 96.621939 final value 94.485600 converged Fitting Repeat 1 # weights: 305 initial value 106.142526 iter 10 value 94.488531 iter 20 value 94.452884 iter 30 value 92.174948 iter 40 value 92.108348 iter 50 value 90.980717 iter 60 value 90.819110 final value 90.783961 converged Fitting Repeat 2 # weights: 305 initial value 117.343461 iter 10 value 94.489143 iter 20 value 94.351530 iter 30 value 87.294718 iter 40 value 86.842845 iter 50 value 86.841946 iter 60 value 86.826607 iter 70 value 86.700238 iter 80 value 86.341612 iter 90 value 83.926191 iter 100 value 83.466364 final value 83.466364 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.134191 iter 10 value 94.489254 iter 20 value 94.454662 iter 30 value 92.047760 iter 40 value 90.538148 iter 50 value 90.536875 final value 90.535716 converged Fitting Repeat 4 # weights: 305 initial value 96.789107 iter 10 value 93.689225 iter 20 value 93.579627 iter 30 value 92.788746 iter 40 value 92.771217 iter 50 value 92.397803 iter 60 value 86.541261 final value 86.056148 converged Fitting Repeat 5 # weights: 305 initial value 101.162156 iter 10 value 94.488758 iter 20 value 94.473650 iter 30 value 93.912383 iter 40 value 91.359944 iter 50 value 90.132130 iter 60 value 89.392322 iter 70 value 89.358252 iter 80 value 89.289115 final value 89.289054 converged Fitting Repeat 1 # weights: 507 initial value 102.581824 iter 10 value 94.491953 iter 20 value 94.477431 iter 30 value 94.447829 iter 40 value 94.443390 iter 50 value 93.392728 iter 60 value 91.862410 iter 70 value 91.803017 iter 80 value 88.777496 iter 90 value 84.345138 iter 100 value 83.971407 final value 83.971407 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.719275 iter 10 value 94.451374 iter 20 value 94.444077 iter 30 value 92.826901 iter 40 value 90.728964 iter 50 value 85.509710 iter 60 value 84.255524 iter 70 value 83.427182 iter 80 value 82.990074 iter 90 value 82.988413 final value 82.988410 converged Fitting Repeat 3 # weights: 507 initial value 95.811681 iter 10 value 89.816891 iter 20 value 87.236239 iter 30 value 84.654031 iter 40 value 84.386731 iter 50 value 84.307851 iter 60 value 84.303319 iter 70 value 84.117194 iter 80 value 83.592355 iter 90 value 83.262960 iter 100 value 83.256890 final value 83.256890 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.257250 iter 10 value 94.492730 iter 20 value 94.483286 iter 30 value 89.362907 iter 40 value 88.625823 iter 50 value 88.374412 iter 60 value 84.241809 iter 70 value 84.126982 iter 80 value 84.071153 iter 90 value 84.068924 iter 100 value 84.064545 final value 84.064545 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.263466 iter 10 value 94.346070 iter 20 value 94.342778 iter 30 value 94.316558 iter 40 value 94.307918 iter 50 value 94.307843 final value 94.307466 converged Fitting Repeat 1 # weights: 305 initial value 124.735521 iter 10 value 117.782918 iter 20 value 111.312563 iter 30 value 105.601327 iter 40 value 102.092190 iter 50 value 101.309713 iter 60 value 101.067363 iter 70 value 100.839488 iter 80 value 100.725085 iter 90 value 100.611339 iter 100 value 100.592855 final value 100.592855 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 138.958791 iter 10 value 117.897852 iter 20 value 117.667995 iter 30 value 116.324043 iter 40 value 112.383480 iter 50 value 106.228063 iter 60 value 102.517600 iter 70 value 101.843749 iter 80 value 101.145067 iter 90 value 101.039465 iter 100 value 100.895773 final value 100.895773 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 133.224977 iter 10 value 117.920736 iter 20 value 111.933322 iter 30 value 108.215124 iter 40 value 107.691490 iter 50 value 106.924242 iter 60 value 105.725000 iter 70 value 103.291836 iter 80 value 102.671057 iter 90 value 102.331703 iter 100 value 101.391677 final value 101.391677 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 128.652352 iter 10 value 117.855084 iter 20 value 113.538240 iter 30 value 108.810361 iter 40 value 105.203052 iter 50 value 103.688156 iter 60 value 103.445238 iter 70 value 103.127103 iter 80 value 103.027769 iter 90 value 102.802990 iter 100 value 102.024612 final value 102.024612 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 128.069864 iter 10 value 117.768634 iter 20 value 114.522949 iter 30 value 111.139245 iter 40 value 108.473094 iter 50 value 106.529237 iter 60 value 103.261747 iter 70 value 103.181429 iter 80 value 101.934072 iter 90 value 101.590514 iter 100 value 101.057046 final value 101.057046 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Mar 21 02:37:05 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.40 1.54 92.25
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.56 | 1.85 | 36.42 | |
FreqInteractors | 0.25 | 0.04 | 0.31 | |
calculateAAC | 0.05 | 0.02 | 0.06 | |
calculateAutocor | 0.76 | 0.06 | 0.83 | |
calculateCTDC | 0.09 | 0.00 | 0.10 | |
calculateCTDD | 0.75 | 0.02 | 0.76 | |
calculateCTDT | 0.36 | 0.03 | 0.39 | |
calculateCTriad | 0.31 | 0.06 | 0.38 | |
calculateDC | 0.08 | 0.02 | 0.09 | |
calculateF | 0.36 | 0.00 | 0.36 | |
calculateKSAAP | 0.13 | 0.01 | 0.14 | |
calculateQD_Sm | 2.09 | 0.17 | 2.27 | |
calculateTC | 1.84 | 0.16 | 2.00 | |
calculateTC_Sm | 0.30 | 0.03 | 0.33 | |
corr_plot | 34.47 | 1.85 | 36.37 | |
enrichfindP | 0.75 | 0.09 | 13.77 | |
enrichfind_hp | 0.11 | 0.01 | 1.08 | |
enrichplot | 0.42 | 0.04 | 0.45 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.02 | 0.01 | 2.30 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.10 | 0.00 | 0.09 | |
pred_ensembel | 14.21 | 0.42 | 13.05 | |
var_imp | 35.16 | 1.46 | 36.61 | |