Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-20 12:07 -0500 (Wed, 20 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4481 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4479 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4359 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4539 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-20 08:52:29 -0000 (Wed, 20 Nov 2024) |
EndedAt: 2024-11-20 08:58:28 -0000 (Wed, 20 Nov 2024) |
EllapsedTime: 358.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: aarch64-unknown-linux-gnu * R was compiled by gcc (GCC) 12.2.1 20220819 (openEuler 12.2.1-14) GNU Fortran (GCC) 10.3.1 * running under: openEuler 22.03 (LTS-SP1) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 38.230 0.683 39.047 var_imp 37.618 0.703 38.398 corr_plot 37.931 0.271 38.285 pred_ensembel 19.082 1.012 16.924 enrichfindP 0.514 0.053 21.100 getFASTA 0.083 0.005 5.501 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.1/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.478620 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 105.828160 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.335800 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.970494 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.159495 final value 94.354396 converged Fitting Repeat 1 # weights: 305 initial value 95.228575 iter 10 value 90.185757 iter 20 value 89.290927 final value 89.234725 converged Fitting Repeat 2 # weights: 305 initial value 102.901551 final value 94.052435 converged Fitting Repeat 3 # weights: 305 initial value 112.453440 iter 10 value 93.285860 iter 20 value 93.283340 final value 93.283334 converged Fitting Repeat 4 # weights: 305 initial value 108.796558 iter 10 value 92.873173 iter 20 value 82.075624 iter 30 value 81.280900 iter 40 value 81.279022 final value 81.279018 converged Fitting Repeat 5 # weights: 305 initial value 100.459371 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 107.517735 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.006991 iter 10 value 94.162315 iter 20 value 94.144499 final value 94.144481 converged Fitting Repeat 3 # weights: 507 initial value 99.027589 iter 10 value 93.272729 iter 20 value 93.148416 iter 30 value 92.950677 final value 92.949136 converged Fitting Repeat 4 # weights: 507 initial value 105.522571 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 96.694005 iter 10 value 92.647746 final value 92.613874 converged Fitting Repeat 1 # weights: 103 initial value 98.934856 iter 10 value 94.484105 iter 20 value 84.106651 iter 30 value 82.552791 iter 40 value 81.324651 iter 50 value 80.895658 iter 60 value 80.638708 iter 70 value 80.570483 iter 80 value 80.565330 final value 80.565327 converged Fitting Repeat 2 # weights: 103 initial value 96.814922 iter 10 value 93.775560 iter 20 value 85.861603 iter 30 value 85.469663 iter 40 value 85.018065 iter 50 value 82.205758 iter 60 value 81.565095 iter 70 value 81.034828 iter 80 value 80.748243 iter 90 value 80.608416 iter 100 value 80.565334 final value 80.565334 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.046030 iter 10 value 94.490109 iter 20 value 93.925465 iter 30 value 83.937603 iter 40 value 83.249921 iter 50 value 82.672230 iter 60 value 82.633618 final value 82.633609 converged Fitting Repeat 4 # weights: 103 initial value 110.116450 iter 10 value 94.590218 iter 20 value 94.139053 iter 30 value 92.942194 iter 40 value 83.406240 iter 50 value 82.676735 iter 60 value 82.642774 iter 70 value 82.628393 iter 70 value 82.628392 iter 70 value 82.628392 final value 82.628392 converged Fitting Repeat 5 # weights: 103 initial value 98.375720 iter 10 value 93.338579 iter 20 value 88.031008 iter 30 value 87.257428 iter 40 value 83.335738 iter 50 value 83.299485 iter 60 value 82.894790 iter 70 value 81.437972 iter 80 value 80.405188 iter 90 value 80.373404 iter 100 value 80.348606 final value 80.348606 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 133.200634 iter 10 value 94.484634 iter 20 value 93.732724 iter 30 value 91.212846 iter 40 value 83.870027 iter 50 value 83.676184 iter 60 value 83.000252 iter 70 value 81.873839 iter 80 value 81.690333 iter 90 value 81.350988 iter 100 value 81.257308 final value 81.257308 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.297486 iter 10 value 94.507362 iter 20 value 84.191372 iter 30 value 82.422613 iter 40 value 80.575913 iter 50 value 80.378492 iter 60 value 80.342684 iter 70 value 80.274301 iter 80 value 80.096081 iter 90 value 79.859994 iter 100 value 79.581546 final value 79.581546 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.086496 iter 10 value 94.983256 iter 20 value 94.026474 iter 30 value 87.232592 iter 40 value 85.464601 iter 50 value 84.927634 iter 60 value 82.802255 iter 70 value 81.874199 iter 80 value 81.796926 iter 90 value 81.605410 iter 100 value 80.553651 final value 80.553651 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.275916 iter 10 value 94.429207 iter 20 value 92.182819 iter 30 value 84.781075 iter 40 value 83.398386 iter 50 value 83.360721 iter 60 value 82.303145 iter 70 value 81.079429 iter 80 value 80.596533 iter 90 value 79.939479 iter 100 value 79.623906 final value 79.623906 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.033918 iter 10 value 93.410324 iter 20 value 86.520249 iter 30 value 82.915254 iter 40 value 82.822643 iter 50 value 82.366411 iter 60 value 81.218406 iter 70 value 80.493121 iter 80 value 80.453024 iter 90 value 80.441205 iter 100 value 80.422678 final value 80.422678 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.742904 iter 10 value 94.570352 iter 20 value 83.600288 iter 30 value 82.600980 iter 40 value 81.432479 iter 50 value 80.760241 iter 60 value 79.868571 iter 70 value 79.639267 iter 80 value 79.495957 iter 90 value 79.408237 iter 100 value 79.365879 final value 79.365879 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.240019 iter 10 value 84.951577 iter 20 value 82.328778 iter 30 value 81.627143 iter 40 value 80.387102 iter 50 value 80.094645 iter 60 value 79.976843 iter 70 value 79.701988 iter 80 value 79.607488 iter 90 value 79.400479 iter 100 value 79.248698 final value 79.248698 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.525654 iter 10 value 94.415554 iter 20 value 92.193973 iter 30 value 91.783565 iter 40 value 91.387151 iter 50 value 90.288395 iter 60 value 89.957861 iter 70 value 84.009874 iter 80 value 81.976046 iter 90 value 80.933422 iter 100 value 80.652265 final value 80.652265 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.386434 iter 10 value 95.090425 iter 20 value 94.019051 iter 30 value 92.620454 iter 40 value 88.810019 iter 50 value 86.850186 iter 60 value 84.201527 iter 70 value 82.473046 iter 80 value 81.027523 iter 90 value 80.627401 iter 100 value 80.125874 final value 80.125874 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.378800 iter 10 value 95.160854 iter 20 value 87.736038 iter 30 value 85.181152 iter 40 value 81.471254 iter 50 value 80.999311 iter 60 value 80.894795 iter 70 value 80.052446 iter 80 value 79.366372 iter 90 value 78.864870 iter 100 value 78.717339 final value 78.717339 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.281098 final value 94.485804 converged Fitting Repeat 2 # weights: 103 initial value 100.097700 iter 10 value 94.486160 iter 20 value 93.679910 iter 30 value 93.661273 iter 40 value 93.659598 iter 50 value 93.658698 iter 60 value 90.245588 iter 70 value 84.416946 iter 80 value 84.403042 iter 90 value 84.402927 iter 90 value 84.402927 iter 100 value 84.402851 final value 84.402851 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.618924 final value 94.054274 converged Fitting Repeat 4 # weights: 103 initial value 94.896721 final value 94.486009 converged Fitting Repeat 5 # weights: 103 initial value 98.880622 final value 94.485907 converged Fitting Repeat 1 # weights: 305 initial value 97.024483 iter 10 value 89.996810 iter 20 value 89.993560 iter 30 value 89.988378 iter 40 value 89.985687 iter 50 value 89.979667 iter 60 value 89.092482 iter 70 value 88.577216 iter 80 value 88.567377 final value 88.567371 converged Fitting Repeat 2 # weights: 305 initial value 98.586258 iter 10 value 94.488805 iter 20 value 94.481975 iter 30 value 84.223167 iter 40 value 79.864082 iter 50 value 79.860958 iter 60 value 79.835349 iter 70 value 79.319103 iter 80 value 79.230889 iter 90 value 79.230233 iter 100 value 79.230006 final value 79.230006 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.923356 iter 10 value 94.486524 iter 20 value 83.718605 iter 30 value 82.561883 iter 40 value 82.556252 iter 50 value 82.500492 iter 60 value 81.223574 final value 81.223363 converged Fitting Repeat 4 # weights: 305 initial value 96.071274 iter 10 value 94.488063 iter 20 value 94.473200 iter 30 value 85.205143 iter 40 value 85.171564 iter 50 value 85.169933 iter 60 value 85.037576 iter 70 value 85.021794 iter 80 value 85.021316 iter 90 value 84.771240 iter 100 value 84.693139 final value 84.693139 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.600098 iter 10 value 94.280454 iter 20 value 94.276375 iter 30 value 93.774349 iter 40 value 87.186341 iter 50 value 85.801035 iter 60 value 81.479646 iter 70 value 80.074339 iter 80 value 79.427025 iter 90 value 79.420627 iter 100 value 79.287464 final value 79.287464 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.088119 iter 10 value 88.594419 iter 20 value 83.382714 iter 30 value 81.839599 iter 40 value 81.614601 iter 50 value 81.482607 iter 60 value 81.473091 iter 70 value 79.256392 iter 80 value 78.733113 iter 90 value 78.731211 iter 100 value 78.729594 final value 78.729594 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.317707 iter 10 value 93.920315 iter 20 value 93.895585 iter 30 value 93.650701 iter 40 value 93.641103 iter 50 value 93.640992 iter 60 value 93.640809 final value 93.640794 converged Fitting Repeat 3 # weights: 507 initial value 96.478818 iter 10 value 94.491282 iter 20 value 94.317573 iter 30 value 91.337379 iter 40 value 90.790833 iter 50 value 90.790045 iter 60 value 90.786510 iter 70 value 90.786435 final value 90.786393 converged Fitting Repeat 4 # weights: 507 initial value 103.090448 iter 10 value 93.011869 iter 20 value 88.237628 iter 30 value 86.130394 iter 40 value 86.098155 iter 50 value 84.764127 iter 60 value 84.750564 iter 70 value 84.750120 iter 80 value 84.748610 final value 84.748580 converged Fitting Repeat 5 # weights: 507 initial value 111.637396 iter 10 value 94.492102 iter 20 value 94.355694 final value 94.355686 converged Fitting Repeat 1 # weights: 103 initial value 96.864808 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.607866 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.439873 final value 94.467391 converged Fitting Repeat 4 # weights: 103 initial value 99.874699 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.469395 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.869845 iter 10 value 89.605303 iter 20 value 88.845203 final value 88.315362 converged Fitting Repeat 2 # weights: 305 initial value 103.434339 final value 94.476471 converged Fitting Repeat 3 # weights: 305 initial value 105.079522 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.912608 final value 94.323810 converged Fitting Repeat 5 # weights: 305 initial value 96.495910 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.572691 final value 94.365462 converged Fitting Repeat 2 # weights: 507 initial value 100.333209 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.488599 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 122.578151 iter 10 value 94.467400 final value 94.467392 converged Fitting Repeat 5 # weights: 507 initial value 96.542343 final value 94.399733 converged Fitting Repeat 1 # weights: 103 initial value 109.324865 iter 10 value 94.455455 iter 20 value 90.522847 iter 30 value 88.592038 iter 40 value 86.113686 iter 50 value 85.435102 iter 60 value 85.336542 final value 85.336537 converged Fitting Repeat 2 # weights: 103 initial value 98.066356 iter 10 value 94.488997 iter 20 value 93.368687 iter 30 value 89.086866 iter 40 value 88.302971 iter 50 value 87.752919 iter 60 value 86.279265 iter 70 value 85.317722 iter 80 value 84.449003 iter 90 value 84.388163 final value 84.381490 converged Fitting Repeat 3 # weights: 103 initial value 97.893853 iter 10 value 90.069438 iter 20 value 87.477344 iter 30 value 87.043609 iter 40 value 86.442289 iter 50 value 86.088042 iter 60 value 85.858517 iter 70 value 85.633333 iter 80 value 83.438024 iter 90 value 82.862075 iter 100 value 82.564730 final value 82.564730 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.265356 iter 10 value 94.489893 iter 20 value 93.706165 iter 30 value 86.751453 iter 40 value 85.043734 iter 50 value 84.623863 iter 60 value 84.594775 final value 84.592027 converged Fitting Repeat 5 # weights: 103 initial value 98.518616 iter 10 value 94.510061 iter 20 value 94.482227 iter 30 value 92.637322 iter 40 value 88.379523 iter 50 value 87.191121 iter 60 value 85.482428 iter 70 value 84.528645 iter 80 value 83.528662 iter 90 value 83.436965 final value 83.436633 converged Fitting Repeat 1 # weights: 305 initial value 119.571601 iter 10 value 94.652708 iter 20 value 90.392149 iter 30 value 86.189103 iter 40 value 84.238873 iter 50 value 83.958945 iter 60 value 83.934921 iter 70 value 83.858512 iter 80 value 83.253451 iter 90 value 82.729346 iter 100 value 82.297245 final value 82.297245 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.908949 iter 10 value 94.980408 iter 20 value 92.002467 iter 30 value 89.478422 iter 40 value 85.663669 iter 50 value 84.960669 iter 60 value 84.341301 iter 70 value 84.219834 iter 80 value 84.166525 iter 90 value 84.120404 iter 100 value 83.433858 final value 83.433858 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.874842 iter 10 value 94.414326 iter 20 value 91.265601 iter 30 value 86.910466 iter 40 value 84.390084 iter 50 value 83.453009 iter 60 value 82.192094 iter 70 value 81.903784 iter 80 value 81.666316 iter 90 value 81.279981 iter 100 value 81.003765 final value 81.003765 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 126.611058 iter 10 value 93.383167 iter 20 value 88.574100 iter 30 value 88.347766 iter 40 value 88.308259 iter 50 value 88.153388 iter 60 value 84.588353 iter 70 value 84.349004 iter 80 value 84.033075 iter 90 value 83.195451 iter 100 value 82.882387 final value 82.882387 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.680979 iter 10 value 94.315291 iter 20 value 92.388981 iter 30 value 91.865825 iter 40 value 87.524648 iter 50 value 83.938791 iter 60 value 82.082984 iter 70 value 81.072393 iter 80 value 80.961766 iter 90 value 80.918712 iter 100 value 80.860794 final value 80.860794 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.982844 iter 10 value 94.519288 iter 20 value 88.157701 iter 30 value 87.615871 iter 40 value 84.639287 iter 50 value 83.486266 iter 60 value 82.733319 iter 70 value 82.034131 iter 80 value 81.478714 iter 90 value 81.098962 iter 100 value 80.936118 final value 80.936118 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.602524 iter 10 value 94.492522 iter 20 value 89.487255 iter 30 value 86.883595 iter 40 value 85.839516 iter 50 value 84.807871 iter 60 value 84.353813 iter 70 value 84.014134 iter 80 value 82.612287 iter 90 value 81.741583 iter 100 value 81.317218 final value 81.317218 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 137.287620 iter 10 value 94.165349 iter 20 value 86.459643 iter 30 value 84.963156 iter 40 value 82.598478 iter 50 value 81.595151 iter 60 value 81.450363 iter 70 value 81.357660 iter 80 value 81.285052 iter 90 value 81.259728 iter 100 value 81.238629 final value 81.238629 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.572455 iter 10 value 94.489320 iter 20 value 93.529466 iter 30 value 92.561704 iter 40 value 92.260873 iter 50 value 89.860443 iter 60 value 87.355920 iter 70 value 83.924973 iter 80 value 81.910923 iter 90 value 81.649367 iter 100 value 81.310684 final value 81.310684 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.264521 iter 10 value 94.900058 iter 20 value 93.493899 iter 30 value 89.412588 iter 40 value 87.388966 iter 50 value 86.417023 iter 60 value 83.906302 iter 70 value 82.702697 iter 80 value 82.119007 iter 90 value 81.943800 iter 100 value 81.622122 final value 81.622122 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.576025 final value 94.485906 converged Fitting Repeat 2 # weights: 103 initial value 98.189866 final value 94.485766 converged Fitting Repeat 3 # weights: 103 initial value 99.993422 final value 94.485881 converged Fitting Repeat 4 # weights: 103 initial value 102.458416 final value 94.485670 converged Fitting Repeat 5 # weights: 103 initial value 102.619591 final value 94.485843 converged Fitting Repeat 1 # weights: 305 initial value 101.084184 iter 10 value 94.404884 iter 20 value 94.336259 iter 30 value 87.092232 iter 40 value 87.003761 iter 50 value 86.469151 iter 60 value 86.342220 iter 70 value 86.331409 iter 80 value 86.331216 iter 90 value 86.330264 final value 86.329871 converged Fitting Repeat 2 # weights: 305 initial value 94.752591 iter 10 value 94.488904 iter 20 value 94.337454 iter 30 value 91.396379 iter 40 value 88.284927 iter 50 value 88.212704 iter 60 value 87.561157 iter 70 value 86.273461 iter 80 value 86.227949 iter 90 value 86.157274 iter 100 value 85.960967 final value 85.960967 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.525135 iter 10 value 94.478874 iter 20 value 89.189168 iter 30 value 88.929257 iter 40 value 88.249671 iter 50 value 87.537420 iter 60 value 86.738022 iter 70 value 84.760390 iter 80 value 84.284450 iter 90 value 84.241098 iter 100 value 81.954934 final value 81.954934 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.386929 iter 10 value 94.491597 iter 20 value 94.486309 iter 30 value 94.428501 iter 40 value 87.307175 iter 50 value 87.169041 final value 87.137128 converged Fitting Repeat 5 # weights: 305 initial value 97.123504 iter 10 value 94.488754 iter 20 value 94.484248 iter 30 value 94.469627 iter 40 value 92.360939 iter 50 value 92.006494 iter 60 value 91.912266 iter 70 value 91.910734 final value 91.909489 converged Fitting Repeat 1 # weights: 507 initial value 97.684563 iter 10 value 93.330516 iter 20 value 88.793035 iter 30 value 87.753735 iter 40 value 86.737391 iter 50 value 86.722808 iter 60 value 86.719465 iter 70 value 86.715843 iter 80 value 86.159161 iter 90 value 82.159049 iter 100 value 81.269216 final value 81.269216 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.695383 iter 10 value 94.492250 iter 20 value 94.472571 iter 30 value 89.172547 iter 40 value 83.698195 iter 50 value 82.958915 iter 60 value 82.871433 iter 70 value 82.855116 final value 82.854896 converged Fitting Repeat 3 # weights: 507 initial value 100.911236 iter 10 value 94.491964 iter 20 value 94.447670 iter 30 value 86.333165 iter 40 value 86.328138 iter 50 value 86.326985 final value 86.326830 converged Fitting Repeat 4 # weights: 507 initial value 99.917104 iter 10 value 94.492320 iter 20 value 94.484291 iter 30 value 92.137440 iter 40 value 83.854643 iter 50 value 82.294919 iter 60 value 82.116164 iter 70 value 82.100705 iter 80 value 82.099357 iter 90 value 81.944617 iter 100 value 81.647366 final value 81.647366 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.321671 iter 10 value 94.491846 iter 20 value 94.484074 iter 30 value 94.063147 iter 40 value 88.592477 iter 50 value 88.569452 iter 60 value 88.568112 iter 70 value 88.549427 iter 80 value 88.445720 iter 90 value 88.040278 iter 100 value 86.763047 final value 86.763047 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 117.276292 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.079959 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.145496 final value 93.482758 converged Fitting Repeat 4 # weights: 103 initial value 96.180231 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.173330 final value 93.371808 converged Fitting Repeat 1 # weights: 305 initial value 99.612700 iter 10 value 91.556094 final value 91.374293 converged Fitting Repeat 2 # weights: 305 initial value 98.002330 final value 93.810010 converged Fitting Repeat 3 # weights: 305 initial value 98.133749 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.556814 iter 10 value 93.672981 final value 93.672973 converged Fitting Repeat 5 # weights: 305 initial value 98.936143 iter 10 value 92.603369 iter 20 value 92.310479 iter 20 value 92.310478 iter 20 value 92.310478 final value 92.310478 converged Fitting Repeat 1 # weights: 507 initial value 112.507237 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.306593 final value 93.810010 converged Fitting Repeat 3 # weights: 507 initial value 95.815406 iter 10 value 93.701870 final value 93.622234 converged Fitting Repeat 4 # weights: 507 initial value 99.800572 iter 10 value 93.673026 final value 93.672973 converged Fitting Repeat 5 # weights: 507 initial value 99.346831 final value 93.672973 converged Fitting Repeat 1 # weights: 103 initial value 100.265871 iter 10 value 93.950214 iter 20 value 88.101093 iter 30 value 86.571712 iter 40 value 85.092265 iter 50 value 84.560295 iter 60 value 84.362243 final value 84.360551 converged Fitting Repeat 2 # weights: 103 initial value 105.537475 iter 10 value 94.026860 iter 20 value 93.566211 iter 30 value 93.535985 final value 93.535957 converged Fitting Repeat 3 # weights: 103 initial value 98.860667 iter 10 value 94.057318 iter 20 value 92.237413 iter 30 value 86.830682 iter 40 value 84.685793 iter 50 value 84.370312 iter 60 value 84.299502 iter 70 value 84.293328 iter 70 value 84.293328 iter 70 value 84.293328 final value 84.293328 converged Fitting Repeat 4 # weights: 103 initial value 96.712856 iter 10 value 94.028563 iter 20 value 85.691809 iter 30 value 84.568697 iter 40 value 84.105178 iter 50 value 82.140251 iter 60 value 81.780529 iter 70 value 81.464326 iter 80 value 81.385718 iter 90 value 81.343788 final value 81.343769 converged Fitting Repeat 5 # weights: 103 initial value 103.794217 iter 10 value 94.056375 iter 20 value 93.823376 iter 30 value 93.788787 iter 40 value 93.547046 iter 50 value 93.169607 iter 60 value 93.156320 iter 70 value 93.156014 iter 80 value 93.155859 final value 93.155779 converged Fitting Repeat 1 # weights: 305 initial value 99.451462 iter 10 value 93.350461 iter 20 value 88.961987 iter 30 value 88.189191 iter 40 value 87.763397 iter 50 value 85.966856 iter 60 value 85.272955 iter 70 value 83.131898 iter 80 value 81.526784 iter 90 value 80.966263 iter 100 value 79.531355 final value 79.531355 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.949522 iter 10 value 94.032796 iter 20 value 88.645683 iter 30 value 87.738224 iter 40 value 85.287127 iter 50 value 84.837422 iter 60 value 83.527502 iter 70 value 82.346836 iter 80 value 82.131811 iter 90 value 81.812240 iter 100 value 81.588906 final value 81.588906 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.833110 iter 10 value 94.008999 iter 20 value 93.484134 iter 30 value 93.394101 iter 40 value 89.755451 iter 50 value 88.007515 iter 60 value 85.565569 iter 70 value 83.373320 iter 80 value 82.898791 iter 90 value 80.176035 iter 100 value 79.636604 final value 79.636604 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.222564 iter 10 value 94.098894 iter 20 value 93.484658 iter 30 value 92.026782 iter 40 value 90.172842 iter 50 value 88.282332 iter 60 value 85.233922 iter 70 value 83.417488 iter 80 value 80.617193 iter 90 value 79.976418 iter 100 value 79.572182 final value 79.572182 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.104583 iter 10 value 88.005178 iter 20 value 86.829146 iter 30 value 86.459418 iter 40 value 86.341962 iter 50 value 86.323615 iter 60 value 86.099505 iter 70 value 84.585935 iter 80 value 82.576539 iter 90 value 80.802380 iter 100 value 80.207765 final value 80.207765 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 130.638029 iter 10 value 95.435328 iter 20 value 94.243332 iter 30 value 93.934315 iter 40 value 90.608658 iter 50 value 87.834179 iter 60 value 86.724739 iter 70 value 85.980926 iter 80 value 83.025515 iter 90 value 80.323734 iter 100 value 79.123027 final value 79.123027 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.257298 iter 10 value 98.024395 iter 20 value 96.502077 iter 30 value 94.991292 iter 40 value 87.565981 iter 50 value 84.081708 iter 60 value 82.452429 iter 70 value 81.979154 iter 80 value 81.069211 iter 90 value 80.319669 iter 100 value 80.102482 final value 80.102482 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.556623 iter 10 value 93.898091 iter 20 value 92.145488 iter 30 value 84.976307 iter 40 value 83.772621 iter 50 value 82.564474 iter 60 value 80.896043 iter 70 value 80.304419 iter 80 value 80.067771 iter 90 value 79.718825 iter 100 value 79.617504 final value 79.617504 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.893926 iter 10 value 93.745298 iter 20 value 88.463416 iter 30 value 86.646401 iter 40 value 86.218394 iter 50 value 85.478182 iter 60 value 83.917123 iter 70 value 82.450703 iter 80 value 80.505202 iter 90 value 79.062588 iter 100 value 78.391617 final value 78.391617 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.494202 iter 10 value 93.961172 iter 20 value 93.800427 iter 30 value 93.526404 iter 40 value 85.853037 iter 50 value 84.789848 iter 60 value 84.600035 iter 70 value 84.195635 iter 80 value 82.535375 iter 90 value 80.177877 iter 100 value 79.626990 final value 79.626990 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.555842 iter 10 value 94.054416 iter 20 value 94.050932 final value 93.673225 converged Fitting Repeat 2 # weights: 103 initial value 101.270837 iter 10 value 93.513346 final value 93.484367 converged Fitting Repeat 3 # weights: 103 initial value 98.362820 final value 94.054658 converged Fitting Repeat 4 # weights: 103 initial value 95.488950 final value 93.811613 converged Fitting Repeat 5 # weights: 103 initial value 95.259448 final value 93.484394 converged Fitting Repeat 1 # weights: 305 initial value 95.372694 iter 10 value 93.033525 iter 20 value 93.032988 iter 30 value 91.688785 iter 40 value 84.776363 iter 50 value 83.162598 iter 60 value 82.814759 iter 70 value 82.743192 iter 80 value 82.731076 iter 90 value 79.989980 iter 100 value 78.943003 final value 78.943003 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.581022 iter 10 value 93.035827 iter 20 value 93.022259 iter 30 value 93.020374 iter 40 value 93.019925 iter 50 value 93.018893 iter 60 value 93.017415 iter 70 value 92.688439 final value 92.683480 converged Fitting Repeat 3 # weights: 305 initial value 105.953655 iter 10 value 93.678594 iter 20 value 93.677234 iter 30 value 93.455783 iter 40 value 92.860859 iter 50 value 87.465337 iter 60 value 84.873986 iter 70 value 84.864244 iter 80 value 84.812663 iter 90 value 84.810156 final value 84.806473 converged Fitting Repeat 4 # weights: 305 initial value 95.298107 iter 10 value 93.678083 iter 20 value 93.675110 iter 30 value 86.879431 iter 40 value 86.788219 iter 50 value 86.787925 iter 60 value 86.787865 iter 70 value 86.787190 iter 80 value 86.302040 iter 90 value 85.173977 iter 100 value 81.808185 final value 81.808185 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.988449 iter 10 value 92.107234 iter 20 value 84.119661 iter 30 value 84.116880 iter 40 value 84.115046 iter 50 value 84.114949 iter 60 value 84.059833 final value 84.059267 converged Fitting Repeat 1 # weights: 507 initial value 108.674832 iter 10 value 94.060689 iter 20 value 93.905497 iter 30 value 87.013903 iter 40 value 86.361610 iter 50 value 85.894047 iter 60 value 85.886058 iter 70 value 83.374599 iter 80 value 82.613347 iter 90 value 82.609998 final value 82.609001 converged Fitting Repeat 2 # weights: 507 initial value 111.998269 iter 10 value 93.540894 iter 20 value 93.489924 iter 30 value 93.488779 iter 40 value 93.485805 iter 50 value 93.483874 iter 60 value 93.483677 iter 70 value 93.483134 final value 93.483116 converged Fitting Repeat 3 # weights: 507 initial value 118.184987 iter 10 value 93.681123 iter 20 value 93.677157 iter 30 value 93.408635 iter 40 value 93.408297 iter 50 value 93.407733 final value 93.407628 converged Fitting Repeat 4 # weights: 507 initial value 113.632651 iter 10 value 94.060638 iter 20 value 94.053200 iter 30 value 94.035837 iter 40 value 84.599453 iter 50 value 84.163482 iter 60 value 84.128521 iter 70 value 84.068541 iter 80 value 84.062690 iter 90 value 84.061499 iter 100 value 83.982966 final value 83.982966 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.429867 iter 10 value 90.543915 iter 20 value 90.411830 iter 30 value 90.397500 iter 40 value 86.854883 iter 50 value 86.828274 iter 60 value 86.656138 iter 70 value 85.772417 iter 80 value 85.405030 iter 90 value 85.300413 final value 85.300078 converged Fitting Repeat 1 # weights: 103 initial value 99.551184 iter 10 value 92.106136 final value 92.030026 converged Fitting Repeat 2 # weights: 103 initial value 100.011411 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.748270 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.462529 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.292431 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.798951 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 129.235196 iter 10 value 88.591544 iter 20 value 86.876778 iter 30 value 86.864376 final value 86.864309 converged Fitting Repeat 3 # weights: 305 initial value 95.821673 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 106.055355 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 110.796538 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.026688 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 97.539406 iter 10 value 93.207161 iter 20 value 93.205835 final value 93.205815 converged Fitting Repeat 3 # weights: 507 initial value 107.708601 iter 10 value 93.638947 final value 93.621187 converged Fitting Repeat 4 # weights: 507 initial value 109.516333 iter 10 value 94.325970 final value 94.325945 converged Fitting Repeat 5 # weights: 507 initial value 104.586897 iter 10 value 93.281932 iter 20 value 92.933488 final value 92.933431 converged Fitting Repeat 1 # weights: 103 initial value 97.179456 iter 10 value 94.376819 iter 20 value 86.637093 iter 30 value 86.413972 iter 40 value 84.736728 iter 50 value 84.371750 iter 60 value 83.746186 iter 70 value 83.577894 final value 83.577693 converged Fitting Repeat 2 # weights: 103 initial value 99.826156 iter 10 value 94.483216 iter 20 value 90.634433 iter 30 value 90.027798 iter 40 value 87.800116 iter 50 value 86.071148 iter 60 value 82.626595 iter 70 value 80.984170 iter 80 value 80.659506 iter 90 value 80.336647 iter 100 value 80.328048 final value 80.328048 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.363740 iter 10 value 94.496526 iter 20 value 89.237533 iter 30 value 85.410354 iter 40 value 85.080077 iter 50 value 84.568277 iter 60 value 82.187024 iter 70 value 81.713285 iter 80 value 81.679664 final value 81.679114 converged Fitting Repeat 4 # weights: 103 initial value 103.918474 iter 10 value 92.857612 iter 20 value 91.847013 iter 30 value 91.826238 iter 40 value 91.825035 iter 50 value 91.396102 iter 60 value 86.144127 iter 70 value 84.875849 iter 80 value 84.373657 iter 90 value 84.085947 iter 100 value 83.629428 final value 83.629428 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.313809 iter 10 value 94.060708 iter 20 value 91.144438 iter 30 value 84.345323 iter 40 value 83.658814 iter 50 value 81.657411 iter 60 value 80.613260 iter 70 value 80.514937 iter 80 value 80.446046 iter 90 value 80.376800 iter 100 value 80.328053 final value 80.328053 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.627047 iter 10 value 94.875214 iter 20 value 94.494232 iter 30 value 94.282246 iter 40 value 86.796890 iter 50 value 85.875420 iter 60 value 83.112717 iter 70 value 79.967648 iter 80 value 79.603356 iter 90 value 79.508637 iter 100 value 79.331222 final value 79.331222 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.404949 iter 10 value 94.989625 iter 20 value 92.389922 iter 30 value 85.640647 iter 40 value 82.699839 iter 50 value 81.741850 iter 60 value 80.983106 iter 70 value 80.314912 iter 80 value 79.820566 iter 90 value 79.512010 iter 100 value 79.492012 final value 79.492012 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.815251 iter 10 value 94.490060 iter 20 value 93.741723 iter 30 value 89.856517 iter 40 value 86.405151 iter 50 value 84.885183 iter 60 value 83.949943 iter 70 value 83.917332 iter 80 value 83.681872 iter 90 value 81.093548 iter 100 value 79.778158 final value 79.778158 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.425530 iter 10 value 94.692101 iter 20 value 94.504967 iter 30 value 91.535005 iter 40 value 86.389050 iter 50 value 86.113682 iter 60 value 85.714011 iter 70 value 84.015242 iter 80 value 83.556122 iter 90 value 83.287146 iter 100 value 82.824822 final value 82.824822 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.476049 iter 10 value 94.522061 iter 20 value 90.884813 iter 30 value 85.422556 iter 40 value 82.836120 iter 50 value 82.554565 iter 60 value 81.641398 iter 70 value 80.463460 iter 80 value 80.316269 iter 90 value 79.785128 iter 100 value 79.644048 final value 79.644048 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.141080 iter 10 value 94.738793 iter 20 value 91.483163 iter 30 value 84.954532 iter 40 value 83.982246 iter 50 value 82.654812 iter 60 value 80.977542 iter 70 value 80.650872 iter 80 value 80.032579 iter 90 value 79.586852 iter 100 value 79.404103 final value 79.404103 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.239654 iter 10 value 94.387240 iter 20 value 90.576627 iter 30 value 87.291139 iter 40 value 85.163359 iter 50 value 84.794643 iter 60 value 84.040807 iter 70 value 83.674219 iter 80 value 83.494062 iter 90 value 82.596171 iter 100 value 81.358456 final value 81.358456 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.858678 iter 10 value 93.825436 iter 20 value 85.486814 iter 30 value 82.020755 iter 40 value 80.131463 iter 50 value 79.952208 iter 60 value 79.382247 iter 70 value 79.094549 iter 80 value 78.981586 iter 90 value 78.790305 iter 100 value 78.606052 final value 78.606052 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.530994 iter 10 value 95.742361 iter 20 value 90.433903 iter 30 value 87.233179 iter 40 value 85.098908 iter 50 value 82.373143 iter 60 value 81.067357 iter 70 value 80.408775 iter 80 value 80.010250 iter 90 value 79.685647 iter 100 value 79.373120 final value 79.373120 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.384702 iter 10 value 94.580336 iter 20 value 89.121703 iter 30 value 88.002702 iter 40 value 87.717876 iter 50 value 86.604192 iter 60 value 83.869597 iter 70 value 81.527792 iter 80 value 80.702060 iter 90 value 80.099633 iter 100 value 79.840209 final value 79.840209 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.343039 iter 10 value 94.486317 final value 94.484638 converged Fitting Repeat 2 # weights: 103 initial value 98.954208 final value 94.485984 converged Fitting Repeat 3 # weights: 103 initial value 95.224456 final value 94.485745 converged Fitting Repeat 4 # weights: 103 initial value 97.428458 final value 94.485838 converged Fitting Repeat 5 # weights: 103 initial value 96.476269 iter 10 value 94.485475 iter 20 value 89.483357 iter 30 value 88.875413 iter 40 value 88.873289 final value 88.872854 converged Fitting Repeat 1 # weights: 305 initial value 96.851522 iter 10 value 94.488208 iter 20 value 94.450389 iter 30 value 93.816884 iter 40 value 93.810039 final value 93.810008 converged Fitting Repeat 2 # weights: 305 initial value 115.807514 iter 10 value 94.489955 iter 20 value 94.484766 final value 94.484589 converged Fitting Repeat 3 # weights: 305 initial value 128.102038 iter 10 value 94.489019 iter 20 value 94.352795 iter 30 value 90.506908 iter 40 value 87.643215 iter 50 value 85.789920 iter 60 value 85.787230 iter 70 value 84.141803 iter 80 value 83.731980 iter 90 value 83.677589 iter 100 value 83.676641 final value 83.676641 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.297069 iter 10 value 93.481354 iter 20 value 92.952239 iter 30 value 91.570301 iter 40 value 90.722237 iter 50 value 90.496188 iter 60 value 90.495779 iter 70 value 90.494533 final value 90.494187 converged Fitting Repeat 5 # weights: 305 initial value 98.074175 iter 10 value 90.203230 iter 20 value 86.152233 final value 86.149858 converged Fitting Repeat 1 # weights: 507 initial value 106.504413 iter 10 value 94.492346 iter 20 value 94.111323 iter 30 value 85.168428 iter 40 value 85.167908 iter 50 value 85.155467 iter 60 value 82.098864 iter 70 value 81.473793 final value 81.473039 converged Fitting Repeat 2 # weights: 507 initial value 104.120444 iter 10 value 94.492586 iter 20 value 94.484229 iter 30 value 94.354688 iter 30 value 94.354688 iter 30 value 94.354688 final value 94.354688 converged Fitting Repeat 3 # weights: 507 initial value 111.828883 iter 10 value 94.498817 iter 20 value 93.591200 iter 30 value 91.571107 iter 40 value 91.470654 iter 50 value 91.470157 iter 60 value 91.466933 iter 70 value 87.273566 iter 80 value 84.068877 iter 90 value 83.926986 iter 100 value 82.500939 final value 82.500939 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.204569 iter 10 value 94.364135 iter 20 value 94.269834 iter 30 value 93.766910 final value 93.693709 converged Fitting Repeat 5 # weights: 507 initial value 100.181161 iter 10 value 94.296369 iter 20 value 94.219311 iter 30 value 94.206559 iter 40 value 93.748299 iter 50 value 92.921074 iter 60 value 83.740394 iter 70 value 82.855054 iter 80 value 82.834301 iter 90 value 82.834147 final value 82.833977 converged Fitting Repeat 1 # weights: 103 initial value 99.188879 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.213890 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 101.744498 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.457633 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.017179 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.312219 iter 10 value 94.042030 final value 94.042012 converged Fitting Repeat 2 # weights: 305 initial value 97.412761 iter 10 value 94.057646 iter 20 value 94.052913 final value 94.052911 converged Fitting Repeat 3 # weights: 305 initial value 95.422277 iter 10 value 94.008699 final value 94.008696 converged Fitting Repeat 4 # weights: 305 initial value 101.175962 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.111931 final value 94.042012 converged Fitting Repeat 1 # weights: 507 initial value 102.755132 iter 10 value 92.701660 final value 92.701657 converged Fitting Repeat 2 # weights: 507 initial value 99.341809 iter 10 value 94.053561 iter 20 value 93.637003 iter 30 value 93.507271 iter 40 value 93.506763 final value 93.506755 converged Fitting Repeat 3 # weights: 507 initial value 96.163176 iter 10 value 94.043544 final value 94.015123 converged Fitting Repeat 4 # weights: 507 initial value 130.295312 iter 10 value 94.054701 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 117.759489 iter 10 value 93.808689 final value 93.808679 converged Fitting Repeat 1 # weights: 103 initial value 100.855073 iter 10 value 94.033831 iter 20 value 92.177141 iter 30 value 91.433179 iter 40 value 88.233473 iter 50 value 83.296233 iter 60 value 80.962909 iter 70 value 80.883385 iter 80 value 80.828651 iter 90 value 80.786012 iter 100 value 80.405288 final value 80.405288 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.225159 iter 10 value 93.182406 iter 20 value 85.608848 iter 30 value 84.797918 iter 40 value 84.672500 iter 50 value 84.562507 iter 60 value 84.352017 iter 70 value 82.741272 iter 80 value 80.874116 iter 90 value 80.615641 iter 100 value 80.139816 final value 80.139816 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.519334 iter 10 value 94.056682 iter 20 value 93.840341 iter 30 value 83.979772 iter 40 value 83.118394 iter 50 value 82.855278 iter 60 value 81.991113 iter 70 value 81.710432 iter 80 value 81.627175 final value 81.627173 converged Fitting Repeat 4 # weights: 103 initial value 113.590833 iter 10 value 94.054816 iter 20 value 90.038617 iter 30 value 88.260588 iter 40 value 81.415686 iter 50 value 80.876797 iter 60 value 80.811857 iter 70 value 80.611227 iter 80 value 80.193407 iter 90 value 80.106102 iter 100 value 80.079850 final value 80.079850 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.523816 iter 10 value 94.056640 iter 20 value 92.392864 iter 30 value 85.178386 iter 40 value 83.915779 iter 50 value 83.407886 iter 60 value 83.282375 iter 70 value 83.278123 iter 70 value 83.278122 iter 70 value 83.278122 final value 83.278122 converged Fitting Repeat 1 # weights: 305 initial value 100.588059 iter 10 value 94.121560 iter 20 value 93.953021 iter 30 value 90.346900 iter 40 value 86.231053 iter 50 value 84.803070 iter 60 value 82.323664 iter 70 value 81.778976 iter 80 value 81.634376 iter 90 value 81.538771 iter 100 value 81.436573 final value 81.436573 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.893918 iter 10 value 94.074342 iter 20 value 93.817779 iter 30 value 90.195021 iter 40 value 85.360166 iter 50 value 84.634437 iter 60 value 82.127742 iter 70 value 80.893121 iter 80 value 80.577368 iter 90 value 80.151755 iter 100 value 79.490034 final value 79.490034 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.060695 iter 10 value 94.210671 iter 20 value 87.510746 iter 30 value 85.943860 iter 40 value 83.616628 iter 50 value 82.843877 iter 60 value 82.093145 iter 70 value 81.676389 iter 80 value 80.939383 iter 90 value 80.164703 iter 100 value 79.231398 final value 79.231398 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.957239 iter 10 value 108.416751 iter 20 value 93.483020 iter 30 value 88.599447 iter 40 value 83.206401 iter 50 value 82.712376 iter 60 value 81.089298 iter 70 value 80.719607 iter 80 value 80.418285 iter 90 value 80.207949 iter 100 value 80.162960 final value 80.162960 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.679585 iter 10 value 94.657578 iter 20 value 88.770336 iter 30 value 85.095738 iter 40 value 83.880291 iter 50 value 82.073880 iter 60 value 80.540077 iter 70 value 80.012284 iter 80 value 79.677333 iter 90 value 79.099133 iter 100 value 78.758508 final value 78.758508 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.300604 iter 10 value 94.145807 iter 20 value 93.895542 iter 30 value 88.969237 iter 40 value 83.122468 iter 50 value 82.035359 iter 60 value 81.168215 iter 70 value 79.224773 iter 80 value 78.352474 iter 90 value 78.213214 iter 100 value 78.192100 final value 78.192100 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.636700 iter 10 value 93.944577 iter 20 value 85.702580 iter 30 value 83.437608 iter 40 value 82.988712 iter 50 value 82.281983 iter 60 value 79.972290 iter 70 value 78.912793 iter 80 value 78.743840 iter 90 value 78.606302 iter 100 value 78.546278 final value 78.546278 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.214609 iter 10 value 94.089544 iter 20 value 93.773644 iter 30 value 88.709841 iter 40 value 84.331003 iter 50 value 83.254427 iter 60 value 82.155266 iter 70 value 81.323198 iter 80 value 80.611211 iter 90 value 80.195277 iter 100 value 79.464885 final value 79.464885 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 139.078355 iter 10 value 94.032405 iter 20 value 86.068470 iter 30 value 82.855054 iter 40 value 80.992177 iter 50 value 80.298411 iter 60 value 80.152489 iter 70 value 80.036004 iter 80 value 78.952364 iter 90 value 78.544470 iter 100 value 78.398335 final value 78.398335 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.684299 iter 10 value 93.796196 iter 20 value 85.256233 iter 30 value 82.734375 iter 40 value 82.545945 iter 50 value 82.327804 iter 60 value 81.813147 iter 70 value 80.421226 iter 80 value 79.279026 iter 90 value 78.749484 iter 100 value 78.469242 final value 78.469242 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.101168 final value 94.054802 converged Fitting Repeat 2 # weights: 103 initial value 103.493372 iter 10 value 93.837761 iter 20 value 93.836673 iter 30 value 93.786498 iter 40 value 93.786058 final value 93.786041 converged Fitting Repeat 3 # weights: 103 initial value 95.662925 iter 10 value 91.574666 iter 20 value 90.787081 iter 30 value 90.785657 iter 40 value 90.784939 iter 50 value 83.091564 iter 60 value 82.166526 iter 70 value 81.521465 iter 80 value 81.506112 final value 81.492035 converged Fitting Repeat 4 # weights: 103 initial value 104.472181 final value 94.054680 converged Fitting Repeat 5 # weights: 103 initial value 94.311364 final value 94.054703 converged Fitting Repeat 1 # weights: 305 initial value 110.622054 iter 10 value 94.057972 iter 20 value 94.053013 iter 30 value 93.926123 iter 40 value 84.661595 iter 50 value 81.560844 iter 60 value 81.553482 final value 81.553267 converged Fitting Repeat 2 # weights: 305 initial value 98.729896 iter 10 value 94.055253 iter 20 value 91.471406 iter 30 value 81.541436 iter 40 value 81.136579 final value 81.136165 converged Fitting Repeat 3 # weights: 305 initial value 118.203754 iter 10 value 91.468816 iter 20 value 84.492500 iter 30 value 84.054583 iter 40 value 83.991644 iter 50 value 83.989839 iter 60 value 82.026914 iter 70 value 80.426124 iter 80 value 78.444656 iter 90 value 78.388788 iter 100 value 78.387553 final value 78.387553 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.602964 iter 10 value 94.058915 iter 20 value 89.910435 iter 30 value 85.400669 iter 40 value 84.066148 iter 50 value 82.992363 iter 60 value 81.848463 iter 70 value 81.845312 iter 80 value 81.841680 iter 90 value 81.598181 iter 100 value 80.711562 final value 80.711562 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.595858 iter 10 value 94.058045 iter 20 value 94.053111 iter 30 value 93.950076 iter 40 value 92.955549 iter 50 value 92.954771 iter 60 value 92.927108 iter 70 value 92.313887 iter 80 value 90.156361 iter 90 value 90.156071 iter 100 value 90.147988 final value 90.147988 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.134370 iter 10 value 93.844694 iter 20 value 93.738999 iter 30 value 85.124319 iter 40 value 83.172138 iter 50 value 82.497893 final value 82.495503 converged Fitting Repeat 2 # weights: 507 initial value 94.244176 iter 10 value 93.613639 iter 20 value 93.610224 iter 30 value 93.604820 iter 40 value 87.208830 iter 50 value 84.278879 iter 60 value 84.278159 iter 70 value 84.262948 iter 80 value 84.256388 final value 84.256074 converged Fitting Repeat 3 # weights: 507 initial value 95.067582 iter 10 value 81.757385 iter 20 value 81.123177 iter 30 value 80.737155 iter 40 value 80.726132 iter 50 value 80.719468 iter 60 value 80.510984 iter 70 value 79.594221 iter 80 value 79.402828 iter 90 value 79.394379 final value 79.394315 converged Fitting Repeat 4 # weights: 507 initial value 102.099073 iter 10 value 93.844725 iter 20 value 93.836782 iter 30 value 90.813852 iter 40 value 83.014265 iter 50 value 82.894574 iter 60 value 82.893534 final value 82.893486 converged Fitting Repeat 5 # weights: 507 initial value 97.391857 iter 10 value 83.673048 iter 20 value 80.905886 iter 30 value 79.352688 final value 79.342731 converged Fitting Repeat 1 # weights: 305 initial value 129.220099 iter 10 value 117.735322 iter 20 value 117.415346 iter 30 value 105.532073 iter 40 value 105.364069 iter 50 value 105.362852 iter 60 value 105.347472 iter 70 value 105.345880 final value 105.343681 converged Fitting Repeat 2 # weights: 305 initial value 123.026387 iter 10 value 117.894469 iter 20 value 112.625751 iter 30 value 106.938511 iter 40 value 106.737980 iter 50 value 106.724543 iter 60 value 106.724414 final value 106.723665 converged Fitting Repeat 3 # weights: 305 initial value 133.343116 iter 10 value 117.763421 iter 20 value 117.737507 iter 30 value 117.728663 final value 117.728589 converged Fitting Repeat 4 # weights: 305 initial value 118.469178 iter 10 value 117.894652 iter 20 value 115.235998 iter 30 value 107.288329 iter 40 value 106.777879 iter 50 value 106.774416 final value 106.773103 converged Fitting Repeat 5 # weights: 305 initial value 119.933242 iter 10 value 117.893779 iter 20 value 117.580795 final value 117.511456 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Nov 20 08:58:24 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 55.427 1.875 76.126
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 38.230 | 0.683 | 39.047 | |
FreqInteractors | 0.284 | 0.007 | 0.293 | |
calculateAAC | 0.042 | 0.005 | 0.046 | |
calculateAutocor | 0.733 | 0.031 | 0.768 | |
calculateCTDC | 0.071 | 0.024 | 0.095 | |
calculateCTDD | 0.794 | 0.008 | 0.804 | |
calculateCTDT | 0.266 | 0.004 | 0.270 | |
calculateCTriad | 0.459 | 0.012 | 0.472 | |
calculateDC | 0.131 | 0.000 | 0.131 | |
calculateF | 0.437 | 0.004 | 0.442 | |
calculateKSAAP | 0.144 | 0.000 | 0.144 | |
calculateQD_Sm | 2.327 | 0.024 | 2.357 | |
calculateTC | 2.366 | 0.048 | 2.467 | |
calculateTC_Sm | 0.316 | 0.012 | 0.329 | |
corr_plot | 37.931 | 0.271 | 38.285 | |
enrichfindP | 0.514 | 0.053 | 21.100 | |
enrichfind_hp | 0.099 | 0.008 | 1.499 | |
enrichplot | 0.524 | 0.079 | 0.606 | |
filter_missing_values | 0.000 | 0.001 | 0.001 | |
getFASTA | 0.083 | 0.005 | 5.501 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.002 | 0.000 | 0.002 | |
plotPPI | 0.083 | 0.012 | 0.095 | |
pred_ensembel | 19.082 | 1.012 | 16.924 | |
var_imp | 37.618 | 0.703 | 38.398 | |