Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2024-11-02 12:05 -0400 (Sat, 02 Nov 2024).

HostnameOSArch (*)R versionInstalled pkgs
teran2Linux (Ubuntu 24.04.1 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4500
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.1 (2024-06-14) -- "Race for Your Life" 4763
palomino8Windows Server 2022 Datacenterx644.4.1 (2024-06-14 ucrt) -- "Race for Your Life" 4505
lconwaymacOS 12.7.1 Montereyx86_644.4.1 (2024-06-14) -- "Race for Your Life" 4538
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch644.4.1 (2024-06-14) -- "Race for Your Life" 4493
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2024-11-01 13:40 -0400 (Fri, 01 Nov 2024)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0400 (Tue, 29 Oct 2024)
teran2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
StartedAt: 2024-11-02 03:24:40 -0400 (Sat, 02 Nov 2024)
EndedAt: 2024-11-02 03:29:46 -0400 (Sat, 02 Nov 2024)
EllapsedTime: 306.5 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.1 (2024-06-14 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.2.0
    GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.12.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      34.98   1.89   37.28
var_imp       35.05   1.33   36.39
corr_plot     33.37   1.99   35.36
pred_ensembel 15.60   0.67   11.86
enrichfindP    0.61   0.12   13.73
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.909439 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.791256 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.367566 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.122239 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.031826 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.339838 
final  value 94.484210 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.279583 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  305
initial  value 120.463498 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.408020 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.135760 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.906263 
iter  10 value 94.466823
iter  10 value 94.466823
iter  10 value 94.466823
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  507
initial  value 108.625200 
iter  10 value 93.381482
iter  20 value 92.354114
iter  30 value 91.732081
iter  40 value 91.490917
final  value 91.484072 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.537717 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.015929 
final  value 94.088889 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.439986 
iter  10 value 83.977566
iter  20 value 83.778691
iter  20 value 83.778691
iter  20 value 83.778691
final  value 83.778691 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.207205 
iter  10 value 94.488708
iter  20 value 92.503826
iter  30 value 87.138413
iter  40 value 84.692263
iter  50 value 84.257339
iter  60 value 84.185914
iter  70 value 84.089316
iter  80 value 84.020573
iter  90 value 83.568860
final  value 83.566587 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.647601 
iter  10 value 94.415490
iter  20 value 85.815485
iter  30 value 85.421110
iter  40 value 84.817873
iter  50 value 84.396606
iter  60 value 83.898017
iter  70 value 83.624911
iter  80 value 83.566590
final  value 83.566587 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.334706 
iter  10 value 94.557489
iter  20 value 94.277650
iter  30 value 94.068112
iter  40 value 88.145371
iter  50 value 85.203632
iter  60 value 84.966545
iter  70 value 84.332747
iter  80 value 83.739768
iter  90 value 83.571088
final  value 83.566587 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.223325 
iter  10 value 94.446507
iter  20 value 86.862348
iter  30 value 84.127642
iter  40 value 83.821991
iter  50 value 83.244970
iter  60 value 82.150569
iter  70 value 82.033728
iter  80 value 81.999959
final  value 81.999955 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.979544 
iter  10 value 94.488678
iter  20 value 94.471236
iter  30 value 94.339302
iter  40 value 94.294790
iter  50 value 94.224745
iter  60 value 87.395951
iter  70 value 85.051082
iter  80 value 84.732628
iter  90 value 84.343698
iter 100 value 84.112151
final  value 84.112151 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 103.089359 
iter  10 value 94.436977
iter  20 value 92.275849
iter  30 value 92.119550
iter  40 value 91.183342
iter  50 value 85.430013
iter  60 value 84.700205
iter  70 value 82.618169
iter  80 value 82.006049
iter  90 value 81.586534
iter 100 value 81.107420
final  value 81.107420 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.586520 
iter  10 value 94.491932
iter  20 value 94.277595
iter  30 value 91.583156
iter  40 value 86.736005
iter  50 value 84.811537
iter  60 value 83.718373
iter  70 value 83.166286
iter  80 value 82.478606
iter  90 value 81.492535
iter 100 value 81.105647
final  value 81.105647 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 131.335818 
iter  10 value 94.471857
iter  20 value 86.739830
iter  30 value 84.889975
iter  40 value 83.482261
iter  50 value 82.758607
iter  60 value 82.536388
iter  70 value 82.038401
iter  80 value 81.207152
iter  90 value 80.476490
iter 100 value 80.421120
final  value 80.421120 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.493241 
iter  10 value 94.539280
iter  20 value 88.823289
iter  30 value 85.561727
iter  40 value 83.688356
iter  50 value 83.312278
iter  60 value 82.810319
iter  70 value 82.393806
iter  80 value 82.185724
iter  90 value 82.065942
iter 100 value 81.152681
final  value 81.152681 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 114.883224 
iter  10 value 94.515700
iter  20 value 90.539964
iter  30 value 85.674092
iter  40 value 84.901573
iter  50 value 84.556149
iter  60 value 83.880537
iter  70 value 82.567517
iter  80 value 82.024290
iter  90 value 81.751520
iter 100 value 81.033254
final  value 81.033254 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.806350 
iter  10 value 94.393144
iter  20 value 86.024793
iter  30 value 85.124169
iter  40 value 84.638008
iter  50 value 84.208409
iter  60 value 83.947158
iter  70 value 83.286244
iter  80 value 83.161830
iter  90 value 83.063652
iter 100 value 82.499356
final  value 82.499356 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 124.257109 
iter  10 value 94.866608
iter  20 value 86.061013
iter  30 value 85.564035
iter  40 value 83.828241
iter  50 value 81.968721
iter  60 value 81.361655
iter  70 value 81.163929
iter  80 value 80.499814
iter  90 value 80.216470
iter 100 value 80.091047
final  value 80.091047 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.503885 
iter  10 value 94.468762
iter  20 value 94.238144
iter  30 value 88.696853
iter  40 value 86.724077
iter  50 value 85.270726
iter  60 value 81.449559
iter  70 value 80.979562
iter  80 value 80.711026
iter  90 value 80.474847
iter 100 value 80.424052
final  value 80.424052 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 113.336732 
iter  10 value 95.226801
iter  20 value 90.060129
iter  30 value 88.821199
iter  40 value 87.853443
iter  50 value 87.508960
iter  60 value 86.461210
iter  70 value 86.324482
iter  80 value 86.006660
iter  90 value 85.035894
iter 100 value 82.749158
final  value 82.749158 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.299699 
iter  10 value 93.209837
iter  20 value 86.448775
iter  30 value 83.181549
iter  40 value 81.843344
iter  50 value 81.697998
iter  60 value 80.923546
iter  70 value 80.766493
iter  80 value 80.540319
iter  90 value 80.366796
iter 100 value 80.251130
final  value 80.251130 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.778133 
final  value 94.486026 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.348519 
iter  10 value 94.478511
iter  20 value 94.468384
iter  30 value 94.467405
iter  40 value 94.466772
iter  50 value 91.958742
final  value 91.791663 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.884250 
final  value 94.485864 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.231233 
final  value 94.485590 
converged
Fitting Repeat 5 

# weights:  103
initial  value 113.531148 
iter  10 value 94.485992
iter  20 value 94.484275
final  value 94.484217 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.890926 
iter  10 value 94.487884
iter  20 value 94.279708
iter  30 value 94.253001
iter  30 value 94.253001
iter  30 value 94.253000
final  value 94.253000 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.216793 
iter  10 value 86.531117
iter  20 value 85.041651
iter  30 value 84.700375
iter  40 value 84.154917
iter  50 value 84.005147
iter  60 value 84.003578
iter  70 value 84.002601
iter  70 value 84.002600
final  value 84.002600 
converged
Fitting Repeat 3 

# weights:  305
initial  value 114.501127 
iter  10 value 94.448624
iter  20 value 94.367124
iter  30 value 87.706591
iter  40 value 85.889601
iter  50 value 83.927572
iter  60 value 83.161069
iter  70 value 82.846669
iter  80 value 82.436922
iter  90 value 82.159938
iter 100 value 82.156197
final  value 82.156197 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 95.871776 
iter  10 value 94.150402
iter  20 value 92.586506
iter  30 value 92.577494
iter  40 value 92.574713
iter  50 value 92.572977
final  value 92.572782 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.667039 
iter  10 value 94.484869
iter  20 value 94.197517
iter  30 value 86.723955
iter  40 value 84.985392
iter  50 value 84.909875
iter  60 value 84.884570
iter  70 value 84.884423
final  value 84.883942 
converged
Fitting Repeat 1 

# weights:  507
initial  value 119.760315 
iter  10 value 89.212643
iter  20 value 86.646969
iter  30 value 86.486561
iter  40 value 85.973519
iter  50 value 85.444591
iter  60 value 85.425896
iter  70 value 84.041539
final  value 83.931078 
converged
Fitting Repeat 2 

# weights:  507
initial  value 94.601163 
iter  10 value 94.485048
iter  20 value 93.477472
iter  30 value 85.602689
iter  40 value 85.075276
iter  50 value 82.735241
iter  60 value 80.097167
iter  70 value 79.832590
iter  80 value 79.578703
iter  90 value 79.575642
iter 100 value 79.571987
final  value 79.571987 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 96.875657 
iter  10 value 94.480143
iter  20 value 94.474736
iter  30 value 94.472825
iter  40 value 94.470061
iter  50 value 93.269274
iter  60 value 92.822319
iter  70 value 92.550628
iter  80 value 92.547706
iter  90 value 92.547243
iter 100 value 92.546978
final  value 92.546978 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 130.795225 
iter  10 value 94.475385
iter  20 value 91.904846
iter  30 value 86.496771
iter  40 value 86.013205
iter  50 value 85.445426
iter  60 value 85.395830
iter  70 value 85.395493
iter  80 value 85.317190
iter  90 value 82.180305
iter 100 value 82.155623
final  value 82.155623 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 97.922692 
iter  10 value 94.467114
iter  20 value 94.436702
iter  30 value 93.630346
iter  40 value 92.147416
iter  50 value 91.946903
iter  60 value 91.908425
iter  70 value 91.423157
iter  80 value 91.422095
final  value 91.422085 
converged
Fitting Repeat 1 

# weights:  103
initial  value 105.548317 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.982641 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.842139 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 102.203195 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.820361 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.469741 
iter  10 value 94.031618
iter  20 value 93.953752
final  value 93.945326 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.890894 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.648738 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.410535 
final  value 93.809648 
converged
Fitting Repeat 5 

# weights:  305
initial  value 110.357773 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.694885 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.676222 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.358501 
iter  10 value 94.484216
iter  10 value 94.484215
iter  10 value 94.484215
final  value 94.484215 
converged
Fitting Repeat 4 

# weights:  507
initial  value 101.437786 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.177651 
final  value 94.026542 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.864245 
iter  10 value 93.417219
iter  20 value 87.390882
iter  30 value 87.083024
iter  40 value 86.786134
iter  50 value 86.091845
iter  60 value 85.951523
iter  70 value 85.937791
iter  80 value 85.932533
iter  90 value 85.875435
iter 100 value 85.805926
final  value 85.805926 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.682487 
iter  10 value 94.565209
iter  20 value 92.871696
iter  30 value 89.388840
iter  40 value 87.326913
iter  50 value 87.101779
iter  60 value 87.028216
iter  70 value 87.020765
iter  80 value 86.912760
iter  90 value 86.900185
iter  90 value 86.900184
iter  90 value 86.900184
final  value 86.900184 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.539815 
iter  10 value 94.114510
iter  20 value 92.291795
iter  30 value 85.593357
iter  40 value 85.118083
iter  50 value 84.886292
iter  60 value 84.626390
iter  70 value 84.232011
iter  80 value 83.899319
iter  90 value 83.895793
iter 100 value 83.883526
final  value 83.883526 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 111.107329 
iter  10 value 94.455960
iter  20 value 93.631255
iter  30 value 91.120917
iter  40 value 90.481855
iter  50 value 88.365733
iter  60 value 88.341366
final  value 88.341315 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.345885 
iter  10 value 94.488240
iter  20 value 94.224528
iter  30 value 93.900303
iter  40 value 93.896268
iter  50 value 93.829897
iter  60 value 89.575330
iter  70 value 89.352671
iter  80 value 88.339064
iter  90 value 87.539797
iter 100 value 87.340127
final  value 87.340127 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 112.697427 
iter  10 value 94.309442
iter  20 value 91.080677
iter  30 value 89.752443
iter  40 value 87.624187
iter  50 value 86.557551
iter  60 value 86.205113
iter  70 value 85.830669
iter  80 value 84.996741
iter  90 value 83.453208
iter 100 value 82.995299
final  value 82.995299 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 123.601981 
iter  10 value 94.038622
iter  20 value 88.251510
iter  30 value 87.108548
iter  40 value 86.946219
iter  50 value 85.464364
iter  60 value 84.729560
iter  70 value 83.845178
iter  80 value 83.216087
iter  90 value 82.652727
iter 100 value 82.554066
final  value 82.554066 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.839908 
iter  10 value 94.476340
iter  20 value 93.913513
iter  30 value 90.752344
iter  40 value 88.065488
iter  50 value 84.951626
iter  60 value 84.118206
iter  70 value 83.665560
iter  80 value 83.334028
iter  90 value 83.230720
iter 100 value 83.111477
final  value 83.111477 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.306599 
iter  10 value 92.657951
iter  20 value 87.313239
iter  30 value 84.922167
iter  40 value 83.473335
iter  50 value 83.207559
iter  60 value 83.103497
iter  70 value 82.951139
iter  80 value 82.802939
iter  90 value 82.709618
iter 100 value 82.704639
final  value 82.704639 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.662270 
iter  10 value 94.492324
iter  20 value 90.933371
iter  30 value 87.373781
iter  40 value 84.513719
iter  50 value 83.389959
iter  60 value 83.134093
iter  70 value 83.032961
iter  80 value 82.824720
iter  90 value 82.748829
iter 100 value 82.721730
final  value 82.721730 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.016767 
iter  10 value 95.154816
iter  20 value 93.495247
iter  30 value 93.126268
iter  40 value 92.897263
iter  50 value 88.585387
iter  60 value 86.022342
iter  70 value 85.498711
iter  80 value 85.180759
iter  90 value 84.375145
iter 100 value 84.227113
final  value 84.227113 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.752350 
iter  10 value 94.289901
iter  20 value 94.237601
iter  30 value 93.526479
iter  40 value 91.663438
iter  50 value 91.150396
iter  60 value 86.616660
iter  70 value 85.512430
iter  80 value 85.427709
iter  90 value 85.196851
iter 100 value 84.698219
final  value 84.698219 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.831136 
iter  10 value 95.124507
iter  20 value 92.551658
iter  30 value 89.717809
iter  40 value 87.476907
iter  50 value 85.912050
iter  60 value 84.547208
iter  70 value 83.740829
iter  80 value 83.495945
iter  90 value 83.144037
iter 100 value 83.031897
final  value 83.031897 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.023409 
iter  10 value 94.426751
iter  20 value 93.329341
iter  30 value 90.843039
iter  40 value 89.971867
iter  50 value 88.671513
iter  60 value 87.178429
iter  70 value 85.207645
iter  80 value 84.598401
iter  90 value 83.965731
iter 100 value 83.692211
final  value 83.692211 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 121.662864 
iter  10 value 94.188028
iter  20 value 93.157166
iter  30 value 88.031594
iter  40 value 85.802365
iter  50 value 85.330453
iter  60 value 83.893047
iter  70 value 83.276041
iter  80 value 83.129827
iter  90 value 83.088030
iter 100 value 83.001682
final  value 83.001682 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.555859 
final  value 94.485794 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.305503 
final  value 94.485595 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.321396 
final  value 94.485903 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.213209 
final  value 94.485966 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.721829 
final  value 94.485904 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.021566 
iter  10 value 94.489479
iter  20 value 93.944665
iter  30 value 93.808019
final  value 93.807962 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.836135 
iter  10 value 94.031812
iter  20 value 94.027207
final  value 94.026759 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.809578 
iter  10 value 87.819084
iter  20 value 86.502554
iter  30 value 86.272679
iter  40 value 86.270635
iter  50 value 86.269376
iter  60 value 86.268851
final  value 86.268829 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.627275 
iter  10 value 94.031421
iter  20 value 92.955426
iter  30 value 91.077598
iter  40 value 91.005909
iter  50 value 90.976844
final  value 90.976552 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.337412 
iter  10 value 94.485142
iter  20 value 94.484223
final  value 94.484221 
converged
Fitting Repeat 1 

# weights:  507
initial  value 94.698578 
iter  10 value 94.485175
iter  20 value 89.448150
iter  30 value 88.993199
iter  40 value 88.989947
final  value 88.989944 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.511036 
iter  10 value 93.824228
iter  20 value 91.347331
iter  30 value 91.154438
iter  40 value 90.989282
final  value 90.989024 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.591956 
iter  10 value 94.035309
iter  20 value 93.929693
iter  30 value 93.793964
final  value 93.793911 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.435019 
iter  10 value 94.491930
iter  20 value 94.484307
iter  30 value 93.863865
final  value 93.569767 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.678891 
iter  10 value 94.468957
iter  20 value 94.466311
iter  30 value 92.610147
iter  40 value 89.769052
iter  50 value 89.648590
iter  60 value 89.576479
iter  70 value 89.347843
final  value 89.347828 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.131443 
iter  10 value 94.008696
iter  10 value 94.008696
iter  10 value 94.008696
final  value 94.008696 
converged
Fitting Repeat 2 

# weights:  103
initial  value 110.553498 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.937509 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.056792 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.142865 
final  value 94.008696 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.932737 
final  value 94.008696 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.864366 
final  value 94.011561 
converged
Fitting Repeat 3 

# weights:  305
initial  value 104.614668 
final  value 94.008696 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.110663 
iter  10 value 90.478438
iter  20 value 84.895105
iter  30 value 84.172545
iter  40 value 83.393418
iter  50 value 82.404720
iter  60 value 82.366007
iter  70 value 82.210414
iter  80 value 81.653475
final  value 81.653444 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.969619 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.500126 
iter  10 value 93.596277
final  value 93.593182 
converged
Fitting Repeat 2 

# weights:  507
initial  value 106.629856 
final  value 94.052929 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.220146 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 118.240162 
iter  10 value 93.389846
iter  20 value 91.534105
iter  30 value 91.398879
iter  40 value 91.397294
final  value 91.397286 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.289694 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.073981 
iter  10 value 91.723532
iter  20 value 91.402919
iter  30 value 91.061382
iter  40 value 90.875385
iter  50 value 90.787094
final  value 90.786875 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.334721 
iter  10 value 94.030111
iter  20 value 89.926137
iter  30 value 83.710300
iter  40 value 82.940130
iter  50 value 81.776956
iter  60 value 81.605014
iter  70 value 81.178012
iter  80 value 80.818134
iter  90 value 80.730723
final  value 80.730719 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.773790 
iter  10 value 92.730552
iter  20 value 83.715124
iter  30 value 83.359649
iter  40 value 82.729269
iter  50 value 82.412704
iter  60 value 82.402441
iter  70 value 82.382575
final  value 82.378513 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.215817 
iter  10 value 94.005711
iter  20 value 85.838493
iter  30 value 84.776323
iter  40 value 84.716163
iter  50 value 83.836755
iter  60 value 82.877575
iter  70 value 82.428746
iter  80 value 82.378624
final  value 82.378513 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.274954 
iter  10 value 94.015416
iter  20 value 89.776191
iter  30 value 87.290386
iter  40 value 86.567538
iter  50 value 86.532344
iter  60 value 83.277478
iter  70 value 82.467374
iter  80 value 82.411319
iter  90 value 82.400206
iter 100 value 82.383615
final  value 82.383615 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.551580 
iter  10 value 94.259532
iter  20 value 92.466545
iter  30 value 83.577364
iter  40 value 81.194951
iter  50 value 79.998457
iter  60 value 79.572451
iter  70 value 79.462380
iter  80 value 79.379623
iter  90 value 79.237489
iter 100 value 79.124539
final  value 79.124539 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.630437 
iter  10 value 93.793085
iter  20 value 85.010358
iter  30 value 83.671135
iter  40 value 82.745692
iter  50 value 81.383054
iter  60 value 80.974079
iter  70 value 79.948052
iter  80 value 79.366854
iter  90 value 78.822474
iter 100 value 78.782783
final  value 78.782783 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.464873 
iter  10 value 94.026171
iter  20 value 84.439300
iter  30 value 83.057090
iter  40 value 82.326526
iter  50 value 82.230254
iter  60 value 82.143172
iter  70 value 82.117468
iter  80 value 82.098165
iter  90 value 82.074367
iter 100 value 82.061739
final  value 82.061739 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.879164 
iter  10 value 89.614442
iter  20 value 84.649812
iter  30 value 83.944614
iter  40 value 82.737713
iter  50 value 82.009538
iter  60 value 80.109888
iter  70 value 79.523518
iter  80 value 79.374770
iter  90 value 79.332794
iter 100 value 79.308529
final  value 79.308529 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.982140 
iter  10 value 92.948848
iter  20 value 88.028958
iter  30 value 84.273358
iter  40 value 83.542079
iter  50 value 82.840216
iter  60 value 82.324914
iter  70 value 82.038281
iter  80 value 81.847137
iter  90 value 81.803141
iter 100 value 81.515002
final  value 81.515002 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.946067 
iter  10 value 94.829278
iter  20 value 93.508982
iter  30 value 90.623064
iter  40 value 90.144151
iter  50 value 87.089226
iter  60 value 81.183239
iter  70 value 79.669568
iter  80 value 79.377438
iter  90 value 78.852648
iter 100 value 78.769163
final  value 78.769163 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.677625 
iter  10 value 94.479799
iter  20 value 93.287868
iter  30 value 87.867836
iter  40 value 83.410777
iter  50 value 82.583066
iter  60 value 81.455748
iter  70 value 80.408248
iter  80 value 79.975211
iter  90 value 79.398521
iter 100 value 79.243715
final  value 79.243715 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 136.559664 
iter  10 value 94.122746
iter  20 value 90.294914
iter  30 value 84.750312
iter  40 value 83.357055
iter  50 value 82.100244
iter  60 value 80.857567
iter  70 value 80.068629
iter  80 value 79.751963
iter  90 value 79.567857
iter 100 value 79.496226
final  value 79.496226 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.698789 
iter  10 value 93.803108
iter  20 value 90.198086
iter  30 value 84.127426
iter  40 value 81.721380
iter  50 value 81.350288
iter  60 value 80.654641
iter  70 value 80.180816
iter  80 value 79.746590
iter  90 value 79.649533
iter 100 value 79.390509
final  value 79.390509 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.271578 
iter  10 value 93.959236
iter  20 value 89.408713
iter  30 value 83.761590
iter  40 value 82.583136
iter  50 value 81.701177
iter  60 value 81.473754
iter  70 value 81.424902
iter  80 value 81.401562
iter  90 value 81.377766
iter 100 value 81.362264
final  value 81.362264 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.363710 
final  value 94.054639 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.256643 
final  value 94.010356 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.317185 
final  value 94.054583 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.106107 
final  value 94.054252 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.798577 
final  value 94.054467 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.108512 
iter  10 value 94.056719
iter  20 value 84.629810
iter  30 value 84.150526
iter  40 value 84.149124
iter  50 value 84.143745
final  value 84.143699 
converged
Fitting Repeat 2 

# weights:  305
initial  value 124.039307 
iter  10 value 93.633880
iter  20 value 93.630557
iter  30 value 93.629342
iter  40 value 91.434617
iter  50 value 85.349043
iter  60 value 82.426137
final  value 82.422555 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.167537 
iter  10 value 94.057836
iter  20 value 93.639349
iter  30 value 93.636508
iter  40 value 93.444656
final  value 93.444581 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.801275 
iter  10 value 94.013832
iter  20 value 89.065514
iter  30 value 85.261000
iter  40 value 83.847590
iter  50 value 83.434845
iter  60 value 83.433106
final  value 83.432872 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.378021 
iter  10 value 93.967221
iter  20 value 93.963080
iter  30 value 91.850602
final  value 91.208987 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.104680 
iter  10 value 94.060049
iter  20 value 93.015285
iter  30 value 84.129116
iter  40 value 84.079319
iter  50 value 84.078411
iter  60 value 83.133929
iter  70 value 81.558283
iter  80 value 81.555811
iter  90 value 81.553660
final  value 81.552133 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.471778 
iter  10 value 94.019983
iter  20 value 93.926573
iter  30 value 93.830158
iter  40 value 93.827206
iter  50 value 93.333504
iter  60 value 84.845578
iter  70 value 83.485562
iter  80 value 82.913076
iter  90 value 81.865410
final  value 81.865401 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.035486 
iter  10 value 94.059214
iter  20 value 94.017453
iter  30 value 84.790882
iter  40 value 83.089613
iter  50 value 83.017589
iter  60 value 82.783621
iter  70 value 82.046079
iter  80 value 82.035254
iter  90 value 81.997240
final  value 81.996918 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.565511 
iter  10 value 94.020766
iter  20 value 93.997860
iter  30 value 87.701020
iter  40 value 85.930838
iter  50 value 84.127580
iter  60 value 84.126225
iter  70 value 84.124272
iter  80 value 83.817268
iter  90 value 83.416741
iter 100 value 83.415790
final  value 83.415790 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 94.929705 
iter  10 value 92.770704
iter  20 value 91.679255
iter  30 value 91.447134
iter  40 value 91.245946
iter  50 value 91.169614
final  value 91.169567 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.426794 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.428833 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.570719 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.839591 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.988871 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.987030 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.991708 
iter  10 value 93.295189
final  value 93.295187 
converged
Fitting Repeat 3 

# weights:  305
initial  value 104.700960 
iter  10 value 94.052710
iter  20 value 93.518975
final  value 93.288889 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.027006 
final  value 93.915746 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.179217 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.078792 
iter  10 value 94.219318
iter  20 value 88.488430
iter  30 value 79.781767
iter  40 value 79.714911
iter  50 value 79.713297
final  value 79.713285 
converged
Fitting Repeat 2 

# weights:  507
initial  value 125.378303 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.918185 
iter  10 value 89.468348
iter  20 value 87.571367
final  value 87.571361 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.499157 
iter  10 value 93.347922
final  value 93.226190 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.435551 
iter  10 value 93.451987
iter  20 value 89.263456
iter  30 value 88.287445
iter  40 value 88.247081
final  value 88.246928 
converged
Fitting Repeat 1 

# weights:  103
initial  value 111.451623 
iter  10 value 94.056386
iter  20 value 89.658493
iter  30 value 84.602292
iter  40 value 84.046600
iter  50 value 83.620054
iter  60 value 83.369235
final  value 83.363023 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.171673 
iter  10 value 93.978662
iter  20 value 83.911190
iter  30 value 82.688713
iter  40 value 81.244047
iter  50 value 80.524918
iter  60 value 80.373185
iter  70 value 79.252508
iter  80 value 78.069507
iter  90 value 77.875164
iter 100 value 77.870274
final  value 77.870274 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 103.644627 
iter  10 value 94.056825
iter  20 value 93.257299
iter  30 value 90.003165
iter  40 value 86.938273
iter  50 value 85.282825
iter  60 value 85.005151
iter  70 value 81.408346
iter  80 value 81.293027
iter  80 value 81.293026
final  value 81.293026 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.880352 
iter  10 value 94.054555
iter  20 value 93.250204
iter  30 value 92.405231
iter  40 value 87.204789
iter  50 value 86.679985
iter  60 value 82.342436
iter  70 value 80.451934
iter  80 value 80.374535
iter  90 value 80.354502
iter 100 value 78.939984
final  value 78.939984 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.917613 
iter  10 value 94.051950
iter  20 value 91.140024
iter  30 value 87.726003
iter  40 value 84.815961
iter  50 value 84.307321
iter  60 value 84.182544
iter  70 value 84.022426
iter  80 value 83.469193
iter  90 value 83.187982
iter 100 value 83.181717
final  value 83.181717 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.695170 
iter  10 value 94.063979
iter  20 value 86.933643
iter  30 value 83.536432
iter  40 value 82.197786
iter  50 value 80.698291
iter  60 value 80.306220
iter  70 value 79.532971
iter  80 value 79.127892
iter  90 value 78.256641
iter 100 value 77.510589
final  value 77.510589 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 117.670071 
iter  10 value 94.060550
iter  20 value 86.574181
iter  30 value 81.161560
iter  40 value 80.823477
iter  50 value 80.451584
iter  60 value 79.252850
iter  70 value 78.395804
iter  80 value 77.144648
iter  90 value 76.875186
iter 100 value 76.783780
final  value 76.783780 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.000008 
iter  10 value 93.866501
iter  20 value 88.513401
iter  30 value 85.844630
iter  40 value 81.760095
iter  50 value 78.588688
iter  60 value 78.276414
iter  70 value 78.008988
iter  80 value 77.689037
iter  90 value 77.257845
iter 100 value 76.844386
final  value 76.844386 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.313369 
iter  10 value 90.947376
iter  20 value 86.181453
iter  30 value 81.083535
iter  40 value 79.973993
iter  50 value 79.813658
iter  60 value 79.777264
iter  70 value 79.660684
iter  80 value 79.487054
iter  90 value 78.830310
iter 100 value 78.393527
final  value 78.393527 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.798040 
iter  10 value 94.068276
iter  20 value 90.105230
iter  30 value 85.582393
iter  40 value 84.599520
iter  50 value 81.964578
iter  60 value 78.643696
iter  70 value 78.177433
iter  80 value 77.840192
iter  90 value 77.483701
iter 100 value 77.308518
final  value 77.308518 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.303260 
iter  10 value 94.044938
iter  20 value 85.967062
iter  30 value 82.768125
iter  40 value 82.373207
iter  50 value 82.149936
iter  60 value 80.460359
iter  70 value 78.756594
iter  80 value 77.543896
iter  90 value 77.113813
iter 100 value 76.757392
final  value 76.757392 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 123.697172 
iter  10 value 94.131223
iter  20 value 89.429236
iter  30 value 86.081575
iter  40 value 81.488864
iter  50 value 80.089700
iter  60 value 78.705845
iter  70 value 77.631668
iter  80 value 77.225870
iter  90 value 76.919104
iter 100 value 76.770117
final  value 76.770117 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 129.994042 
iter  10 value 95.973309
iter  20 value 91.637767
iter  30 value 82.636216
iter  40 value 82.442615
iter  50 value 79.961909
iter  60 value 78.894210
iter  70 value 78.617088
iter  80 value 78.348341
iter  90 value 78.317169
iter 100 value 78.296813
final  value 78.296813 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.798523 
iter  10 value 94.189021
iter  20 value 93.311093
iter  30 value 85.437680
iter  40 value 80.949392
iter  50 value 78.664883
iter  60 value 77.940141
iter  70 value 77.214043
iter  80 value 76.992887
iter  90 value 76.919933
iter 100 value 76.906935
final  value 76.906935 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.741469 
iter  10 value 94.496038
iter  20 value 94.363016
iter  30 value 92.927192
iter  40 value 83.006739
iter  50 value 80.368238
iter  60 value 78.715101
iter  70 value 77.686848
iter  80 value 77.027607
iter  90 value 76.877573
iter 100 value 76.672584
final  value 76.672584 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.079673 
final  value 94.054330 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.573387 
iter  10 value 94.054515
iter  20 value 94.052922
final  value 94.052920 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.718456 
final  value 94.054569 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.501825 
iter  10 value 93.719535
iter  20 value 91.794312
iter  30 value 91.772569
iter  40 value 84.461455
final  value 84.418268 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.052075 
final  value 94.054480 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.027966 
iter  10 value 83.839099
iter  20 value 81.260331
iter  30 value 80.977861
iter  40 value 80.875778
iter  50 value 80.873144
final  value 80.871865 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.055798 
iter  10 value 94.057470
iter  20 value 92.926883
iter  30 value 86.491685
iter  40 value 86.472926
iter  50 value 86.472780
iter  50 value 86.472779
iter  50 value 86.472779
final  value 86.472779 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.006579 
iter  10 value 93.920337
iter  20 value 88.584153
iter  30 value 79.342722
iter  40 value 79.295480
final  value 79.295389 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.329646 
iter  10 value 93.929618
iter  20 value 93.924681
iter  30 value 93.924018
iter  40 value 93.916050
iter  50 value 88.098717
iter  60 value 81.573528
final  value 81.573220 
converged
Fitting Repeat 5 

# weights:  305
initial  value 109.411915 
iter  10 value 94.058382
iter  20 value 93.801316
iter  30 value 93.226971
final  value 93.226724 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.313847 
iter  10 value 92.553251
iter  20 value 92.541816
iter  30 value 91.538332
iter  40 value 83.002835
iter  50 value 81.646610
iter  60 value 81.552276
iter  70 value 81.552157
iter  80 value 81.551992
iter  90 value 79.818829
iter 100 value 79.511515
final  value 79.511515 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 100.719166 
iter  10 value 94.060936
iter  20 value 94.039052
iter  30 value 93.198950
iter  40 value 93.195199
iter  50 value 93.193274
iter  60 value 81.435217
iter  70 value 79.700846
iter  80 value 78.211607
iter  90 value 78.187882
iter 100 value 78.182696
final  value 78.182696 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 99.572481 
iter  10 value 92.947211
iter  20 value 85.653410
iter  30 value 84.827808
iter  40 value 84.080474
iter  50 value 82.419265
iter  60 value 82.416293
final  value 82.416261 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.973377 
iter  10 value 93.924235
iter  20 value 93.533392
iter  30 value 91.244267
iter  40 value 83.401857
iter  50 value 78.562267
iter  60 value 78.494698
iter  70 value 78.383105
iter  80 value 78.341813
iter  90 value 78.336665
iter 100 value 78.331903
final  value 78.331903 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 95.540568 
iter  10 value 92.152529
iter  20 value 92.144658
iter  30 value 92.141571
iter  40 value 92.140677
iter  50 value 92.138945
iter  60 value 88.234231
iter  70 value 81.526456
iter  80 value 79.672078
iter  90 value 79.387574
iter 100 value 79.208031
final  value 79.208031 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.804199 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.601039 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.179395 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.537983 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.499531 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.216919 
iter  10 value 84.560835
iter  20 value 83.459377
final  value 83.457662 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.502713 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.343476 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.192804 
iter  10 value 94.219855
final  value 94.212644 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.924160 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.094690 
iter  10 value 93.912035
final  value 93.911761 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.522454 
iter  10 value 93.214284
iter  20 value 93.211438
final  value 93.211429 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.491595 
iter  10 value 94.252920
iter  10 value 94.252920
iter  10 value 94.252920
final  value 94.252920 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.655572 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.303011 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.078569 
iter  10 value 94.218834
iter  20 value 91.745648
iter  30 value 87.544920
iter  40 value 86.527055
iter  50 value 84.386637
iter  60 value 84.201564
iter  70 value 84.139002
iter  80 value 84.109280
final  value 84.109274 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.046665 
iter  10 value 94.471562
iter  20 value 94.186809
iter  30 value 94.031776
iter  40 value 92.337823
iter  50 value 90.565631
iter  60 value 85.646378
iter  70 value 84.772113
iter  80 value 84.300876
iter  90 value 83.870606
iter 100 value 83.836925
final  value 83.836925 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 101.904596 
iter  10 value 94.488532
iter  20 value 86.590584
iter  30 value 85.878883
iter  40 value 85.457999
iter  50 value 84.837226
iter  60 value 83.955420
iter  70 value 83.873473
iter  80 value 83.810520
final  value 83.807655 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.244091 
iter  10 value 87.159061
iter  20 value 84.171517
iter  30 value 83.919832
iter  40 value 83.837081
final  value 83.836920 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.868515 
iter  10 value 94.483035
iter  20 value 88.367838
iter  30 value 87.951596
iter  40 value 87.670993
iter  50 value 85.162388
iter  60 value 83.885438
iter  70 value 83.808248
final  value 83.807655 
converged
Fitting Repeat 1 

# weights:  305
initial  value 117.133702 
iter  10 value 94.668235
iter  20 value 89.510070
iter  30 value 86.344101
iter  40 value 85.738422
iter  50 value 84.577905
iter  60 value 83.965630
iter  70 value 83.918116
iter  80 value 83.835237
iter  90 value 83.005091
iter 100 value 82.299520
final  value 82.299520 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.608110 
iter  10 value 94.681506
iter  20 value 94.344108
iter  30 value 93.128198
iter  40 value 92.822483
iter  50 value 90.652926
iter  60 value 83.569057
iter  70 value 82.256754
iter  80 value 81.759086
iter  90 value 81.343948
iter 100 value 80.441572
final  value 80.441572 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.054887 
iter  10 value 91.055046
iter  20 value 85.947573
iter  30 value 85.667155
iter  40 value 83.938916
iter  50 value 83.595377
iter  60 value 82.340567
iter  70 value 81.739926
iter  80 value 81.610262
iter  90 value 81.427999
iter 100 value 81.363793
final  value 81.363793 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 109.737563 
iter  10 value 94.430076
iter  20 value 91.977597
iter  30 value 87.694060
iter  40 value 84.067700
iter  50 value 80.861454
iter  60 value 80.511818
iter  70 value 80.298099
iter  80 value 80.039266
iter  90 value 79.976936
iter 100 value 79.937830
final  value 79.937830 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 113.808289 
iter  10 value 94.423510
iter  20 value 91.994602
iter  30 value 87.622471
iter  40 value 86.658683
iter  50 value 84.602913
iter  60 value 82.206610
iter  70 value 80.116487
iter  80 value 79.783977
iter  90 value 79.617153
iter 100 value 79.415175
final  value 79.415175 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 132.653295 
iter  10 value 95.153991
iter  20 value 87.620708
iter  30 value 86.494831
iter  40 value 84.824881
iter  50 value 83.698231
iter  60 value 83.370717
iter  70 value 83.328891
iter  80 value 83.271286
iter  90 value 83.136413
iter 100 value 82.278222
final  value 82.278222 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.353074 
iter  10 value 94.022986
iter  20 value 88.601106
iter  30 value 85.500368
iter  40 value 83.789571
iter  50 value 81.229075
iter  60 value 80.452399
iter  70 value 80.185999
iter  80 value 80.021371
iter  90 value 79.871699
iter 100 value 79.669295
final  value 79.669295 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.247001 
iter  10 value 94.765860
iter  20 value 94.291396
iter  30 value 86.722684
iter  40 value 85.716093
iter  50 value 83.358592
iter  60 value 81.726546
iter  70 value 81.594218
iter  80 value 80.467350
iter  90 value 79.546764
iter 100 value 79.354576
final  value 79.354576 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.748124 
iter  10 value 94.733215
iter  20 value 89.563501
iter  30 value 83.047709
iter  40 value 82.672825
iter  50 value 82.141710
iter  60 value 80.573994
iter  70 value 80.331582
iter  80 value 80.122895
iter  90 value 79.932240
iter 100 value 79.842656
final  value 79.842656 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.706153 
iter  10 value 94.100492
iter  20 value 85.097793
iter  30 value 84.554055
iter  40 value 83.535226
iter  50 value 81.739682
iter  60 value 80.394859
iter  70 value 79.963629
iter  80 value 79.904354
iter  90 value 79.858439
iter 100 value 79.855298
final  value 79.855298 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.166063 
iter  10 value 94.486040
final  value 94.484403 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.383987 
iter  10 value 94.485780
iter  20 value 94.484250
iter  30 value 94.444350
final  value 94.443342 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.378290 
final  value 94.485747 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.288063 
iter  10 value 94.485925
final  value 94.484232 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.886988 
final  value 94.486056 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.789886 
iter  10 value 94.489056
iter  20 value 94.471007
iter  30 value 93.914278
final  value 93.911978 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.856604 
iter  10 value 94.444690
iter  20 value 94.170384
iter  30 value 94.168498
iter  40 value 93.914160
final  value 93.913369 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.293470 
iter  10 value 94.487895
iter  20 value 86.171513
iter  30 value 85.830348
iter  40 value 85.827193
iter  50 value 85.609721
final  value 85.575573 
converged
Fitting Repeat 4 

# weights:  305
initial  value 113.860070 
iter  10 value 94.489516
iter  20 value 94.484266
iter  30 value 93.949406
iter  40 value 90.365661
iter  50 value 85.906280
iter  60 value 83.478807
iter  70 value 81.159376
iter  80 value 80.551708
iter  90 value 80.370624
iter 100 value 80.318773
final  value 80.318773 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.229039 
iter  10 value 94.488761
iter  20 value 94.439732
iter  30 value 92.553453
iter  40 value 88.461191
iter  50 value 85.534769
iter  60 value 85.449765
iter  70 value 84.683565
iter  80 value 81.893780
iter  90 value 81.685921
iter 100 value 81.643843
final  value 81.643843 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 101.724844 
iter  10 value 94.451365
iter  20 value 94.323444
iter  30 value 87.239221
iter  40 value 85.191082
iter  50 value 85.029871
iter  60 value 84.886064
iter  60 value 84.886063
final  value 84.886063 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.124419 
iter  10 value 94.451383
iter  20 value 94.209583
iter  30 value 86.233608
iter  40 value 85.084145
iter  50 value 84.896134
iter  50 value 84.896133
iter  50 value 84.896133
final  value 84.896133 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.857742 
iter  10 value 93.511178
iter  20 value 92.959455
iter  30 value 85.196119
iter  40 value 83.749717
iter  50 value 83.728407
iter  60 value 83.646881
iter  70 value 83.644918
iter  80 value 83.635680
iter  90 value 82.975089
iter 100 value 82.881580
final  value 82.881580 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.826606 
iter  10 value 94.260979
iter  20 value 93.516536
iter  30 value 92.907731
final  value 92.614659 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.795726 
iter  10 value 93.944326
iter  20 value 93.906221
iter  30 value 93.861310
iter  30 value 93.861309
final  value 93.861309 
converged
Fitting Repeat 1 

# weights:  507
initial  value 134.650493 
iter  10 value 117.736979
iter  20 value 108.684001
iter  30 value 107.633595
iter  40 value 106.214003
iter  50 value 105.053606
iter  60 value 104.106467
iter  70 value 101.816403
iter  80 value 101.353751
iter  90 value 101.083828
iter 100 value 100.681713
final  value 100.681713 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 131.038735 
iter  10 value 118.933997
iter  20 value 109.060955
iter  30 value 107.656644
iter  40 value 106.220782
iter  50 value 104.256830
iter  60 value 103.046525
iter  70 value 102.652723
iter  80 value 102.500252
iter  90 value 102.226663
iter 100 value 102.069702
final  value 102.069702 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 149.601983 
iter  10 value 120.412845
iter  20 value 108.551167
iter  30 value 105.990823
iter  40 value 105.745963
iter  50 value 105.619040
iter  60 value 105.264919
iter  70 value 104.188766
iter  80 value 103.933368
iter  90 value 103.787723
iter 100 value 103.581662
final  value 103.581662 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 130.022378 
iter  10 value 114.768911
iter  20 value 108.881771
iter  30 value 108.516588
iter  40 value 107.824389
iter  50 value 105.144421
iter  60 value 103.988597
iter  70 value 103.447674
iter  80 value 103.349519
iter  90 value 103.009255
iter 100 value 102.718281
final  value 102.718281 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 127.876271 
iter  10 value 118.210453
iter  20 value 117.821850
iter  30 value 115.074965
iter  40 value 107.186670
iter  50 value 105.864376
iter  60 value 103.582126
iter  70 value 103.006375
iter  80 value 101.889327
iter  90 value 101.454398
iter 100 value 101.348446
final  value 101.348446 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Sat Nov  2 03:29:32 2024 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  45.10    1.95   49.18 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.98 1.8937.28
FreqInteractors0.240.030.28
calculateAAC0.050.010.07
calculateAutocor0.800.040.82
calculateCTDC0.070.000.08
calculateCTDD0.910.060.97
calculateCTDT0.410.000.41
calculateCTriad0.450.050.50
calculateDC0.110.030.14
calculateF0.390.030.42
calculateKSAAP0.110.030.15
calculateQD_Sm2.300.162.45
calculateTC2.320.092.44
calculateTC_Sm0.430.000.42
corr_plot33.37 1.9935.36
enrichfindP 0.61 0.1213.73
enrichfind_hp0.110.021.02
enrichplot0.50.00.5
filter_missing_values000
getFASTA0.030.022.31
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.100.010.11
pred_ensembel15.60 0.6711.86
var_imp35.05 1.3336.39