Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-02 12:05 -0400 (Sat, 02 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4500 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4505 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4538 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-02 03:24:40 -0400 (Sat, 02 Nov 2024) |
EndedAt: 2024-11-02 03:29:46 -0400 (Sat, 02 Nov 2024) |
EllapsedTime: 306.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.1 (2024-06-14 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.2.0 GNU Fortran (GCC) 13.2.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 34.98 1.89 37.28 var_imp 35.05 1.33 36.39 corr_plot 33.37 1.99 35.36 pred_ensembel 15.60 0.67 11.86 enrichfindP 0.61 0.12 13.73 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.909439 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.791256 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.367566 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.122239 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 99.031826 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.339838 final value 94.484210 converged Fitting Repeat 2 # weights: 305 initial value 108.279583 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 120.463498 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.408020 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 100.135760 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.906263 iter 10 value 94.466823 iter 10 value 94.466823 iter 10 value 94.466823 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 108.625200 iter 10 value 93.381482 iter 20 value 92.354114 iter 30 value 91.732081 iter 40 value 91.490917 final value 91.484072 converged Fitting Repeat 3 # weights: 507 initial value 111.537717 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.015929 final value 94.088889 converged Fitting Repeat 5 # weights: 507 initial value 101.439986 iter 10 value 83.977566 iter 20 value 83.778691 iter 20 value 83.778691 iter 20 value 83.778691 final value 83.778691 converged Fitting Repeat 1 # weights: 103 initial value 98.207205 iter 10 value 94.488708 iter 20 value 92.503826 iter 30 value 87.138413 iter 40 value 84.692263 iter 50 value 84.257339 iter 60 value 84.185914 iter 70 value 84.089316 iter 80 value 84.020573 iter 90 value 83.568860 final value 83.566587 converged Fitting Repeat 2 # weights: 103 initial value 102.647601 iter 10 value 94.415490 iter 20 value 85.815485 iter 30 value 85.421110 iter 40 value 84.817873 iter 50 value 84.396606 iter 60 value 83.898017 iter 70 value 83.624911 iter 80 value 83.566590 final value 83.566587 converged Fitting Repeat 3 # weights: 103 initial value 104.334706 iter 10 value 94.557489 iter 20 value 94.277650 iter 30 value 94.068112 iter 40 value 88.145371 iter 50 value 85.203632 iter 60 value 84.966545 iter 70 value 84.332747 iter 80 value 83.739768 iter 90 value 83.571088 final value 83.566587 converged Fitting Repeat 4 # weights: 103 initial value 102.223325 iter 10 value 94.446507 iter 20 value 86.862348 iter 30 value 84.127642 iter 40 value 83.821991 iter 50 value 83.244970 iter 60 value 82.150569 iter 70 value 82.033728 iter 80 value 81.999959 final value 81.999955 converged Fitting Repeat 5 # weights: 103 initial value 100.979544 iter 10 value 94.488678 iter 20 value 94.471236 iter 30 value 94.339302 iter 40 value 94.294790 iter 50 value 94.224745 iter 60 value 87.395951 iter 70 value 85.051082 iter 80 value 84.732628 iter 90 value 84.343698 iter 100 value 84.112151 final value 84.112151 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.089359 iter 10 value 94.436977 iter 20 value 92.275849 iter 30 value 92.119550 iter 40 value 91.183342 iter 50 value 85.430013 iter 60 value 84.700205 iter 70 value 82.618169 iter 80 value 82.006049 iter 90 value 81.586534 iter 100 value 81.107420 final value 81.107420 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.586520 iter 10 value 94.491932 iter 20 value 94.277595 iter 30 value 91.583156 iter 40 value 86.736005 iter 50 value 84.811537 iter 60 value 83.718373 iter 70 value 83.166286 iter 80 value 82.478606 iter 90 value 81.492535 iter 100 value 81.105647 final value 81.105647 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 131.335818 iter 10 value 94.471857 iter 20 value 86.739830 iter 30 value 84.889975 iter 40 value 83.482261 iter 50 value 82.758607 iter 60 value 82.536388 iter 70 value 82.038401 iter 80 value 81.207152 iter 90 value 80.476490 iter 100 value 80.421120 final value 80.421120 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.493241 iter 10 value 94.539280 iter 20 value 88.823289 iter 30 value 85.561727 iter 40 value 83.688356 iter 50 value 83.312278 iter 60 value 82.810319 iter 70 value 82.393806 iter 80 value 82.185724 iter 90 value 82.065942 iter 100 value 81.152681 final value 81.152681 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.883224 iter 10 value 94.515700 iter 20 value 90.539964 iter 30 value 85.674092 iter 40 value 84.901573 iter 50 value 84.556149 iter 60 value 83.880537 iter 70 value 82.567517 iter 80 value 82.024290 iter 90 value 81.751520 iter 100 value 81.033254 final value 81.033254 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.806350 iter 10 value 94.393144 iter 20 value 86.024793 iter 30 value 85.124169 iter 40 value 84.638008 iter 50 value 84.208409 iter 60 value 83.947158 iter 70 value 83.286244 iter 80 value 83.161830 iter 90 value 83.063652 iter 100 value 82.499356 final value 82.499356 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.257109 iter 10 value 94.866608 iter 20 value 86.061013 iter 30 value 85.564035 iter 40 value 83.828241 iter 50 value 81.968721 iter 60 value 81.361655 iter 70 value 81.163929 iter 80 value 80.499814 iter 90 value 80.216470 iter 100 value 80.091047 final value 80.091047 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.503885 iter 10 value 94.468762 iter 20 value 94.238144 iter 30 value 88.696853 iter 40 value 86.724077 iter 50 value 85.270726 iter 60 value 81.449559 iter 70 value 80.979562 iter 80 value 80.711026 iter 90 value 80.474847 iter 100 value 80.424052 final value 80.424052 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.336732 iter 10 value 95.226801 iter 20 value 90.060129 iter 30 value 88.821199 iter 40 value 87.853443 iter 50 value 87.508960 iter 60 value 86.461210 iter 70 value 86.324482 iter 80 value 86.006660 iter 90 value 85.035894 iter 100 value 82.749158 final value 82.749158 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.299699 iter 10 value 93.209837 iter 20 value 86.448775 iter 30 value 83.181549 iter 40 value 81.843344 iter 50 value 81.697998 iter 60 value 80.923546 iter 70 value 80.766493 iter 80 value 80.540319 iter 90 value 80.366796 iter 100 value 80.251130 final value 80.251130 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.778133 final value 94.486026 converged Fitting Repeat 2 # weights: 103 initial value 96.348519 iter 10 value 94.478511 iter 20 value 94.468384 iter 30 value 94.467405 iter 40 value 94.466772 iter 50 value 91.958742 final value 91.791663 converged Fitting Repeat 3 # weights: 103 initial value 95.884250 final value 94.485864 converged Fitting Repeat 4 # weights: 103 initial value 98.231233 final value 94.485590 converged Fitting Repeat 5 # weights: 103 initial value 113.531148 iter 10 value 94.485992 iter 20 value 94.484275 final value 94.484217 converged Fitting Repeat 1 # weights: 305 initial value 95.890926 iter 10 value 94.487884 iter 20 value 94.279708 iter 30 value 94.253001 iter 30 value 94.253001 iter 30 value 94.253000 final value 94.253000 converged Fitting Repeat 2 # weights: 305 initial value 96.216793 iter 10 value 86.531117 iter 20 value 85.041651 iter 30 value 84.700375 iter 40 value 84.154917 iter 50 value 84.005147 iter 60 value 84.003578 iter 70 value 84.002601 iter 70 value 84.002600 final value 84.002600 converged Fitting Repeat 3 # weights: 305 initial value 114.501127 iter 10 value 94.448624 iter 20 value 94.367124 iter 30 value 87.706591 iter 40 value 85.889601 iter 50 value 83.927572 iter 60 value 83.161069 iter 70 value 82.846669 iter 80 value 82.436922 iter 90 value 82.159938 iter 100 value 82.156197 final value 82.156197 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.871776 iter 10 value 94.150402 iter 20 value 92.586506 iter 30 value 92.577494 iter 40 value 92.574713 iter 50 value 92.572977 final value 92.572782 converged Fitting Repeat 5 # weights: 305 initial value 95.667039 iter 10 value 94.484869 iter 20 value 94.197517 iter 30 value 86.723955 iter 40 value 84.985392 iter 50 value 84.909875 iter 60 value 84.884570 iter 70 value 84.884423 final value 84.883942 converged Fitting Repeat 1 # weights: 507 initial value 119.760315 iter 10 value 89.212643 iter 20 value 86.646969 iter 30 value 86.486561 iter 40 value 85.973519 iter 50 value 85.444591 iter 60 value 85.425896 iter 70 value 84.041539 final value 83.931078 converged Fitting Repeat 2 # weights: 507 initial value 94.601163 iter 10 value 94.485048 iter 20 value 93.477472 iter 30 value 85.602689 iter 40 value 85.075276 iter 50 value 82.735241 iter 60 value 80.097167 iter 70 value 79.832590 iter 80 value 79.578703 iter 90 value 79.575642 iter 100 value 79.571987 final value 79.571987 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.875657 iter 10 value 94.480143 iter 20 value 94.474736 iter 30 value 94.472825 iter 40 value 94.470061 iter 50 value 93.269274 iter 60 value 92.822319 iter 70 value 92.550628 iter 80 value 92.547706 iter 90 value 92.547243 iter 100 value 92.546978 final value 92.546978 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.795225 iter 10 value 94.475385 iter 20 value 91.904846 iter 30 value 86.496771 iter 40 value 86.013205 iter 50 value 85.445426 iter 60 value 85.395830 iter 70 value 85.395493 iter 80 value 85.317190 iter 90 value 82.180305 iter 100 value 82.155623 final value 82.155623 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.922692 iter 10 value 94.467114 iter 20 value 94.436702 iter 30 value 93.630346 iter 40 value 92.147416 iter 50 value 91.946903 iter 60 value 91.908425 iter 70 value 91.423157 iter 80 value 91.422095 final value 91.422085 converged Fitting Repeat 1 # weights: 103 initial value 105.548317 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.982641 final value 94.026542 converged Fitting Repeat 3 # weights: 103 initial value 98.842139 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.203195 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.820361 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 106.469741 iter 10 value 94.031618 iter 20 value 93.953752 final value 93.945326 converged Fitting Repeat 2 # weights: 305 initial value 106.890894 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.648738 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 103.410535 final value 93.809648 converged Fitting Repeat 5 # weights: 305 initial value 110.357773 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.694885 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.676222 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.358501 iter 10 value 94.484216 iter 10 value 94.484215 iter 10 value 94.484215 final value 94.484215 converged Fitting Repeat 4 # weights: 507 initial value 101.437786 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 98.177651 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 101.864245 iter 10 value 93.417219 iter 20 value 87.390882 iter 30 value 87.083024 iter 40 value 86.786134 iter 50 value 86.091845 iter 60 value 85.951523 iter 70 value 85.937791 iter 80 value 85.932533 iter 90 value 85.875435 iter 100 value 85.805926 final value 85.805926 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.682487 iter 10 value 94.565209 iter 20 value 92.871696 iter 30 value 89.388840 iter 40 value 87.326913 iter 50 value 87.101779 iter 60 value 87.028216 iter 70 value 87.020765 iter 80 value 86.912760 iter 90 value 86.900185 iter 90 value 86.900184 iter 90 value 86.900184 final value 86.900184 converged Fitting Repeat 3 # weights: 103 initial value 99.539815 iter 10 value 94.114510 iter 20 value 92.291795 iter 30 value 85.593357 iter 40 value 85.118083 iter 50 value 84.886292 iter 60 value 84.626390 iter 70 value 84.232011 iter 80 value 83.899319 iter 90 value 83.895793 iter 100 value 83.883526 final value 83.883526 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 111.107329 iter 10 value 94.455960 iter 20 value 93.631255 iter 30 value 91.120917 iter 40 value 90.481855 iter 50 value 88.365733 iter 60 value 88.341366 final value 88.341315 converged Fitting Repeat 5 # weights: 103 initial value 97.345885 iter 10 value 94.488240 iter 20 value 94.224528 iter 30 value 93.900303 iter 40 value 93.896268 iter 50 value 93.829897 iter 60 value 89.575330 iter 70 value 89.352671 iter 80 value 88.339064 iter 90 value 87.539797 iter 100 value 87.340127 final value 87.340127 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 112.697427 iter 10 value 94.309442 iter 20 value 91.080677 iter 30 value 89.752443 iter 40 value 87.624187 iter 50 value 86.557551 iter 60 value 86.205113 iter 70 value 85.830669 iter 80 value 84.996741 iter 90 value 83.453208 iter 100 value 82.995299 final value 82.995299 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 123.601981 iter 10 value 94.038622 iter 20 value 88.251510 iter 30 value 87.108548 iter 40 value 86.946219 iter 50 value 85.464364 iter 60 value 84.729560 iter 70 value 83.845178 iter 80 value 83.216087 iter 90 value 82.652727 iter 100 value 82.554066 final value 82.554066 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.839908 iter 10 value 94.476340 iter 20 value 93.913513 iter 30 value 90.752344 iter 40 value 88.065488 iter 50 value 84.951626 iter 60 value 84.118206 iter 70 value 83.665560 iter 80 value 83.334028 iter 90 value 83.230720 iter 100 value 83.111477 final value 83.111477 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.306599 iter 10 value 92.657951 iter 20 value 87.313239 iter 30 value 84.922167 iter 40 value 83.473335 iter 50 value 83.207559 iter 60 value 83.103497 iter 70 value 82.951139 iter 80 value 82.802939 iter 90 value 82.709618 iter 100 value 82.704639 final value 82.704639 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.662270 iter 10 value 94.492324 iter 20 value 90.933371 iter 30 value 87.373781 iter 40 value 84.513719 iter 50 value 83.389959 iter 60 value 83.134093 iter 70 value 83.032961 iter 80 value 82.824720 iter 90 value 82.748829 iter 100 value 82.721730 final value 82.721730 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.016767 iter 10 value 95.154816 iter 20 value 93.495247 iter 30 value 93.126268 iter 40 value 92.897263 iter 50 value 88.585387 iter 60 value 86.022342 iter 70 value 85.498711 iter 80 value 85.180759 iter 90 value 84.375145 iter 100 value 84.227113 final value 84.227113 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.752350 iter 10 value 94.289901 iter 20 value 94.237601 iter 30 value 93.526479 iter 40 value 91.663438 iter 50 value 91.150396 iter 60 value 86.616660 iter 70 value 85.512430 iter 80 value 85.427709 iter 90 value 85.196851 iter 100 value 84.698219 final value 84.698219 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.831136 iter 10 value 95.124507 iter 20 value 92.551658 iter 30 value 89.717809 iter 40 value 87.476907 iter 50 value 85.912050 iter 60 value 84.547208 iter 70 value 83.740829 iter 80 value 83.495945 iter 90 value 83.144037 iter 100 value 83.031897 final value 83.031897 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.023409 iter 10 value 94.426751 iter 20 value 93.329341 iter 30 value 90.843039 iter 40 value 89.971867 iter 50 value 88.671513 iter 60 value 87.178429 iter 70 value 85.207645 iter 80 value 84.598401 iter 90 value 83.965731 iter 100 value 83.692211 final value 83.692211 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.662864 iter 10 value 94.188028 iter 20 value 93.157166 iter 30 value 88.031594 iter 40 value 85.802365 iter 50 value 85.330453 iter 60 value 83.893047 iter 70 value 83.276041 iter 80 value 83.129827 iter 90 value 83.088030 iter 100 value 83.001682 final value 83.001682 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.555859 final value 94.485794 converged Fitting Repeat 2 # weights: 103 initial value 96.305503 final value 94.485595 converged Fitting Repeat 3 # weights: 103 initial value 98.321396 final value 94.485903 converged Fitting Repeat 4 # weights: 103 initial value 100.213209 final value 94.485966 converged Fitting Repeat 5 # weights: 103 initial value 96.721829 final value 94.485904 converged Fitting Repeat 1 # weights: 305 initial value 105.021566 iter 10 value 94.489479 iter 20 value 93.944665 iter 30 value 93.808019 final value 93.807962 converged Fitting Repeat 2 # weights: 305 initial value 107.836135 iter 10 value 94.031812 iter 20 value 94.027207 final value 94.026759 converged Fitting Repeat 3 # weights: 305 initial value 94.809578 iter 10 value 87.819084 iter 20 value 86.502554 iter 30 value 86.272679 iter 40 value 86.270635 iter 50 value 86.269376 iter 60 value 86.268851 final value 86.268829 converged Fitting Repeat 4 # weights: 305 initial value 104.627275 iter 10 value 94.031421 iter 20 value 92.955426 iter 30 value 91.077598 iter 40 value 91.005909 iter 50 value 90.976844 final value 90.976552 converged Fitting Repeat 5 # weights: 305 initial value 98.337412 iter 10 value 94.485142 iter 20 value 94.484223 final value 94.484221 converged Fitting Repeat 1 # weights: 507 initial value 94.698578 iter 10 value 94.485175 iter 20 value 89.448150 iter 30 value 88.993199 iter 40 value 88.989947 final value 88.989944 converged Fitting Repeat 2 # weights: 507 initial value 105.511036 iter 10 value 93.824228 iter 20 value 91.347331 iter 30 value 91.154438 iter 40 value 90.989282 final value 90.989024 converged Fitting Repeat 3 # weights: 507 initial value 111.591956 iter 10 value 94.035309 iter 20 value 93.929693 iter 30 value 93.793964 final value 93.793911 converged Fitting Repeat 4 # weights: 507 initial value 97.435019 iter 10 value 94.491930 iter 20 value 94.484307 iter 30 value 93.863865 final value 93.569767 converged Fitting Repeat 5 # weights: 507 initial value 97.678891 iter 10 value 94.468957 iter 20 value 94.466311 iter 30 value 92.610147 iter 40 value 89.769052 iter 50 value 89.648590 iter 60 value 89.576479 iter 70 value 89.347843 final value 89.347828 converged Fitting Repeat 1 # weights: 103 initial value 101.131443 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 2 # weights: 103 initial value 110.553498 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.937509 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.056792 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 103.142865 final value 94.008696 converged Fitting Repeat 1 # weights: 305 initial value 102.932737 final value 94.008696 converged Fitting Repeat 2 # weights: 305 initial value 107.864366 final value 94.011561 converged Fitting Repeat 3 # weights: 305 initial value 104.614668 final value 94.008696 converged Fitting Repeat 4 # weights: 305 initial value 95.110663 iter 10 value 90.478438 iter 20 value 84.895105 iter 30 value 84.172545 iter 40 value 83.393418 iter 50 value 82.404720 iter 60 value 82.366007 iter 70 value 82.210414 iter 80 value 81.653475 final value 81.653444 converged Fitting Repeat 5 # weights: 305 initial value 102.969619 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.500126 iter 10 value 93.596277 final value 93.593182 converged Fitting Repeat 2 # weights: 507 initial value 106.629856 final value 94.052929 converged Fitting Repeat 3 # weights: 507 initial value 100.220146 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 118.240162 iter 10 value 93.389846 iter 20 value 91.534105 iter 30 value 91.398879 iter 40 value 91.397294 final value 91.397286 converged Fitting Repeat 5 # weights: 507 initial value 100.289694 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 100.073981 iter 10 value 91.723532 iter 20 value 91.402919 iter 30 value 91.061382 iter 40 value 90.875385 iter 50 value 90.787094 final value 90.786875 converged Fitting Repeat 2 # weights: 103 initial value 100.334721 iter 10 value 94.030111 iter 20 value 89.926137 iter 30 value 83.710300 iter 40 value 82.940130 iter 50 value 81.776956 iter 60 value 81.605014 iter 70 value 81.178012 iter 80 value 80.818134 iter 90 value 80.730723 final value 80.730719 converged Fitting Repeat 3 # weights: 103 initial value 103.773790 iter 10 value 92.730552 iter 20 value 83.715124 iter 30 value 83.359649 iter 40 value 82.729269 iter 50 value 82.412704 iter 60 value 82.402441 iter 70 value 82.382575 final value 82.378513 converged Fitting Repeat 4 # weights: 103 initial value 96.215817 iter 10 value 94.005711 iter 20 value 85.838493 iter 30 value 84.776323 iter 40 value 84.716163 iter 50 value 83.836755 iter 60 value 82.877575 iter 70 value 82.428746 iter 80 value 82.378624 final value 82.378513 converged Fitting Repeat 5 # weights: 103 initial value 98.274954 iter 10 value 94.015416 iter 20 value 89.776191 iter 30 value 87.290386 iter 40 value 86.567538 iter 50 value 86.532344 iter 60 value 83.277478 iter 70 value 82.467374 iter 80 value 82.411319 iter 90 value 82.400206 iter 100 value 82.383615 final value 82.383615 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.551580 iter 10 value 94.259532 iter 20 value 92.466545 iter 30 value 83.577364 iter 40 value 81.194951 iter 50 value 79.998457 iter 60 value 79.572451 iter 70 value 79.462380 iter 80 value 79.379623 iter 90 value 79.237489 iter 100 value 79.124539 final value 79.124539 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.630437 iter 10 value 93.793085 iter 20 value 85.010358 iter 30 value 83.671135 iter 40 value 82.745692 iter 50 value 81.383054 iter 60 value 80.974079 iter 70 value 79.948052 iter 80 value 79.366854 iter 90 value 78.822474 iter 100 value 78.782783 final value 78.782783 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.464873 iter 10 value 94.026171 iter 20 value 84.439300 iter 30 value 83.057090 iter 40 value 82.326526 iter 50 value 82.230254 iter 60 value 82.143172 iter 70 value 82.117468 iter 80 value 82.098165 iter 90 value 82.074367 iter 100 value 82.061739 final value 82.061739 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.879164 iter 10 value 89.614442 iter 20 value 84.649812 iter 30 value 83.944614 iter 40 value 82.737713 iter 50 value 82.009538 iter 60 value 80.109888 iter 70 value 79.523518 iter 80 value 79.374770 iter 90 value 79.332794 iter 100 value 79.308529 final value 79.308529 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.982140 iter 10 value 92.948848 iter 20 value 88.028958 iter 30 value 84.273358 iter 40 value 83.542079 iter 50 value 82.840216 iter 60 value 82.324914 iter 70 value 82.038281 iter 80 value 81.847137 iter 90 value 81.803141 iter 100 value 81.515002 final value 81.515002 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.946067 iter 10 value 94.829278 iter 20 value 93.508982 iter 30 value 90.623064 iter 40 value 90.144151 iter 50 value 87.089226 iter 60 value 81.183239 iter 70 value 79.669568 iter 80 value 79.377438 iter 90 value 78.852648 iter 100 value 78.769163 final value 78.769163 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.677625 iter 10 value 94.479799 iter 20 value 93.287868 iter 30 value 87.867836 iter 40 value 83.410777 iter 50 value 82.583066 iter 60 value 81.455748 iter 70 value 80.408248 iter 80 value 79.975211 iter 90 value 79.398521 iter 100 value 79.243715 final value 79.243715 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 136.559664 iter 10 value 94.122746 iter 20 value 90.294914 iter 30 value 84.750312 iter 40 value 83.357055 iter 50 value 82.100244 iter 60 value 80.857567 iter 70 value 80.068629 iter 80 value 79.751963 iter 90 value 79.567857 iter 100 value 79.496226 final value 79.496226 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.698789 iter 10 value 93.803108 iter 20 value 90.198086 iter 30 value 84.127426 iter 40 value 81.721380 iter 50 value 81.350288 iter 60 value 80.654641 iter 70 value 80.180816 iter 80 value 79.746590 iter 90 value 79.649533 iter 100 value 79.390509 final value 79.390509 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.271578 iter 10 value 93.959236 iter 20 value 89.408713 iter 30 value 83.761590 iter 40 value 82.583136 iter 50 value 81.701177 iter 60 value 81.473754 iter 70 value 81.424902 iter 80 value 81.401562 iter 90 value 81.377766 iter 100 value 81.362264 final value 81.362264 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.363710 final value 94.054639 converged Fitting Repeat 2 # weights: 103 initial value 106.256643 final value 94.010356 converged Fitting Repeat 3 # weights: 103 initial value 103.317185 final value 94.054583 converged Fitting Repeat 4 # weights: 103 initial value 97.106107 final value 94.054252 converged Fitting Repeat 5 # weights: 103 initial value 95.798577 final value 94.054467 converged Fitting Repeat 1 # weights: 305 initial value 100.108512 iter 10 value 94.056719 iter 20 value 84.629810 iter 30 value 84.150526 iter 40 value 84.149124 iter 50 value 84.143745 final value 84.143699 converged Fitting Repeat 2 # weights: 305 initial value 124.039307 iter 10 value 93.633880 iter 20 value 93.630557 iter 30 value 93.629342 iter 40 value 91.434617 iter 50 value 85.349043 iter 60 value 82.426137 final value 82.422555 converged Fitting Repeat 3 # weights: 305 initial value 108.167537 iter 10 value 94.057836 iter 20 value 93.639349 iter 30 value 93.636508 iter 40 value 93.444656 final value 93.444581 converged Fitting Repeat 4 # weights: 305 initial value 105.801275 iter 10 value 94.013832 iter 20 value 89.065514 iter 30 value 85.261000 iter 40 value 83.847590 iter 50 value 83.434845 iter 60 value 83.433106 final value 83.432872 converged Fitting Repeat 5 # weights: 305 initial value 96.378021 iter 10 value 93.967221 iter 20 value 93.963080 iter 30 value 91.850602 final value 91.208987 converged Fitting Repeat 1 # weights: 507 initial value 114.104680 iter 10 value 94.060049 iter 20 value 93.015285 iter 30 value 84.129116 iter 40 value 84.079319 iter 50 value 84.078411 iter 60 value 83.133929 iter 70 value 81.558283 iter 80 value 81.555811 iter 90 value 81.553660 final value 81.552133 converged Fitting Repeat 2 # weights: 507 initial value 105.471778 iter 10 value 94.019983 iter 20 value 93.926573 iter 30 value 93.830158 iter 40 value 93.827206 iter 50 value 93.333504 iter 60 value 84.845578 iter 70 value 83.485562 iter 80 value 82.913076 iter 90 value 81.865410 final value 81.865401 converged Fitting Repeat 3 # weights: 507 initial value 101.035486 iter 10 value 94.059214 iter 20 value 94.017453 iter 30 value 84.790882 iter 40 value 83.089613 iter 50 value 83.017589 iter 60 value 82.783621 iter 70 value 82.046079 iter 80 value 82.035254 iter 90 value 81.997240 final value 81.996918 converged Fitting Repeat 4 # weights: 507 initial value 97.565511 iter 10 value 94.020766 iter 20 value 93.997860 iter 30 value 87.701020 iter 40 value 85.930838 iter 50 value 84.127580 iter 60 value 84.126225 iter 70 value 84.124272 iter 80 value 83.817268 iter 90 value 83.416741 iter 100 value 83.415790 final value 83.415790 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.929705 iter 10 value 92.770704 iter 20 value 91.679255 iter 30 value 91.447134 iter 40 value 91.245946 iter 50 value 91.169614 final value 91.169567 converged Fitting Repeat 1 # weights: 103 initial value 107.426794 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.428833 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 105.570719 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.839591 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.988871 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.987030 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 98.991708 iter 10 value 93.295189 final value 93.295187 converged Fitting Repeat 3 # weights: 305 initial value 104.700960 iter 10 value 94.052710 iter 20 value 93.518975 final value 93.288889 converged Fitting Repeat 4 # weights: 305 initial value 98.027006 final value 93.915746 converged Fitting Repeat 5 # weights: 305 initial value 97.179217 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 105.078792 iter 10 value 94.219318 iter 20 value 88.488430 iter 30 value 79.781767 iter 40 value 79.714911 iter 50 value 79.713297 final value 79.713285 converged Fitting Repeat 2 # weights: 507 initial value 125.378303 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 99.918185 iter 10 value 89.468348 iter 20 value 87.571367 final value 87.571361 converged Fitting Repeat 4 # weights: 507 initial value 105.499157 iter 10 value 93.347922 final value 93.226190 converged Fitting Repeat 5 # weights: 507 initial value 96.435551 iter 10 value 93.451987 iter 20 value 89.263456 iter 30 value 88.287445 iter 40 value 88.247081 final value 88.246928 converged Fitting Repeat 1 # weights: 103 initial value 111.451623 iter 10 value 94.056386 iter 20 value 89.658493 iter 30 value 84.602292 iter 40 value 84.046600 iter 50 value 83.620054 iter 60 value 83.369235 final value 83.363023 converged Fitting Repeat 2 # weights: 103 initial value 97.171673 iter 10 value 93.978662 iter 20 value 83.911190 iter 30 value 82.688713 iter 40 value 81.244047 iter 50 value 80.524918 iter 60 value 80.373185 iter 70 value 79.252508 iter 80 value 78.069507 iter 90 value 77.875164 iter 100 value 77.870274 final value 77.870274 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.644627 iter 10 value 94.056825 iter 20 value 93.257299 iter 30 value 90.003165 iter 40 value 86.938273 iter 50 value 85.282825 iter 60 value 85.005151 iter 70 value 81.408346 iter 80 value 81.293027 iter 80 value 81.293026 final value 81.293026 converged Fitting Repeat 4 # weights: 103 initial value 98.880352 iter 10 value 94.054555 iter 20 value 93.250204 iter 30 value 92.405231 iter 40 value 87.204789 iter 50 value 86.679985 iter 60 value 82.342436 iter 70 value 80.451934 iter 80 value 80.374535 iter 90 value 80.354502 iter 100 value 78.939984 final value 78.939984 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.917613 iter 10 value 94.051950 iter 20 value 91.140024 iter 30 value 87.726003 iter 40 value 84.815961 iter 50 value 84.307321 iter 60 value 84.182544 iter 70 value 84.022426 iter 80 value 83.469193 iter 90 value 83.187982 iter 100 value 83.181717 final value 83.181717 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.695170 iter 10 value 94.063979 iter 20 value 86.933643 iter 30 value 83.536432 iter 40 value 82.197786 iter 50 value 80.698291 iter 60 value 80.306220 iter 70 value 79.532971 iter 80 value 79.127892 iter 90 value 78.256641 iter 100 value 77.510589 final value 77.510589 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.670071 iter 10 value 94.060550 iter 20 value 86.574181 iter 30 value 81.161560 iter 40 value 80.823477 iter 50 value 80.451584 iter 60 value 79.252850 iter 70 value 78.395804 iter 80 value 77.144648 iter 90 value 76.875186 iter 100 value 76.783780 final value 76.783780 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.000008 iter 10 value 93.866501 iter 20 value 88.513401 iter 30 value 85.844630 iter 40 value 81.760095 iter 50 value 78.588688 iter 60 value 78.276414 iter 70 value 78.008988 iter 80 value 77.689037 iter 90 value 77.257845 iter 100 value 76.844386 final value 76.844386 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.313369 iter 10 value 90.947376 iter 20 value 86.181453 iter 30 value 81.083535 iter 40 value 79.973993 iter 50 value 79.813658 iter 60 value 79.777264 iter 70 value 79.660684 iter 80 value 79.487054 iter 90 value 78.830310 iter 100 value 78.393527 final value 78.393527 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.798040 iter 10 value 94.068276 iter 20 value 90.105230 iter 30 value 85.582393 iter 40 value 84.599520 iter 50 value 81.964578 iter 60 value 78.643696 iter 70 value 78.177433 iter 80 value 77.840192 iter 90 value 77.483701 iter 100 value 77.308518 final value 77.308518 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.303260 iter 10 value 94.044938 iter 20 value 85.967062 iter 30 value 82.768125 iter 40 value 82.373207 iter 50 value 82.149936 iter 60 value 80.460359 iter 70 value 78.756594 iter 80 value 77.543896 iter 90 value 77.113813 iter 100 value 76.757392 final value 76.757392 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 123.697172 iter 10 value 94.131223 iter 20 value 89.429236 iter 30 value 86.081575 iter 40 value 81.488864 iter 50 value 80.089700 iter 60 value 78.705845 iter 70 value 77.631668 iter 80 value 77.225870 iter 90 value 76.919104 iter 100 value 76.770117 final value 76.770117 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.994042 iter 10 value 95.973309 iter 20 value 91.637767 iter 30 value 82.636216 iter 40 value 82.442615 iter 50 value 79.961909 iter 60 value 78.894210 iter 70 value 78.617088 iter 80 value 78.348341 iter 90 value 78.317169 iter 100 value 78.296813 final value 78.296813 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.798523 iter 10 value 94.189021 iter 20 value 93.311093 iter 30 value 85.437680 iter 40 value 80.949392 iter 50 value 78.664883 iter 60 value 77.940141 iter 70 value 77.214043 iter 80 value 76.992887 iter 90 value 76.919933 iter 100 value 76.906935 final value 76.906935 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.741469 iter 10 value 94.496038 iter 20 value 94.363016 iter 30 value 92.927192 iter 40 value 83.006739 iter 50 value 80.368238 iter 60 value 78.715101 iter 70 value 77.686848 iter 80 value 77.027607 iter 90 value 76.877573 iter 100 value 76.672584 final value 76.672584 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.079673 final value 94.054330 converged Fitting Repeat 2 # weights: 103 initial value 100.573387 iter 10 value 94.054515 iter 20 value 94.052922 final value 94.052920 converged Fitting Repeat 3 # weights: 103 initial value 98.718456 final value 94.054569 converged Fitting Repeat 4 # weights: 103 initial value 97.501825 iter 10 value 93.719535 iter 20 value 91.794312 iter 30 value 91.772569 iter 40 value 84.461455 final value 84.418268 converged Fitting Repeat 5 # weights: 103 initial value 99.052075 final value 94.054480 converged Fitting Repeat 1 # weights: 305 initial value 96.027966 iter 10 value 83.839099 iter 20 value 81.260331 iter 30 value 80.977861 iter 40 value 80.875778 iter 50 value 80.873144 final value 80.871865 converged Fitting Repeat 2 # weights: 305 initial value 95.055798 iter 10 value 94.057470 iter 20 value 92.926883 iter 30 value 86.491685 iter 40 value 86.472926 iter 50 value 86.472780 iter 50 value 86.472779 iter 50 value 86.472779 final value 86.472779 converged Fitting Repeat 3 # weights: 305 initial value 105.006579 iter 10 value 93.920337 iter 20 value 88.584153 iter 30 value 79.342722 iter 40 value 79.295480 final value 79.295389 converged Fitting Repeat 4 # weights: 305 initial value 102.329646 iter 10 value 93.929618 iter 20 value 93.924681 iter 30 value 93.924018 iter 40 value 93.916050 iter 50 value 88.098717 iter 60 value 81.573528 final value 81.573220 converged Fitting Repeat 5 # weights: 305 initial value 109.411915 iter 10 value 94.058382 iter 20 value 93.801316 iter 30 value 93.226971 final value 93.226724 converged Fitting Repeat 1 # weights: 507 initial value 99.313847 iter 10 value 92.553251 iter 20 value 92.541816 iter 30 value 91.538332 iter 40 value 83.002835 iter 50 value 81.646610 iter 60 value 81.552276 iter 70 value 81.552157 iter 80 value 81.551992 iter 90 value 79.818829 iter 100 value 79.511515 final value 79.511515 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.719166 iter 10 value 94.060936 iter 20 value 94.039052 iter 30 value 93.198950 iter 40 value 93.195199 iter 50 value 93.193274 iter 60 value 81.435217 iter 70 value 79.700846 iter 80 value 78.211607 iter 90 value 78.187882 iter 100 value 78.182696 final value 78.182696 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.572481 iter 10 value 92.947211 iter 20 value 85.653410 iter 30 value 84.827808 iter 40 value 84.080474 iter 50 value 82.419265 iter 60 value 82.416293 final value 82.416261 converged Fitting Repeat 4 # weights: 507 initial value 96.973377 iter 10 value 93.924235 iter 20 value 93.533392 iter 30 value 91.244267 iter 40 value 83.401857 iter 50 value 78.562267 iter 60 value 78.494698 iter 70 value 78.383105 iter 80 value 78.341813 iter 90 value 78.336665 iter 100 value 78.331903 final value 78.331903 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.540568 iter 10 value 92.152529 iter 20 value 92.144658 iter 30 value 92.141571 iter 40 value 92.140677 iter 50 value 92.138945 iter 60 value 88.234231 iter 70 value 81.526456 iter 80 value 79.672078 iter 90 value 79.387574 iter 100 value 79.208031 final value 79.208031 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.804199 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.601039 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.179395 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.537983 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.499531 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.216919 iter 10 value 84.560835 iter 20 value 83.459377 final value 83.457662 converged Fitting Repeat 2 # weights: 305 initial value 108.502713 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.343476 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.192804 iter 10 value 94.219855 final value 94.212644 converged Fitting Repeat 5 # weights: 305 initial value 97.924160 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.094690 iter 10 value 93.912035 final value 93.911761 converged Fitting Repeat 2 # weights: 507 initial value 114.522454 iter 10 value 93.214284 iter 20 value 93.211438 final value 93.211429 converged Fitting Repeat 3 # weights: 507 initial value 103.491595 iter 10 value 94.252920 iter 10 value 94.252920 iter 10 value 94.252920 final value 94.252920 converged Fitting Repeat 4 # weights: 507 initial value 97.655572 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.303011 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.078569 iter 10 value 94.218834 iter 20 value 91.745648 iter 30 value 87.544920 iter 40 value 86.527055 iter 50 value 84.386637 iter 60 value 84.201564 iter 70 value 84.139002 iter 80 value 84.109280 final value 84.109274 converged Fitting Repeat 2 # weights: 103 initial value 105.046665 iter 10 value 94.471562 iter 20 value 94.186809 iter 30 value 94.031776 iter 40 value 92.337823 iter 50 value 90.565631 iter 60 value 85.646378 iter 70 value 84.772113 iter 80 value 84.300876 iter 90 value 83.870606 iter 100 value 83.836925 final value 83.836925 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.904596 iter 10 value 94.488532 iter 20 value 86.590584 iter 30 value 85.878883 iter 40 value 85.457999 iter 50 value 84.837226 iter 60 value 83.955420 iter 70 value 83.873473 iter 80 value 83.810520 final value 83.807655 converged Fitting Repeat 4 # weights: 103 initial value 97.244091 iter 10 value 87.159061 iter 20 value 84.171517 iter 30 value 83.919832 iter 40 value 83.837081 final value 83.836920 converged Fitting Repeat 5 # weights: 103 initial value 105.868515 iter 10 value 94.483035 iter 20 value 88.367838 iter 30 value 87.951596 iter 40 value 87.670993 iter 50 value 85.162388 iter 60 value 83.885438 iter 70 value 83.808248 final value 83.807655 converged Fitting Repeat 1 # weights: 305 initial value 117.133702 iter 10 value 94.668235 iter 20 value 89.510070 iter 30 value 86.344101 iter 40 value 85.738422 iter 50 value 84.577905 iter 60 value 83.965630 iter 70 value 83.918116 iter 80 value 83.835237 iter 90 value 83.005091 iter 100 value 82.299520 final value 82.299520 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.608110 iter 10 value 94.681506 iter 20 value 94.344108 iter 30 value 93.128198 iter 40 value 92.822483 iter 50 value 90.652926 iter 60 value 83.569057 iter 70 value 82.256754 iter 80 value 81.759086 iter 90 value 81.343948 iter 100 value 80.441572 final value 80.441572 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.054887 iter 10 value 91.055046 iter 20 value 85.947573 iter 30 value 85.667155 iter 40 value 83.938916 iter 50 value 83.595377 iter 60 value 82.340567 iter 70 value 81.739926 iter 80 value 81.610262 iter 90 value 81.427999 iter 100 value 81.363793 final value 81.363793 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.737563 iter 10 value 94.430076 iter 20 value 91.977597 iter 30 value 87.694060 iter 40 value 84.067700 iter 50 value 80.861454 iter 60 value 80.511818 iter 70 value 80.298099 iter 80 value 80.039266 iter 90 value 79.976936 iter 100 value 79.937830 final value 79.937830 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.808289 iter 10 value 94.423510 iter 20 value 91.994602 iter 30 value 87.622471 iter 40 value 86.658683 iter 50 value 84.602913 iter 60 value 82.206610 iter 70 value 80.116487 iter 80 value 79.783977 iter 90 value 79.617153 iter 100 value 79.415175 final value 79.415175 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 132.653295 iter 10 value 95.153991 iter 20 value 87.620708 iter 30 value 86.494831 iter 40 value 84.824881 iter 50 value 83.698231 iter 60 value 83.370717 iter 70 value 83.328891 iter 80 value 83.271286 iter 90 value 83.136413 iter 100 value 82.278222 final value 82.278222 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.353074 iter 10 value 94.022986 iter 20 value 88.601106 iter 30 value 85.500368 iter 40 value 83.789571 iter 50 value 81.229075 iter 60 value 80.452399 iter 70 value 80.185999 iter 80 value 80.021371 iter 90 value 79.871699 iter 100 value 79.669295 final value 79.669295 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.247001 iter 10 value 94.765860 iter 20 value 94.291396 iter 30 value 86.722684 iter 40 value 85.716093 iter 50 value 83.358592 iter 60 value 81.726546 iter 70 value 81.594218 iter 80 value 80.467350 iter 90 value 79.546764 iter 100 value 79.354576 final value 79.354576 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.748124 iter 10 value 94.733215 iter 20 value 89.563501 iter 30 value 83.047709 iter 40 value 82.672825 iter 50 value 82.141710 iter 60 value 80.573994 iter 70 value 80.331582 iter 80 value 80.122895 iter 90 value 79.932240 iter 100 value 79.842656 final value 79.842656 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.706153 iter 10 value 94.100492 iter 20 value 85.097793 iter 30 value 84.554055 iter 40 value 83.535226 iter 50 value 81.739682 iter 60 value 80.394859 iter 70 value 79.963629 iter 80 value 79.904354 iter 90 value 79.858439 iter 100 value 79.855298 final value 79.855298 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.166063 iter 10 value 94.486040 final value 94.484403 converged Fitting Repeat 2 # weights: 103 initial value 99.383987 iter 10 value 94.485780 iter 20 value 94.484250 iter 30 value 94.444350 final value 94.443342 converged Fitting Repeat 3 # weights: 103 initial value 95.378290 final value 94.485747 converged Fitting Repeat 4 # weights: 103 initial value 104.288063 iter 10 value 94.485925 final value 94.484232 converged Fitting Repeat 5 # weights: 103 initial value 106.886988 final value 94.486056 converged Fitting Repeat 1 # weights: 305 initial value 105.789886 iter 10 value 94.489056 iter 20 value 94.471007 iter 30 value 93.914278 final value 93.911978 converged Fitting Repeat 2 # weights: 305 initial value 101.856604 iter 10 value 94.444690 iter 20 value 94.170384 iter 30 value 94.168498 iter 40 value 93.914160 final value 93.913369 converged Fitting Repeat 3 # weights: 305 initial value 95.293470 iter 10 value 94.487895 iter 20 value 86.171513 iter 30 value 85.830348 iter 40 value 85.827193 iter 50 value 85.609721 final value 85.575573 converged Fitting Repeat 4 # weights: 305 initial value 113.860070 iter 10 value 94.489516 iter 20 value 94.484266 iter 30 value 93.949406 iter 40 value 90.365661 iter 50 value 85.906280 iter 60 value 83.478807 iter 70 value 81.159376 iter 80 value 80.551708 iter 90 value 80.370624 iter 100 value 80.318773 final value 80.318773 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.229039 iter 10 value 94.488761 iter 20 value 94.439732 iter 30 value 92.553453 iter 40 value 88.461191 iter 50 value 85.534769 iter 60 value 85.449765 iter 70 value 84.683565 iter 80 value 81.893780 iter 90 value 81.685921 iter 100 value 81.643843 final value 81.643843 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.724844 iter 10 value 94.451365 iter 20 value 94.323444 iter 30 value 87.239221 iter 40 value 85.191082 iter 50 value 85.029871 iter 60 value 84.886064 iter 60 value 84.886063 final value 84.886063 converged Fitting Repeat 2 # weights: 507 initial value 105.124419 iter 10 value 94.451383 iter 20 value 94.209583 iter 30 value 86.233608 iter 40 value 85.084145 iter 50 value 84.896134 iter 50 value 84.896133 iter 50 value 84.896133 final value 84.896133 converged Fitting Repeat 3 # weights: 507 initial value 97.857742 iter 10 value 93.511178 iter 20 value 92.959455 iter 30 value 85.196119 iter 40 value 83.749717 iter 50 value 83.728407 iter 60 value 83.646881 iter 70 value 83.644918 iter 80 value 83.635680 iter 90 value 82.975089 iter 100 value 82.881580 final value 82.881580 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.826606 iter 10 value 94.260979 iter 20 value 93.516536 iter 30 value 92.907731 final value 92.614659 converged Fitting Repeat 5 # weights: 507 initial value 97.795726 iter 10 value 93.944326 iter 20 value 93.906221 iter 30 value 93.861310 iter 30 value 93.861309 final value 93.861309 converged Fitting Repeat 1 # weights: 507 initial value 134.650493 iter 10 value 117.736979 iter 20 value 108.684001 iter 30 value 107.633595 iter 40 value 106.214003 iter 50 value 105.053606 iter 60 value 104.106467 iter 70 value 101.816403 iter 80 value 101.353751 iter 90 value 101.083828 iter 100 value 100.681713 final value 100.681713 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 131.038735 iter 10 value 118.933997 iter 20 value 109.060955 iter 30 value 107.656644 iter 40 value 106.220782 iter 50 value 104.256830 iter 60 value 103.046525 iter 70 value 102.652723 iter 80 value 102.500252 iter 90 value 102.226663 iter 100 value 102.069702 final value 102.069702 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 149.601983 iter 10 value 120.412845 iter 20 value 108.551167 iter 30 value 105.990823 iter 40 value 105.745963 iter 50 value 105.619040 iter 60 value 105.264919 iter 70 value 104.188766 iter 80 value 103.933368 iter 90 value 103.787723 iter 100 value 103.581662 final value 103.581662 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.022378 iter 10 value 114.768911 iter 20 value 108.881771 iter 30 value 108.516588 iter 40 value 107.824389 iter 50 value 105.144421 iter 60 value 103.988597 iter 70 value 103.447674 iter 80 value 103.349519 iter 90 value 103.009255 iter 100 value 102.718281 final value 102.718281 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.876271 iter 10 value 118.210453 iter 20 value 117.821850 iter 30 value 115.074965 iter 40 value 107.186670 iter 50 value 105.864376 iter 60 value 103.582126 iter 70 value 103.006375 iter 80 value 101.889327 iter 90 value 101.454398 iter 100 value 101.348446 final value 101.348446 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sat Nov 2 03:29:32 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 45.10 1.95 49.18
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.98 | 1.89 | 37.28 | |
FreqInteractors | 0.24 | 0.03 | 0.28 | |
calculateAAC | 0.05 | 0.01 | 0.07 | |
calculateAutocor | 0.80 | 0.04 | 0.82 | |
calculateCTDC | 0.07 | 0.00 | 0.08 | |
calculateCTDD | 0.91 | 0.06 | 0.97 | |
calculateCTDT | 0.41 | 0.00 | 0.41 | |
calculateCTriad | 0.45 | 0.05 | 0.50 | |
calculateDC | 0.11 | 0.03 | 0.14 | |
calculateF | 0.39 | 0.03 | 0.42 | |
calculateKSAAP | 0.11 | 0.03 | 0.15 | |
calculateQD_Sm | 2.30 | 0.16 | 2.45 | |
calculateTC | 2.32 | 0.09 | 2.44 | |
calculateTC_Sm | 0.43 | 0.00 | 0.42 | |
corr_plot | 33.37 | 1.99 | 35.36 | |
enrichfindP | 0.61 | 0.12 | 13.73 | |
enrichfind_hp | 0.11 | 0.02 | 1.02 | |
enrichplot | 0.5 | 0.0 | 0.5 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.03 | 0.02 | 2.31 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.10 | 0.01 | 0.11 | |
pred_ensembel | 15.60 | 0.67 | 11.86 | |
var_imp | 35.05 | 1.33 | 36.39 | |