Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-02 12:06 -0400 (Sat, 02 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4500 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4505 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4538 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-01 23:11:27 -0400 (Fri, 01 Nov 2024) |
EndedAt: 2024-11-01 23:22:29 -0400 (Fri, 01 Nov 2024) |
EllapsedTime: 661.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 26.669 1.208 27.931 corr_plot 25.545 1.278 26.891 FSmethod 24.016 1.093 25.134 pred_ensembel 11.257 0.492 7.733 enrichfindP 0.340 0.045 9.642 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.697060 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.407462 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 113.922775 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.883228 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.483146 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.915404 iter 10 value 89.546184 iter 20 value 89.356213 iter 30 value 89.202696 iter 40 value 89.182419 iter 40 value 89.182419 iter 40 value 89.182419 final value 89.182419 converged Fitting Repeat 2 # weights: 305 initial value 106.662117 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.481918 final value 94.473118 converged Fitting Repeat 4 # weights: 305 initial value 95.867523 iter 10 value 94.482135 iter 20 value 94.473121 final value 94.473118 converged Fitting Repeat 5 # weights: 305 initial value 111.929542 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.406642 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.019222 iter 10 value 94.314174 iter 20 value 94.312056 final value 94.312039 converged Fitting Repeat 3 # weights: 507 initial value 121.104708 iter 10 value 94.288117 final value 94.288077 converged Fitting Repeat 4 # weights: 507 initial value 113.464094 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 98.134076 final value 94.312038 converged Fitting Repeat 1 # weights: 103 initial value 107.113060 iter 10 value 94.473928 iter 20 value 94.096722 iter 30 value 94.085311 iter 40 value 94.081789 iter 50 value 92.704785 iter 60 value 85.530327 iter 70 value 84.288446 iter 80 value 82.388149 iter 90 value 81.681633 iter 100 value 81.218163 final value 81.218163 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.417317 iter 10 value 94.488428 iter 20 value 91.852547 iter 30 value 89.256679 iter 40 value 89.121165 iter 50 value 87.758199 iter 60 value 83.999015 iter 70 value 83.627936 iter 80 value 83.187613 iter 90 value 82.971313 iter 100 value 82.197452 final value 82.197452 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.098519 iter 10 value 93.889225 iter 20 value 93.516082 iter 30 value 86.292073 iter 40 value 85.292912 iter 50 value 84.958029 iter 60 value 84.807495 iter 70 value 84.521820 final value 84.488813 converged Fitting Repeat 4 # weights: 103 initial value 105.091698 iter 10 value 94.467690 iter 20 value 93.319576 iter 30 value 84.881430 iter 40 value 83.814572 iter 50 value 83.530538 iter 60 value 83.483158 iter 70 value 83.445270 iter 80 value 83.348876 final value 83.348766 converged Fitting Repeat 5 # weights: 103 initial value 97.046587 iter 10 value 94.479975 iter 20 value 92.465319 iter 30 value 90.008995 iter 40 value 86.653910 iter 50 value 85.171762 iter 60 value 84.553381 iter 70 value 84.280018 final value 84.279804 converged Fitting Repeat 1 # weights: 305 initial value 117.214174 iter 10 value 94.547650 iter 20 value 88.855330 iter 30 value 87.503676 iter 40 value 85.464414 iter 50 value 84.704378 iter 60 value 84.062865 iter 70 value 83.983768 iter 80 value 81.414377 iter 90 value 81.279553 iter 100 value 81.234002 final value 81.234002 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.391359 iter 10 value 94.279672 iter 20 value 85.336391 iter 30 value 84.096793 iter 40 value 82.311672 iter 50 value 81.913027 iter 60 value 81.647404 iter 70 value 81.256097 iter 80 value 79.921328 iter 90 value 79.820073 iter 100 value 79.735324 final value 79.735324 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.453845 iter 10 value 94.417004 iter 20 value 94.082057 iter 30 value 93.178179 iter 40 value 92.442046 iter 50 value 85.894540 iter 60 value 83.535076 iter 70 value 83.177286 iter 80 value 83.051460 iter 90 value 82.914375 iter 100 value 82.854003 final value 82.854003 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.052340 iter 10 value 94.244347 iter 20 value 91.572714 iter 30 value 89.255114 iter 40 value 88.990713 iter 50 value 87.977458 iter 60 value 83.574151 iter 70 value 82.347388 iter 80 value 81.093289 iter 90 value 80.841604 iter 100 value 80.602645 final value 80.602645 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.024005 iter 10 value 94.530663 iter 20 value 87.648643 iter 30 value 84.949416 iter 40 value 84.739612 iter 50 value 84.207753 iter 60 value 82.146041 iter 70 value 80.629629 iter 80 value 80.400361 iter 90 value 80.391861 iter 100 value 80.269715 final value 80.269715 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.950124 iter 10 value 97.194261 iter 20 value 95.086446 iter 30 value 92.248340 iter 40 value 89.686133 iter 50 value 89.299733 iter 60 value 88.409269 iter 70 value 85.592648 iter 80 value 83.035055 iter 90 value 81.734085 iter 100 value 81.093516 final value 81.093516 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.965298 iter 10 value 94.485395 iter 20 value 85.541031 iter 30 value 83.529189 iter 40 value 82.661079 iter 50 value 81.373783 iter 60 value 80.869823 iter 70 value 80.568577 iter 80 value 80.517173 iter 90 value 80.465301 iter 100 value 80.194156 final value 80.194156 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.231711 iter 10 value 94.284050 iter 20 value 90.061386 iter 30 value 88.487999 iter 40 value 84.434105 iter 50 value 81.964502 iter 60 value 80.806616 iter 70 value 80.447236 iter 80 value 80.226676 iter 90 value 80.098589 iter 100 value 79.927658 final value 79.927658 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.298414 iter 10 value 96.149377 iter 20 value 91.923650 iter 30 value 89.603379 iter 40 value 88.749801 iter 50 value 85.620472 iter 60 value 83.259019 iter 70 value 82.118249 iter 80 value 81.384229 iter 90 value 80.860968 iter 100 value 80.404584 final value 80.404584 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.187281 iter 10 value 94.903733 iter 20 value 90.575235 iter 30 value 89.101378 iter 40 value 85.651742 iter 50 value 83.692588 iter 60 value 83.191115 iter 70 value 82.841125 iter 80 value 82.092555 iter 90 value 81.303352 iter 100 value 80.727218 final value 80.727218 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.983734 iter 10 value 94.474792 iter 20 value 87.264787 iter 30 value 84.646699 iter 40 value 84.646004 iter 50 value 84.645578 final value 84.645481 converged Fitting Repeat 2 # weights: 103 initial value 96.745527 final value 94.474771 converged Fitting Repeat 3 # weights: 103 initial value 95.839005 final value 94.485730 converged Fitting Repeat 4 # weights: 103 initial value 95.586765 final value 94.474674 converged Fitting Repeat 5 # weights: 103 initial value 100.374254 final value 94.485735 converged Fitting Repeat 1 # weights: 305 initial value 100.263294 iter 10 value 94.489102 iter 20 value 91.849405 iter 30 value 84.586156 iter 40 value 84.582629 iter 50 value 84.582468 iter 60 value 84.582255 iter 70 value 83.985405 iter 80 value 83.582162 iter 90 value 82.546018 iter 100 value 82.459693 final value 82.459693 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.020395 iter 10 value 94.488495 iter 20 value 94.476073 iter 30 value 94.165211 final value 94.165201 converged Fitting Repeat 3 # weights: 305 initial value 101.974059 iter 10 value 94.477706 iter 20 value 94.476036 iter 30 value 94.473151 final value 94.473138 converged Fitting Repeat 4 # weights: 305 initial value 114.548413 iter 10 value 94.477832 iter 20 value 94.472869 iter 30 value 87.226393 iter 40 value 83.453745 iter 50 value 83.411581 iter 60 value 83.411305 final value 83.411152 converged Fitting Repeat 5 # weights: 305 initial value 102.754632 iter 10 value 90.080864 iter 20 value 90.074843 iter 30 value 89.967906 iter 40 value 88.755819 iter 50 value 85.029193 iter 60 value 84.807703 iter 70 value 84.382431 iter 80 value 84.348626 iter 90 value 83.949315 iter 100 value 83.947316 final value 83.947316 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.484184 iter 10 value 94.485849 iter 20 value 94.208695 iter 30 value 94.038078 iter 40 value 84.616942 iter 50 value 84.612290 iter 60 value 84.608413 iter 70 value 83.572224 iter 80 value 83.398911 iter 90 value 83.397135 iter 100 value 83.396989 final value 83.396989 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.213143 iter 10 value 90.084115 iter 20 value 89.674627 iter 30 value 84.111058 iter 40 value 84.045776 iter 50 value 84.038826 iter 60 value 83.830158 iter 70 value 83.180926 iter 80 value 82.669164 iter 90 value 82.316217 iter 100 value 79.738390 final value 79.738390 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.063611 iter 10 value 93.352146 iter 20 value 91.372717 iter 30 value 84.213752 iter 40 value 83.324990 iter 50 value 82.961402 iter 60 value 82.829345 iter 70 value 82.823081 iter 80 value 81.706972 iter 90 value 81.705808 iter 100 value 81.644794 final value 81.644794 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.395325 iter 10 value 94.492691 iter 20 value 94.484686 iter 30 value 93.370978 iter 40 value 89.439905 iter 50 value 89.434707 final value 89.434693 converged Fitting Repeat 5 # weights: 507 initial value 98.203885 iter 10 value 94.491909 iter 20 value 91.806726 iter 30 value 84.721170 iter 40 value 84.633737 iter 50 value 84.447889 iter 60 value 82.297953 iter 70 value 80.993679 iter 80 value 80.990198 final value 80.990174 converged Fitting Repeat 1 # weights: 103 initial value 96.857065 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 112.690820 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.297261 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.390078 final value 93.915746 converged Fitting Repeat 5 # weights: 103 initial value 94.506923 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 108.624931 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.719085 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 94.542935 iter 10 value 93.697145 final value 93.697144 converged Fitting Repeat 4 # weights: 305 initial value 101.911219 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 97.855305 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.785465 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 94.726621 iter 10 value 88.785765 iter 20 value 85.815349 final value 85.797862 converged Fitting Repeat 3 # weights: 507 initial value 125.256284 iter 10 value 93.915833 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 102.198653 iter 10 value 93.818382 iter 20 value 93.815635 final value 93.815628 converged Fitting Repeat 5 # weights: 507 initial value 112.363965 iter 10 value 90.830349 iter 20 value 89.507404 iter 30 value 88.765983 final value 87.609756 converged Fitting Repeat 1 # weights: 103 initial value 98.847491 iter 10 value 94.056449 iter 20 value 90.712445 iter 30 value 88.250141 iter 40 value 87.722185 iter 50 value 87.241728 iter 60 value 85.177588 iter 70 value 84.823486 iter 80 value 84.685118 iter 90 value 84.674011 iter 100 value 84.559369 final value 84.559369 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.205879 iter 10 value 93.983025 iter 20 value 93.517683 iter 30 value 90.092463 iter 40 value 88.584106 iter 50 value 87.254819 iter 60 value 86.384939 iter 70 value 86.235833 iter 80 value 84.489320 iter 90 value 83.402924 iter 100 value 83.385302 final value 83.385302 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.562052 iter 10 value 94.033898 iter 20 value 91.360655 iter 30 value 90.496619 iter 40 value 87.693266 iter 50 value 85.622929 iter 60 value 83.936911 iter 70 value 83.630314 iter 80 value 83.425502 final value 83.371534 converged Fitting Repeat 4 # weights: 103 initial value 101.517666 iter 10 value 94.055923 iter 20 value 94.016345 iter 30 value 91.094806 iter 40 value 89.566706 iter 50 value 89.279939 iter 60 value 89.193195 iter 70 value 84.230779 iter 80 value 83.714562 iter 90 value 83.314633 iter 100 value 83.255491 final value 83.255491 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 108.154170 iter 10 value 92.595492 iter 20 value 84.908510 iter 30 value 83.295901 iter 40 value 82.507418 iter 50 value 82.478832 iter 60 value 82.455025 final value 82.432315 converged Fitting Repeat 1 # weights: 305 initial value 108.842875 iter 10 value 93.995950 iter 20 value 89.488755 iter 30 value 87.384055 iter 40 value 85.043602 iter 50 value 84.409705 iter 60 value 83.906307 iter 70 value 83.555776 iter 80 value 82.629308 iter 90 value 82.044103 iter 100 value 81.869703 final value 81.869703 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 126.559315 iter 10 value 95.763371 iter 20 value 91.725311 iter 30 value 87.010258 iter 40 value 85.527925 iter 50 value 85.316613 iter 60 value 83.117637 iter 70 value 82.837025 iter 80 value 82.624388 iter 90 value 82.621219 iter 100 value 82.571830 final value 82.571830 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.328099 iter 10 value 93.838937 iter 20 value 85.868734 iter 30 value 84.590868 iter 40 value 83.627394 iter 50 value 83.439274 iter 60 value 83.342152 iter 70 value 83.332490 iter 80 value 83.294383 iter 90 value 83.172607 iter 100 value 82.783462 final value 82.783462 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.694294 iter 10 value 94.564045 iter 20 value 93.840522 iter 30 value 93.642694 iter 40 value 86.319077 iter 50 value 85.354339 iter 60 value 84.351198 iter 70 value 82.956500 iter 80 value 82.173254 iter 90 value 81.729136 iter 100 value 81.140798 final value 81.140798 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.019400 iter 10 value 94.050981 iter 20 value 92.262478 iter 30 value 88.336461 iter 40 value 87.601567 iter 50 value 86.277344 iter 60 value 84.603359 iter 70 value 84.459907 iter 80 value 83.762057 iter 90 value 83.522608 iter 100 value 83.404665 final value 83.404665 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.488864 iter 10 value 89.974559 iter 20 value 87.004376 iter 30 value 84.560525 iter 40 value 83.629296 iter 50 value 82.899312 iter 60 value 82.776332 iter 70 value 82.657219 iter 80 value 82.119338 iter 90 value 81.955813 iter 100 value 81.857888 final value 81.857888 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.527197 iter 10 value 94.507954 iter 20 value 88.920515 iter 30 value 84.429053 iter 40 value 83.576253 iter 50 value 83.083210 iter 60 value 82.642837 iter 70 value 82.229923 iter 80 value 82.030122 iter 90 value 81.874824 iter 100 value 81.823067 final value 81.823067 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.760320 iter 10 value 93.313968 iter 20 value 88.106088 iter 30 value 85.137761 iter 40 value 82.985976 iter 50 value 82.582511 iter 60 value 81.550274 iter 70 value 81.449757 iter 80 value 81.397162 iter 90 value 81.067000 iter 100 value 80.922422 final value 80.922422 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.177410 iter 10 value 94.466888 iter 20 value 94.071022 iter 30 value 92.454219 iter 40 value 85.657138 iter 50 value 84.420413 iter 60 value 83.986451 iter 70 value 83.698584 iter 80 value 83.024580 iter 90 value 81.937930 iter 100 value 81.437984 final value 81.437984 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.343317 iter 10 value 93.995379 iter 20 value 93.743369 iter 30 value 93.519887 iter 40 value 88.393791 iter 50 value 87.718975 iter 60 value 84.433440 iter 70 value 83.931470 iter 80 value 83.422105 iter 90 value 83.211329 iter 100 value 82.865195 final value 82.865195 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 114.500939 final value 94.054525 converged Fitting Repeat 2 # weights: 103 initial value 97.059814 final value 94.054437 converged Fitting Repeat 3 # weights: 103 initial value 98.444417 iter 10 value 87.612084 final value 87.612054 converged Fitting Repeat 4 # weights: 103 initial value 106.282674 iter 10 value 92.883892 iter 20 value 92.864896 iter 30 value 91.527062 final value 91.526135 converged Fitting Repeat 5 # weights: 103 initial value 104.195679 final value 94.054451 converged Fitting Repeat 1 # weights: 305 initial value 127.328703 iter 10 value 93.841172 iter 20 value 93.840766 iter 30 value 93.837888 iter 40 value 87.921666 iter 50 value 87.601354 iter 60 value 84.561470 iter 70 value 84.111079 iter 80 value 84.062201 final value 84.061446 converged Fitting Repeat 2 # weights: 305 initial value 103.919320 iter 10 value 94.057750 iter 20 value 94.015762 iter 30 value 85.230791 iter 40 value 84.576055 iter 50 value 82.684496 iter 60 value 81.142612 iter 70 value 80.880136 iter 80 value 80.876848 iter 90 value 80.876338 iter 100 value 80.875846 final value 80.875846 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.183324 iter 10 value 94.057958 iter 20 value 94.052990 iter 30 value 92.356998 iter 40 value 88.106776 iter 50 value 86.263428 iter 60 value 85.094708 iter 70 value 83.883586 iter 80 value 83.868658 iter 90 value 83.868189 iter 100 value 83.867637 final value 83.867637 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.259955 iter 10 value 93.990958 iter 20 value 86.481227 iter 30 value 85.533090 iter 40 value 85.530994 iter 50 value 85.373683 iter 60 value 82.995018 iter 70 value 82.942499 iter 80 value 82.939083 iter 90 value 82.843868 iter 100 value 81.549565 final value 81.549565 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.793986 iter 10 value 94.057579 iter 20 value 93.687286 iter 30 value 87.551719 iter 40 value 83.805179 iter 50 value 83.138233 iter 60 value 81.364521 iter 70 value 81.201154 final value 81.200180 converged Fitting Repeat 1 # weights: 507 initial value 118.091999 iter 10 value 93.794991 iter 20 value 93.783875 iter 30 value 93.693692 iter 40 value 91.013877 iter 50 value 89.920268 iter 60 value 89.164907 iter 70 value 88.492376 iter 80 value 88.379284 iter 90 value 88.172667 iter 100 value 87.753178 final value 87.753178 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.010886 iter 10 value 94.061530 iter 20 value 93.990055 iter 30 value 93.721832 iter 40 value 93.720305 final value 93.719954 converged Fitting Repeat 3 # weights: 507 initial value 95.502919 iter 10 value 90.822863 iter 20 value 88.147648 iter 30 value 88.105565 iter 40 value 86.179589 iter 50 value 85.838418 iter 60 value 85.834071 iter 70 value 85.829839 final value 85.828592 converged Fitting Repeat 4 # weights: 507 initial value 95.520093 iter 10 value 93.705818 iter 20 value 93.702096 iter 30 value 93.688838 iter 40 value 93.687782 iter 50 value 93.685542 final value 93.685484 converged Fitting Repeat 5 # weights: 507 initial value 103.539198 iter 10 value 94.109682 iter 20 value 94.066311 iter 30 value 89.510213 iter 40 value 85.873554 iter 50 value 85.439998 iter 60 value 85.351810 iter 70 value 85.333425 iter 80 value 84.961053 iter 90 value 84.104134 iter 100 value 84.064911 final value 84.064911 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.551219 iter 10 value 91.664173 iter 20 value 87.857942 iter 30 value 86.170263 iter 40 value 84.216674 iter 50 value 84.207846 final value 84.207835 converged Fitting Repeat 2 # weights: 103 initial value 103.720974 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.035057 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.338753 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.605456 final value 94.484210 converged Fitting Repeat 1 # weights: 305 initial value 100.904879 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.645560 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.583677 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 102.746104 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 115.100042 iter 10 value 94.484467 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 104.193239 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 103.126018 iter 10 value 94.195715 iter 10 value 94.195714 iter 10 value 94.195714 final value 94.195714 converged Fitting Repeat 3 # weights: 507 initial value 98.754009 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 128.571275 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 97.708152 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 105.190984 iter 10 value 94.467982 iter 20 value 93.511133 iter 30 value 93.397070 iter 40 value 92.425838 iter 50 value 84.815744 iter 60 value 83.017539 iter 70 value 82.642119 iter 80 value 81.929978 iter 90 value 81.618657 iter 100 value 80.510961 final value 80.510961 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.631294 iter 10 value 94.132738 iter 20 value 87.002381 iter 30 value 83.903860 iter 40 value 82.540610 iter 50 value 81.511780 iter 60 value 81.292397 iter 70 value 81.058503 iter 80 value 80.973693 iter 90 value 80.609174 iter 100 value 80.476417 final value 80.476417 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 111.984791 iter 10 value 94.486588 iter 20 value 94.367510 iter 30 value 92.784418 iter 40 value 87.578735 iter 50 value 83.225060 iter 60 value 82.737892 iter 70 value 81.980223 iter 80 value 80.835462 iter 90 value 80.598660 iter 100 value 80.520078 final value 80.520078 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.302793 iter 10 value 94.425278 iter 20 value 88.281455 iter 30 value 87.726968 iter 40 value 85.914584 iter 50 value 85.595804 iter 60 value 85.374453 iter 70 value 84.889306 final value 84.875975 converged Fitting Repeat 5 # weights: 103 initial value 102.674280 iter 10 value 87.814754 iter 20 value 87.172363 iter 30 value 86.812369 iter 40 value 84.745138 iter 50 value 84.693397 iter 60 value 84.445813 final value 84.433215 converged Fitting Repeat 1 # weights: 305 initial value 102.849610 iter 10 value 92.325349 iter 20 value 87.881013 iter 30 value 84.294958 iter 40 value 83.034825 iter 50 value 82.634528 iter 60 value 82.222968 iter 70 value 80.916960 iter 80 value 80.379292 iter 90 value 79.192597 iter 100 value 78.812353 final value 78.812353 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.233056 iter 10 value 94.469344 iter 20 value 94.049265 iter 30 value 93.423460 iter 40 value 90.751804 iter 50 value 88.619769 iter 60 value 86.300216 iter 70 value 85.800321 iter 80 value 85.238553 iter 90 value 84.813187 iter 100 value 83.888196 final value 83.888196 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.091480 iter 10 value 94.527065 iter 20 value 88.474255 iter 30 value 84.816560 iter 40 value 84.018827 iter 50 value 83.804782 iter 60 value 83.730441 iter 70 value 83.011416 iter 80 value 82.090076 iter 90 value 80.983861 iter 100 value 80.488735 final value 80.488735 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.089583 iter 10 value 94.457981 iter 20 value 89.815449 iter 30 value 86.511389 iter 40 value 83.888677 iter 50 value 83.011219 iter 60 value 82.156560 iter 70 value 80.665184 iter 80 value 80.256861 iter 90 value 79.360315 iter 100 value 79.258088 final value 79.258088 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.677095 iter 10 value 94.490513 iter 20 value 85.629835 iter 30 value 84.267312 iter 40 value 81.228240 iter 50 value 80.127396 iter 60 value 79.745594 iter 70 value 79.247071 iter 80 value 79.079686 iter 90 value 79.036719 iter 100 value 79.004097 final value 79.004097 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.549303 iter 10 value 95.917317 iter 20 value 93.528865 iter 30 value 91.070109 iter 40 value 86.955281 iter 50 value 85.662126 iter 60 value 85.106883 iter 70 value 84.716098 iter 80 value 81.928938 iter 90 value 80.735244 iter 100 value 80.318277 final value 80.318277 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 153.459640 iter 10 value 95.084611 iter 20 value 86.256333 iter 30 value 83.798074 iter 40 value 83.410067 iter 50 value 83.017462 iter 60 value 80.911581 iter 70 value 80.097255 iter 80 value 79.706575 iter 90 value 79.495041 iter 100 value 79.098489 final value 79.098489 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.337972 iter 10 value 94.483769 iter 20 value 93.931152 iter 30 value 85.051821 iter 40 value 83.323945 iter 50 value 82.696992 iter 60 value 81.355470 iter 70 value 81.009245 iter 80 value 80.542012 iter 90 value 80.295044 iter 100 value 80.201712 final value 80.201712 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.959969 iter 10 value 94.581656 iter 20 value 88.218019 iter 30 value 86.552883 iter 40 value 84.786873 iter 50 value 84.535758 iter 60 value 82.458459 iter 70 value 80.854849 iter 80 value 80.078524 iter 90 value 79.911623 iter 100 value 79.727356 final value 79.727356 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.585343 iter 10 value 94.238548 iter 20 value 87.577009 iter 30 value 85.581340 iter 40 value 85.268939 iter 50 value 84.869875 iter 60 value 82.019973 iter 70 value 80.601133 iter 80 value 79.671809 iter 90 value 79.572700 iter 100 value 79.474626 final value 79.474626 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.930775 final value 94.485836 converged Fitting Repeat 2 # weights: 103 initial value 96.582536 iter 10 value 94.485967 iter 20 value 94.484224 iter 20 value 94.484223 iter 20 value 94.484223 final value 94.484223 converged Fitting Repeat 3 # weights: 103 initial value 98.163901 final value 94.469591 converged Fitting Repeat 4 # weights: 103 initial value 96.285029 final value 94.485898 converged Fitting Repeat 5 # weights: 103 initial value 94.988923 final value 94.485886 converged Fitting Repeat 1 # weights: 305 initial value 105.833724 iter 10 value 94.359224 iter 20 value 94.357620 iter 30 value 94.069491 iter 40 value 86.712348 iter 50 value 85.095345 iter 60 value 85.050170 iter 70 value 85.012100 iter 80 value 85.011400 iter 90 value 85.010514 iter 100 value 85.004835 final value 85.004835 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.514341 iter 10 value 94.489397 iter 20 value 94.484741 iter 30 value 89.916367 iter 40 value 84.927781 iter 50 value 83.970491 iter 60 value 83.962671 iter 70 value 83.961093 iter 80 value 83.956950 iter 90 value 83.954947 iter 100 value 83.917307 final value 83.917307 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.842583 iter 10 value 94.460490 iter 20 value 94.456161 final value 94.455755 converged Fitting Repeat 4 # weights: 305 initial value 97.817221 iter 10 value 94.359331 iter 20 value 94.249609 iter 30 value 84.609788 iter 40 value 83.037648 iter 50 value 83.015610 final value 83.015082 converged Fitting Repeat 5 # weights: 305 initial value 102.529489 iter 10 value 94.488575 iter 20 value 94.093579 iter 30 value 88.323372 iter 40 value 84.887428 iter 50 value 84.887130 iter 60 value 84.675147 iter 70 value 82.923082 iter 80 value 82.919121 iter 90 value 82.300996 final value 82.241809 converged Fitting Repeat 1 # weights: 507 initial value 100.753870 iter 10 value 94.491996 iter 20 value 94.355492 final value 94.355005 converged Fitting Repeat 2 # weights: 507 initial value 119.657506 iter 10 value 94.492357 iter 20 value 94.444167 iter 30 value 93.972351 iter 40 value 91.418799 iter 50 value 83.361256 iter 60 value 83.351955 iter 70 value 83.089974 iter 80 value 83.079319 final value 83.079305 converged Fitting Repeat 3 # weights: 507 initial value 107.025547 iter 10 value 94.362553 iter 20 value 94.355848 iter 30 value 94.355393 iter 40 value 88.061129 iter 50 value 84.849035 final value 84.847222 converged Fitting Repeat 4 # weights: 507 initial value 107.008247 iter 10 value 94.492622 iter 20 value 94.461665 iter 30 value 89.843507 iter 40 value 83.694747 iter 50 value 83.415103 iter 60 value 83.225372 iter 70 value 82.264238 iter 80 value 82.230021 iter 90 value 82.183813 iter 100 value 82.181298 final value 82.181298 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.487272 iter 10 value 94.492692 iter 20 value 94.482282 iter 30 value 92.985987 iter 40 value 83.412014 iter 50 value 83.382433 iter 60 value 83.380485 iter 70 value 83.258804 iter 80 value 83.251987 iter 90 value 83.157330 iter 100 value 82.358731 final value 82.358731 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.576666 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 106.689394 final value 93.810010 converged Fitting Repeat 3 # weights: 103 initial value 96.837469 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.797930 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.650068 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.463228 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 115.242260 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 96.233131 final value 93.836066 converged Fitting Repeat 4 # weights: 305 initial value 99.285590 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 119.124558 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 118.180402 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 100.179620 final value 93.969040 converged Fitting Repeat 3 # weights: 507 initial value 103.871258 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 103.473894 iter 10 value 93.969031 final value 93.921212 converged Fitting Repeat 5 # weights: 507 initial value 100.514938 iter 10 value 93.921212 iter 10 value 93.921212 iter 10 value 93.921212 final value 93.921212 converged Fitting Repeat 1 # weights: 103 initial value 100.874570 iter 10 value 94.089065 iter 20 value 93.901119 iter 30 value 93.885312 iter 40 value 93.838170 iter 50 value 93.837823 final value 93.837804 converged Fitting Repeat 2 # weights: 103 initial value 96.354118 iter 10 value 93.817204 iter 20 value 88.385202 iter 30 value 86.979905 iter 40 value 86.619885 iter 50 value 86.320620 iter 60 value 84.172927 iter 70 value 84.026705 final value 84.023416 converged Fitting Repeat 3 # weights: 103 initial value 109.189588 iter 10 value 93.955026 iter 20 value 91.812343 iter 30 value 91.443455 iter 40 value 86.321043 iter 50 value 84.159798 iter 60 value 84.130004 iter 70 value 84.093512 iter 80 value 84.086841 final value 84.086347 converged Fitting Repeat 4 # weights: 103 initial value 112.463603 iter 10 value 93.999333 iter 20 value 88.851048 iter 30 value 84.350232 iter 40 value 84.111617 iter 50 value 83.944341 iter 60 value 83.924111 final value 83.923718 converged Fitting Repeat 5 # weights: 103 initial value 106.847420 iter 10 value 94.054820 iter 20 value 89.015988 iter 30 value 86.622934 iter 40 value 84.935692 iter 50 value 84.650618 iter 60 value 84.327033 final value 84.327026 converged Fitting Repeat 1 # weights: 305 initial value 108.093711 iter 10 value 94.112386 iter 20 value 93.561883 iter 30 value 93.115737 iter 40 value 89.518736 iter 50 value 85.785562 iter 60 value 82.435836 iter 70 value 81.924769 iter 80 value 81.356995 iter 90 value 81.113372 iter 100 value 80.962862 final value 80.962862 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.801055 iter 10 value 94.048533 iter 20 value 92.545038 iter 30 value 91.171824 iter 40 value 87.005262 iter 50 value 84.551602 iter 60 value 83.567328 iter 70 value 83.179659 iter 80 value 82.513180 iter 90 value 82.338936 iter 100 value 82.319497 final value 82.319497 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.614133 iter 10 value 94.588627 iter 20 value 91.255145 iter 30 value 87.327308 iter 40 value 86.612365 iter 50 value 84.496948 iter 60 value 84.145590 iter 70 value 84.086230 iter 80 value 83.995881 iter 90 value 83.320641 iter 100 value 81.805957 final value 81.805957 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.060026 iter 10 value 93.481343 iter 20 value 92.668153 iter 30 value 91.075209 iter 40 value 90.853513 iter 50 value 90.773950 iter 60 value 90.595369 iter 70 value 87.081211 iter 80 value 82.473933 iter 90 value 81.668455 iter 100 value 81.445896 final value 81.445896 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.637044 iter 10 value 94.768878 iter 20 value 87.279385 iter 30 value 85.996827 iter 40 value 81.985000 iter 50 value 81.227266 iter 60 value 81.090265 iter 70 value 80.962494 iter 80 value 80.885013 iter 90 value 80.828512 iter 100 value 80.769186 final value 80.769186 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.776358 iter 10 value 92.607298 iter 20 value 84.791248 iter 30 value 84.285441 iter 40 value 82.863417 iter 50 value 82.716005 iter 60 value 82.584641 iter 70 value 82.477587 iter 80 value 82.432752 iter 90 value 81.709345 iter 100 value 81.532391 final value 81.532391 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.255705 iter 10 value 93.275083 iter 20 value 85.368297 iter 30 value 82.754014 iter 40 value 81.902469 iter 50 value 81.181693 iter 60 value 81.054695 iter 70 value 81.030167 iter 80 value 80.957518 iter 90 value 80.507270 iter 100 value 80.467295 final value 80.467295 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.442030 iter 10 value 94.064776 iter 20 value 92.999591 iter 30 value 86.888896 iter 40 value 86.406080 iter 50 value 84.920273 iter 60 value 84.712744 iter 70 value 84.050835 iter 80 value 83.813348 iter 90 value 83.096861 iter 100 value 82.413774 final value 82.413774 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.278529 iter 10 value 92.810113 iter 20 value 87.303343 iter 30 value 84.363445 iter 40 value 81.836547 iter 50 value 81.092554 iter 60 value 80.605314 iter 70 value 80.528025 iter 80 value 80.432428 iter 90 value 80.398342 iter 100 value 80.384330 final value 80.384330 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 133.992064 iter 10 value 94.044109 iter 20 value 87.392189 iter 30 value 83.873206 iter 40 value 83.260278 iter 50 value 82.043636 iter 60 value 81.194746 iter 70 value 80.979246 iter 80 value 80.924782 iter 90 value 80.897245 iter 100 value 80.826322 final value 80.826322 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.582377 final value 94.054508 converged Fitting Repeat 2 # weights: 103 initial value 94.231565 final value 94.054680 converged Fitting Repeat 3 # weights: 103 initial value 95.806126 final value 93.990710 converged Fitting Repeat 4 # weights: 103 initial value 94.058062 iter 10 value 93.837682 iter 20 value 93.836023 iter 30 value 92.446959 iter 40 value 92.405388 final value 91.227748 converged Fitting Repeat 5 # weights: 103 initial value 99.144129 final value 94.054423 converged Fitting Repeat 1 # weights: 305 initial value 114.113206 iter 10 value 94.057766 iter 20 value 94.050823 iter 30 value 85.285969 iter 40 value 85.049659 iter 50 value 85.007748 iter 60 value 85.006887 final value 85.006862 converged Fitting Repeat 2 # weights: 305 initial value 96.150893 iter 10 value 93.972827 iter 20 value 93.836057 final value 93.834473 converged Fitting Repeat 3 # weights: 305 initial value 97.134726 iter 10 value 93.840705 iter 20 value 93.836858 final value 93.836743 converged Fitting Repeat 4 # weights: 305 initial value 94.799233 iter 10 value 94.054174 iter 20 value 93.375725 iter 30 value 88.671409 iter 40 value 88.638060 iter 50 value 88.510294 iter 60 value 87.520213 iter 70 value 87.504126 iter 80 value 87.451111 iter 90 value 87.282305 iter 100 value 87.281467 final value 87.281467 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.000419 iter 10 value 94.056782 iter 20 value 93.805303 iter 30 value 85.589493 iter 40 value 82.266303 iter 50 value 80.317716 iter 60 value 80.004041 iter 70 value 79.776583 iter 80 value 79.680674 iter 90 value 79.608427 iter 100 value 79.593185 final value 79.593185 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.101325 iter 10 value 93.843898 iter 20 value 93.795305 iter 30 value 86.637245 final value 86.636252 converged Fitting Repeat 2 # weights: 507 initial value 101.096387 iter 10 value 93.844039 iter 20 value 93.837409 final value 93.836329 converged Fitting Repeat 3 # weights: 507 initial value 106.899473 iter 10 value 93.844476 iter 20 value 93.641538 iter 30 value 86.386883 iter 40 value 84.594986 iter 50 value 83.896226 iter 60 value 83.894338 final value 83.893353 converged Fitting Repeat 4 # weights: 507 initial value 103.788761 iter 10 value 86.594958 iter 20 value 86.530770 iter 30 value 86.281726 iter 40 value 85.984840 iter 50 value 85.947305 iter 60 value 85.909356 iter 70 value 85.908216 iter 80 value 85.836408 iter 90 value 85.656698 iter 100 value 84.076453 final value 84.076453 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.476008 iter 10 value 90.590712 iter 20 value 86.287783 iter 30 value 85.688204 iter 40 value 85.573692 iter 50 value 85.566819 iter 60 value 85.565580 iter 70 value 85.562764 iter 80 value 85.561657 iter 90 value 84.321857 iter 100 value 83.523243 final value 83.523243 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.523231 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.397133 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.450672 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.066620 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 109.308654 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.647904 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.219127 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 112.553764 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.296245 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 110.369036 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 106.895293 iter 10 value 94.275363 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 2 # weights: 507 initial value 96.211590 iter 10 value 94.349777 iter 20 value 94.236111 final value 94.165117 converged Fitting Repeat 3 # weights: 507 initial value 95.943585 final value 94.132773 converged Fitting Repeat 4 # weights: 507 initial value 111.247382 iter 10 value 81.737089 iter 20 value 79.918663 iter 30 value 78.730415 iter 40 value 78.601176 iter 50 value 78.599808 final value 78.599297 converged Fitting Repeat 5 # weights: 507 initial value 94.492122 iter 10 value 94.276942 iter 20 value 94.275367 final value 94.275363 converged Fitting Repeat 1 # weights: 103 initial value 101.086092 iter 10 value 94.282738 iter 20 value 90.904302 iter 30 value 86.370423 iter 40 value 85.562539 iter 50 value 84.815430 iter 60 value 82.585260 iter 70 value 82.567914 iter 80 value 82.554233 iter 90 value 82.550456 iter 100 value 82.545282 final value 82.545282 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 109.064712 iter 10 value 94.570620 iter 20 value 94.489271 iter 30 value 94.194490 iter 40 value 91.757797 iter 50 value 85.950773 iter 60 value 83.827011 iter 70 value 83.699827 iter 80 value 83.673397 iter 90 value 83.526582 iter 100 value 83.131266 final value 83.131266 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.283723 iter 10 value 94.400191 iter 20 value 93.013201 iter 30 value 92.127847 iter 40 value 91.342341 iter 50 value 91.316953 final value 91.316950 converged Fitting Repeat 4 # weights: 103 initial value 111.477640 iter 10 value 94.487724 iter 20 value 91.309680 iter 30 value 90.578459 iter 40 value 88.067566 iter 50 value 84.986410 iter 60 value 82.991218 iter 70 value 81.576553 iter 80 value 80.854867 iter 90 value 80.581361 iter 100 value 80.415566 final value 80.415566 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.780199 iter 10 value 94.448645 iter 20 value 94.143125 iter 30 value 94.129096 iter 40 value 90.383513 iter 50 value 84.805876 iter 60 value 84.709158 iter 70 value 83.148221 final value 83.096526 converged Fitting Repeat 1 # weights: 305 initial value 103.026070 iter 10 value 95.328978 iter 20 value 93.040766 iter 30 value 85.576372 iter 40 value 85.008221 iter 50 value 84.657796 iter 60 value 83.355510 iter 70 value 80.910673 iter 80 value 79.758932 iter 90 value 79.231753 iter 100 value 78.605692 final value 78.605692 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.708807 iter 10 value 94.374078 iter 20 value 86.302352 iter 30 value 85.557765 iter 40 value 84.693648 iter 50 value 84.157120 iter 60 value 83.059554 iter 70 value 81.197794 iter 80 value 80.763315 iter 90 value 80.400806 iter 100 value 79.386223 final value 79.386223 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.440845 iter 10 value 92.472504 iter 20 value 87.116445 iter 30 value 84.021257 iter 40 value 83.370738 iter 50 value 82.429269 iter 60 value 81.960347 iter 70 value 81.532672 iter 80 value 80.613549 iter 90 value 80.462686 iter 100 value 80.390512 final value 80.390512 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.894778 iter 10 value 94.480133 iter 20 value 94.211196 iter 30 value 90.902784 iter 40 value 87.219311 iter 50 value 84.577681 iter 60 value 83.116775 iter 70 value 81.663129 iter 80 value 81.581511 iter 90 value 81.394283 iter 100 value 81.286153 final value 81.286153 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.780984 iter 10 value 94.369382 iter 20 value 93.864954 iter 30 value 90.415676 iter 40 value 89.265255 iter 50 value 83.557450 iter 60 value 82.558541 iter 70 value 80.373617 iter 80 value 79.812528 iter 90 value 79.604844 iter 100 value 79.296258 final value 79.296258 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.752129 iter 10 value 94.560250 iter 20 value 93.731812 iter 30 value 85.798565 iter 40 value 83.582216 iter 50 value 82.495442 iter 60 value 81.135941 iter 70 value 80.140851 iter 80 value 79.973080 iter 90 value 79.686670 iter 100 value 79.527978 final value 79.527978 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.560387 iter 10 value 94.377295 iter 20 value 90.569966 iter 30 value 85.082444 iter 40 value 82.896033 iter 50 value 80.933948 iter 60 value 80.586964 iter 70 value 80.141852 iter 80 value 79.848196 iter 90 value 79.125773 iter 100 value 78.884356 final value 78.884356 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.966352 iter 10 value 93.954232 iter 20 value 84.780342 iter 30 value 84.440206 iter 40 value 81.939942 iter 50 value 80.633825 iter 60 value 80.176027 iter 70 value 80.045393 iter 80 value 79.317012 iter 90 value 78.530888 iter 100 value 78.369088 final value 78.369088 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.596787 iter 10 value 94.815630 iter 20 value 93.214368 iter 30 value 90.112125 iter 40 value 86.431164 iter 50 value 83.346345 iter 60 value 82.172338 iter 70 value 80.949547 iter 80 value 80.214179 iter 90 value 79.260209 iter 100 value 78.691017 final value 78.691017 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.670614 iter 10 value 94.794035 iter 20 value 92.252096 iter 30 value 89.048897 iter 40 value 85.430006 iter 50 value 83.256810 iter 60 value 81.446168 iter 70 value 80.661447 iter 80 value 79.683429 iter 90 value 78.904396 iter 100 value 78.836181 final value 78.836181 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 114.375124 final value 94.485769 converged Fitting Repeat 2 # weights: 103 initial value 97.772991 final value 94.485817 converged Fitting Repeat 3 # weights: 103 initial value 109.600966 final value 94.485575 converged Fitting Repeat 4 # weights: 103 initial value 104.673456 final value 94.486288 converged Fitting Repeat 5 # weights: 103 initial value 94.987048 iter 10 value 94.486033 iter 20 value 94.464883 final value 94.354324 converged Fitting Repeat 1 # weights: 305 initial value 96.503670 iter 10 value 94.349524 iter 20 value 94.279932 iter 30 value 93.806179 iter 40 value 88.661455 iter 50 value 88.116022 iter 60 value 85.157244 iter 70 value 84.097714 iter 80 value 84.095942 iter 90 value 83.968781 iter 100 value 82.585420 final value 82.585420 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.985252 iter 10 value 94.280222 iter 20 value 94.275865 iter 30 value 91.973534 iter 40 value 91.692281 iter 50 value 91.625299 iter 60 value 91.625165 final value 91.625158 converged Fitting Repeat 3 # weights: 305 initial value 109.531170 iter 10 value 94.280212 iter 20 value 94.263023 iter 30 value 94.076946 final value 94.071894 converged Fitting Repeat 4 # weights: 305 initial value 102.431006 iter 10 value 94.489051 iter 20 value 94.476275 final value 94.275499 converged Fitting Repeat 5 # weights: 305 initial value 101.622635 iter 10 value 94.488989 iter 20 value 94.484255 final value 94.484235 converged Fitting Repeat 1 # weights: 507 initial value 98.454328 iter 10 value 94.226500 iter 20 value 94.111741 iter 30 value 94.079834 iter 40 value 94.078703 iter 50 value 89.308401 iter 60 value 83.033018 iter 70 value 81.801830 iter 80 value 81.569632 final value 81.568272 converged Fitting Repeat 2 # weights: 507 initial value 108.267803 iter 10 value 94.283752 iter 20 value 94.277287 iter 30 value 94.276664 iter 40 value 94.268678 iter 50 value 94.127939 iter 60 value 94.127309 final value 94.127266 converged Fitting Repeat 3 # weights: 507 initial value 95.835400 iter 10 value 94.491811 iter 20 value 94.407786 iter 30 value 89.579014 iter 40 value 85.556535 iter 50 value 85.511468 iter 60 value 85.336047 iter 70 value 85.182958 iter 80 value 85.181164 iter 90 value 85.172741 iter 100 value 85.111794 final value 85.111794 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.325119 iter 10 value 94.283891 iter 20 value 94.051275 iter 30 value 87.273109 iter 40 value 87.099786 iter 50 value 84.456600 iter 60 value 84.431669 iter 70 value 83.669969 iter 80 value 79.140413 iter 90 value 78.851358 final value 78.849458 converged Fitting Repeat 5 # weights: 507 initial value 115.349522 iter 10 value 94.491064 iter 20 value 93.173250 iter 30 value 84.219453 iter 40 value 84.217451 iter 50 value 84.214821 iter 60 value 84.021516 iter 70 value 83.148311 iter 80 value 81.087972 iter 90 value 80.412615 iter 100 value 80.047532 final value 80.047532 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 123.337662 iter 10 value 114.389243 iter 20 value 107.831264 iter 30 value 106.538671 iter 40 value 105.340624 iter 50 value 104.686887 iter 60 value 104.573659 iter 70 value 104.404921 iter 80 value 104.394230 iter 90 value 104.368885 iter 100 value 104.322582 final value 104.322582 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 125.676858 iter 10 value 117.955142 iter 20 value 109.636633 iter 30 value 106.155390 iter 40 value 103.528531 iter 50 value 102.203568 iter 60 value 101.409281 iter 70 value 101.372133 iter 80 value 101.364199 iter 90 value 101.358978 iter 100 value 101.354627 final value 101.354627 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 123.579978 iter 10 value 118.235086 iter 20 value 117.907019 iter 30 value 117.814003 iter 40 value 109.419229 iter 50 value 107.427164 iter 60 value 106.156345 iter 70 value 105.685510 iter 80 value 105.612861 iter 90 value 104.125939 iter 100 value 103.342549 final value 103.342549 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 133.318290 iter 10 value 116.580097 iter 20 value 112.016372 iter 30 value 106.721638 iter 40 value 105.524202 iter 50 value 105.220171 iter 60 value 103.089222 iter 70 value 101.920656 iter 80 value 101.229170 iter 90 value 100.611092 iter 100 value 100.452210 final value 100.452210 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 124.907766 iter 10 value 117.920190 iter 20 value 115.727834 iter 30 value 108.471603 iter 40 value 107.304823 iter 50 value 107.258094 iter 60 value 104.078521 iter 70 value 102.348509 iter 80 value 101.978625 iter 90 value 101.627053 iter 100 value 101.460964 final value 101.460964 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Nov 1 23:22:22 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 35.473 1.479 37.574
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 24.016 | 1.093 | 25.134 | |
FreqInteractors | 0.169 | 0.011 | 0.181 | |
calculateAAC | 0.027 | 0.005 | 0.033 | |
calculateAutocor | 0.276 | 0.054 | 0.331 | |
calculateCTDC | 0.054 | 0.005 | 0.060 | |
calculateCTDD | 0.423 | 0.019 | 0.443 | |
calculateCTDT | 0.164 | 0.010 | 0.174 | |
calculateCTriad | 0.292 | 0.031 | 0.324 | |
calculateDC | 0.080 | 0.009 | 0.089 | |
calculateF | 0.241 | 0.011 | 0.253 | |
calculateKSAAP | 0.072 | 0.009 | 0.080 | |
calculateQD_Sm | 1.201 | 0.095 | 1.297 | |
calculateTC | 1.187 | 0.127 | 1.316 | |
calculateTC_Sm | 0.179 | 0.009 | 0.188 | |
corr_plot | 25.545 | 1.278 | 26.891 | |
enrichfindP | 0.340 | 0.045 | 9.642 | |
enrichfind_hp | 0.049 | 0.029 | 1.036 | |
enrichplot | 0.273 | 0.007 | 0.281 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.048 | 0.008 | 3.793 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.000 | 0.001 | |
plotPPI | 0.051 | 0.005 | 0.056 | |
pred_ensembel | 11.257 | 0.492 | 7.733 | |
var_imp | 26.669 | 1.208 | 27.931 | |