Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2024-11-02 12:03 -0400 (Sat, 02 Nov 2024).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
teran2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4500 |
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4505 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4538 |
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4493 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| teran2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ||||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2024-11-02 01:15:42 -0400 (Sat, 02 Nov 2024) |
EndedAt: 2024-11-02 01:36:00 -0400 (Sat, 02 Nov 2024) |
EllapsedTime: 1217.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.1 (2024-06-14) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ...Warning: unable to access index for repository https://CRAN.R-project.org/src/contrib: cannot open URL 'https://CRAN.R-project.org/src/contrib/PACKAGES' OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Unknown package ‘ftrCOOL’ in Rd xrefs * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 32.198 0.346 32.547 var_imp 31.857 0.598 32.456 corr_plot 31.868 0.208 32.080 pred_ensembel 13.393 0.486 10.441 enrichfindP 0.486 0.030 9.060 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.545053 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.339301 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.903673 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.931595 final value 93.915746 converged Fitting Repeat 5 # weights: 103 initial value 96.339798 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.446458 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.410311 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.638713 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 127.699485 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 115.028148 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.723983 final value 94.011429 converged Fitting Repeat 2 # weights: 507 initial value 120.460504 iter 10 value 94.011429 iter 10 value 94.011429 iter 10 value 94.011429 final value 94.011429 converged Fitting Repeat 3 # weights: 507 initial value 96.942009 iter 10 value 93.877268 iter 20 value 93.839514 final value 93.839506 converged Fitting Repeat 4 # weights: 507 initial value 95.656100 final value 94.011429 converged Fitting Repeat 5 # weights: 507 initial value 120.503640 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.920924 iter 10 value 94.062851 iter 20 value 88.231491 iter 30 value 84.866430 iter 40 value 84.623080 iter 50 value 84.410754 iter 60 value 84.345536 iter 70 value 84.302570 final value 84.301275 converged Fitting Repeat 2 # weights: 103 initial value 100.338554 iter 10 value 94.055132 iter 20 value 93.766452 iter 30 value 91.524712 iter 40 value 90.893126 iter 50 value 90.879057 iter 60 value 90.875115 iter 70 value 90.849708 iter 80 value 90.847573 final value 90.847570 converged Fitting Repeat 3 # weights: 103 initial value 107.863261 iter 10 value 93.833396 iter 20 value 85.444402 iter 30 value 84.565313 iter 40 value 84.516461 iter 50 value 84.302600 final value 84.301275 converged Fitting Repeat 4 # weights: 103 initial value 109.169848 iter 10 value 93.707644 iter 20 value 92.963349 iter 30 value 91.499326 iter 40 value 86.346076 iter 50 value 85.376401 iter 60 value 84.058702 iter 70 value 83.896935 iter 80 value 83.892999 final value 83.892927 converged Fitting Repeat 5 # weights: 103 initial value 99.173754 iter 10 value 94.055223 iter 20 value 94.052839 iter 30 value 93.653204 iter 40 value 92.739147 iter 50 value 92.672378 iter 60 value 92.366132 iter 70 value 91.539706 iter 80 value 91.053290 iter 90 value 91.024268 iter 100 value 91.022990 final value 91.022990 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 128.767575 iter 10 value 94.050131 iter 20 value 93.319031 iter 30 value 90.375984 iter 40 value 85.982767 iter 50 value 84.125529 iter 60 value 82.804903 iter 70 value 82.470938 iter 80 value 81.839667 iter 90 value 81.594287 iter 100 value 81.567951 final value 81.567951 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.727083 iter 10 value 93.913135 iter 20 value 91.552335 iter 30 value 84.269547 iter 40 value 83.559122 iter 50 value 82.856587 iter 60 value 82.690976 iter 70 value 82.253833 iter 80 value 82.129833 iter 90 value 81.781271 iter 100 value 81.668998 final value 81.668998 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.671559 iter 10 value 94.098513 iter 20 value 94.023002 iter 30 value 91.970731 iter 40 value 88.615961 iter 50 value 87.021872 iter 60 value 85.788480 iter 70 value 83.861150 iter 80 value 82.780584 iter 90 value 82.532395 iter 100 value 82.254188 final value 82.254188 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.532723 iter 10 value 94.076516 iter 20 value 93.774294 iter 30 value 92.811840 iter 40 value 88.620857 iter 50 value 84.795339 iter 60 value 83.085272 iter 70 value 82.042250 iter 80 value 81.718143 iter 90 value 81.603903 iter 100 value 81.548112 final value 81.548112 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 128.165830 iter 10 value 94.348751 iter 20 value 91.204432 iter 30 value 88.828652 iter 40 value 85.478504 iter 50 value 83.574936 iter 60 value 83.135717 iter 70 value 83.048167 iter 80 value 82.923277 iter 90 value 82.647014 iter 100 value 82.101154 final value 82.101154 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.174367 iter 10 value 93.363946 iter 20 value 84.612165 iter 30 value 84.346012 iter 40 value 84.231319 iter 50 value 83.295890 iter 60 value 82.543016 iter 70 value 81.775398 iter 80 value 81.456810 iter 90 value 81.367501 iter 100 value 81.315943 final value 81.315943 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.392685 iter 10 value 93.837669 iter 20 value 88.379077 iter 30 value 85.691893 iter 40 value 83.410020 iter 50 value 81.772627 iter 60 value 81.333817 iter 70 value 81.200287 iter 80 value 81.180299 iter 90 value 81.081279 iter 100 value 81.036169 final value 81.036169 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 121.872454 iter 10 value 94.285719 iter 20 value 90.527826 iter 30 value 84.774420 iter 40 value 83.922250 iter 50 value 83.270477 iter 60 value 82.703587 iter 70 value 82.209542 iter 80 value 81.909865 iter 90 value 81.785078 iter 100 value 81.488674 final value 81.488674 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.975967 iter 10 value 92.391671 iter 20 value 91.318191 iter 30 value 86.771661 iter 40 value 84.873063 iter 50 value 83.701097 iter 60 value 82.786038 iter 70 value 82.141158 iter 80 value 81.988571 iter 90 value 81.777848 iter 100 value 81.362169 final value 81.362169 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.815088 iter 10 value 93.496719 iter 20 value 88.792757 iter 30 value 84.792958 iter 40 value 83.911257 iter 50 value 82.427458 iter 60 value 81.904900 iter 70 value 81.381039 iter 80 value 81.208518 iter 90 value 81.119007 iter 100 value 81.065887 final value 81.065887 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.359587 final value 94.054612 converged Fitting Repeat 2 # weights: 103 initial value 101.111789 final value 94.054410 converged Fitting Repeat 3 # weights: 103 initial value 97.731411 final value 94.054529 converged Fitting Repeat 4 # weights: 103 initial value 94.756458 final value 94.054669 converged Fitting Repeat 5 # weights: 103 initial value 99.706366 final value 94.054659 converged Fitting Repeat 1 # weights: 305 initial value 100.116683 iter 10 value 93.920645 iter 20 value 93.099447 iter 30 value 85.338665 iter 40 value 85.059550 iter 50 value 85.058671 final value 85.058202 converged Fitting Repeat 2 # weights: 305 initial value 97.737409 iter 10 value 93.920739 iter 20 value 93.915917 iter 30 value 86.661084 iter 40 value 85.445338 iter 50 value 85.418265 iter 60 value 84.928718 iter 70 value 84.142327 final value 84.142320 converged Fitting Repeat 3 # weights: 305 initial value 113.198946 iter 10 value 94.058122 iter 20 value 94.053238 iter 30 value 93.936796 iter 40 value 93.617906 iter 50 value 92.677308 iter 60 value 92.664903 iter 70 value 92.664423 iter 80 value 92.663138 iter 90 value 92.018941 iter 100 value 86.832051 final value 86.832051 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.641149 iter 10 value 93.725652 iter 20 value 93.655712 iter 30 value 93.515154 iter 40 value 93.500233 iter 50 value 93.499489 iter 60 value 92.510091 iter 70 value 92.509455 final value 92.509395 converged Fitting Repeat 5 # weights: 305 initial value 110.028085 iter 10 value 93.921142 iter 20 value 93.916303 iter 30 value 87.279074 iter 40 value 87.045929 iter 50 value 87.045859 iter 60 value 86.844194 iter 70 value 86.701868 iter 80 value 86.671743 final value 86.671583 converged Fitting Repeat 1 # weights: 507 initial value 112.930085 iter 10 value 93.923509 iter 20 value 93.883895 iter 30 value 93.810859 iter 40 value 93.809910 final value 93.809862 converged Fitting Repeat 2 # weights: 507 initial value 112.216374 iter 10 value 94.060592 iter 20 value 94.008204 iter 30 value 93.148864 iter 40 value 86.699324 iter 50 value 86.641400 iter 60 value 86.640680 iter 70 value 86.638726 iter 80 value 86.637975 iter 90 value 86.637369 iter 100 value 86.637033 final value 86.637033 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.760887 iter 10 value 94.061296 iter 20 value 94.038923 iter 30 value 92.941782 iter 40 value 87.067180 iter 50 value 87.065558 iter 60 value 86.526094 iter 70 value 85.258910 iter 80 value 85.254748 iter 90 value 85.153889 iter 100 value 85.152549 final value 85.152549 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.239624 iter 10 value 93.924043 iter 20 value 93.919403 iter 30 value 93.876645 iter 40 value 93.803115 iter 50 value 93.799368 iter 60 value 93.798310 iter 70 value 93.797950 iter 80 value 93.797882 iter 90 value 93.797727 iter 100 value 92.497480 final value 92.497480 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.921144 iter 10 value 93.923839 iter 20 value 93.917365 iter 30 value 93.855753 iter 40 value 93.849588 iter 50 value 93.849482 final value 93.849480 converged Fitting Repeat 1 # weights: 103 initial value 99.117902 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.878292 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.575116 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.354355 final value 94.008696 converged Fitting Repeat 5 # weights: 103 initial value 97.457172 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.297635 final value 94.008696 converged Fitting Repeat 2 # weights: 305 initial value 109.203246 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 108.072576 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 97.687247 final value 94.008696 converged Fitting Repeat 5 # weights: 305 initial value 103.185579 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.916477 iter 10 value 94.052886 iter 10 value 94.052886 iter 20 value 93.450770 final value 93.448534 converged Fitting Repeat 2 # weights: 507 initial value 112.889906 iter 10 value 94.005274 final value 94.004835 converged Fitting Repeat 3 # weights: 507 initial value 94.141132 iter 10 value 94.009131 final value 94.008696 converged Fitting Repeat 4 # weights: 507 initial value 104.168813 final value 94.008696 converged Fitting Repeat 5 # weights: 507 initial value 96.453013 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.228142 iter 10 value 93.411682 iter 20 value 93.119832 iter 30 value 85.496756 iter 40 value 84.716074 iter 50 value 84.290274 iter 60 value 82.783677 iter 70 value 82.502855 iter 80 value 82.498344 iter 90 value 81.227030 iter 100 value 80.996863 final value 80.996863 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 116.184473 iter 10 value 93.993211 iter 20 value 88.901276 iter 30 value 83.993287 iter 40 value 83.752133 iter 50 value 82.724398 iter 60 value 81.636275 iter 70 value 80.672319 iter 80 value 80.562067 iter 90 value 80.505468 final value 80.505334 converged Fitting Repeat 3 # weights: 103 initial value 97.337218 iter 10 value 93.286563 iter 20 value 89.929537 iter 30 value 84.184280 iter 40 value 83.524705 iter 50 value 83.342277 iter 60 value 82.300162 iter 70 value 82.102201 iter 80 value 81.666676 iter 90 value 80.566540 iter 100 value 80.472034 final value 80.472034 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 106.217645 iter 10 value 93.854764 iter 20 value 91.643731 iter 30 value 91.180899 iter 40 value 90.925957 iter 50 value 90.913093 final value 90.913071 converged Fitting Repeat 5 # weights: 103 initial value 104.253383 iter 10 value 93.904974 iter 20 value 93.601021 iter 30 value 93.304881 iter 40 value 92.251197 iter 50 value 85.536924 iter 60 value 84.871771 iter 70 value 84.705253 iter 80 value 84.654616 iter 90 value 84.174227 iter 100 value 83.143703 final value 83.143703 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.875948 iter 10 value 94.038664 iter 20 value 88.494564 iter 30 value 84.553817 iter 40 value 84.085783 iter 50 value 83.912891 iter 60 value 83.742045 iter 70 value 83.653538 iter 80 value 83.619750 iter 90 value 83.498790 iter 100 value 79.880337 final value 79.880337 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.037169 iter 10 value 94.013300 iter 20 value 93.397207 iter 30 value 93.009364 iter 40 value 91.793250 iter 50 value 85.191628 iter 60 value 84.128925 iter 70 value 82.506654 iter 80 value 81.622857 iter 90 value 81.124491 iter 100 value 81.054390 final value 81.054390 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.219370 iter 10 value 94.017731 iter 20 value 93.053940 iter 30 value 91.053798 iter 40 value 89.434950 iter 50 value 84.564219 iter 60 value 83.680046 iter 70 value 83.145090 iter 80 value 83.024881 iter 90 value 82.136879 iter 100 value 81.806693 final value 81.806693 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.176841 iter 10 value 93.708321 iter 20 value 86.829401 iter 30 value 85.339059 iter 40 value 84.912822 iter 50 value 84.684490 iter 60 value 84.616205 iter 70 value 84.599453 iter 80 value 82.375701 iter 90 value 81.495054 iter 100 value 81.272300 final value 81.272300 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.780596 iter 10 value 93.996432 iter 20 value 91.288390 iter 30 value 90.753314 iter 40 value 84.751269 iter 50 value 82.378214 iter 60 value 81.361699 iter 70 value 81.277187 iter 80 value 81.152642 iter 90 value 81.083553 iter 100 value 81.041947 final value 81.041947 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.978517 iter 10 value 94.027398 iter 20 value 86.452056 iter 30 value 85.435936 iter 40 value 84.838536 iter 50 value 82.791278 iter 60 value 81.187299 iter 70 value 80.736439 iter 80 value 80.315317 iter 90 value 79.913522 iter 100 value 79.817703 final value 79.817703 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.495532 iter 10 value 94.119193 iter 20 value 86.571190 iter 30 value 85.374687 iter 40 value 84.722134 iter 50 value 82.829332 iter 60 value 80.425191 iter 70 value 79.160537 iter 80 value 79.016589 iter 90 value 78.832728 iter 100 value 78.760508 final value 78.760508 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.723785 iter 10 value 94.153482 iter 20 value 93.431400 iter 30 value 92.791154 iter 40 value 88.951786 iter 50 value 84.218783 iter 60 value 83.584073 iter 70 value 82.157026 iter 80 value 79.938203 iter 90 value 79.587719 iter 100 value 79.202926 final value 79.202926 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.983811 iter 10 value 94.872305 iter 20 value 93.593583 iter 30 value 91.999861 iter 40 value 86.142183 iter 50 value 82.445056 iter 60 value 81.697159 iter 70 value 81.224504 iter 80 value 80.340594 iter 90 value 79.349253 iter 100 value 78.921443 final value 78.921443 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.121457 iter 10 value 95.527634 iter 20 value 88.171858 iter 30 value 87.983809 iter 40 value 87.574703 iter 50 value 86.405790 iter 60 value 85.662974 iter 70 value 82.526967 iter 80 value 81.419702 iter 90 value 79.979112 iter 100 value 79.443192 final value 79.443192 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.505705 final value 94.054601 converged Fitting Repeat 2 # weights: 103 initial value 94.228190 final value 94.054542 converged Fitting Repeat 3 # weights: 103 initial value 105.115533 final value 94.054890 converged Fitting Repeat 4 # weights: 103 initial value 95.983677 final value 94.010381 converged Fitting Repeat 5 # weights: 103 initial value 109.718323 iter 10 value 94.010136 iter 20 value 93.783675 iter 30 value 92.352233 iter 40 value 92.294580 iter 50 value 83.487275 iter 60 value 83.128811 iter 70 value 81.619526 iter 80 value 80.805132 final value 80.747910 converged Fitting Repeat 1 # weights: 305 initial value 106.776116 iter 10 value 94.014984 iter 20 value 94.010631 iter 30 value 94.007613 iter 40 value 85.445234 iter 50 value 85.417980 iter 60 value 85.296045 iter 70 value 85.258772 final value 85.257796 converged Fitting Repeat 2 # weights: 305 initial value 95.288673 iter 10 value 94.030163 iter 20 value 94.011398 iter 30 value 94.007218 iter 40 value 94.005372 iter 50 value 86.737325 iter 60 value 85.294528 final value 85.293950 converged Fitting Repeat 3 # weights: 305 initial value 103.685671 iter 10 value 94.057365 iter 20 value 93.116893 final value 92.933770 converged Fitting Repeat 4 # weights: 305 initial value 97.788021 iter 10 value 94.057491 iter 20 value 92.204626 final value 91.901547 converged Fitting Repeat 5 # weights: 305 initial value 128.454629 iter 10 value 94.014316 iter 20 value 94.013663 iter 30 value 94.012538 iter 40 value 93.998977 iter 50 value 85.439287 iter 60 value 85.415898 iter 70 value 84.247962 final value 84.247341 converged Fitting Repeat 1 # weights: 507 initial value 106.548343 iter 10 value 94.017291 iter 20 value 94.009109 iter 30 value 84.289968 iter 40 value 79.638637 iter 50 value 78.936354 iter 60 value 78.705289 iter 70 value 78.504530 iter 80 value 78.373794 iter 90 value 78.366504 final value 78.365851 converged Fitting Repeat 2 # weights: 507 initial value 98.422260 iter 10 value 92.407553 iter 20 value 92.230729 iter 30 value 92.227516 iter 40 value 92.222273 iter 50 value 91.287745 iter 60 value 84.891014 iter 70 value 80.614327 iter 80 value 79.181499 iter 90 value 78.044710 iter 100 value 77.189074 final value 77.189074 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.117227 iter 10 value 94.111629 iter 20 value 93.871929 iter 30 value 85.698454 iter 40 value 82.427891 iter 50 value 80.362065 iter 60 value 79.978049 iter 70 value 79.966121 iter 80 value 79.934881 iter 90 value 79.918697 iter 100 value 79.425551 final value 79.425551 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.934572 iter 10 value 94.060947 iter 20 value 93.852732 iter 30 value 92.922644 iter 40 value 92.293218 iter 50 value 87.934373 iter 60 value 83.748916 iter 70 value 82.832188 iter 80 value 82.707253 final value 82.707029 converged Fitting Repeat 5 # weights: 507 initial value 120.956215 iter 10 value 94.016673 iter 20 value 93.985351 iter 30 value 85.414392 final value 85.414265 converged Fitting Repeat 1 # weights: 103 initial value 100.842718 iter 10 value 88.835921 iter 20 value 88.008842 iter 30 value 88.000047 final value 88.000009 converged Fitting Repeat 2 # weights: 103 initial value 95.124795 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.155811 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 105.999797 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 105.454129 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.758152 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.031463 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.995047 iter 10 value 94.477594 iter 10 value 94.477594 iter 10 value 94.477594 final value 94.477594 converged Fitting Repeat 4 # weights: 305 initial value 97.709839 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.035837 final value 94.467391 converged Fitting Repeat 1 # weights: 507 initial value 104.460260 iter 10 value 93.672679 iter 20 value 86.976576 iter 30 value 86.659086 iter 40 value 86.657114 final value 86.657112 converged Fitting Repeat 2 # weights: 507 initial value 130.359582 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 97.102527 iter 10 value 92.133594 iter 20 value 85.299805 iter 30 value 83.514049 iter 40 value 82.990052 iter 50 value 82.159406 iter 60 value 81.958231 final value 81.957419 converged Fitting Repeat 4 # weights: 507 initial value 97.516427 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 97.135697 iter 10 value 94.427726 iter 10 value 94.427726 iter 10 value 94.427726 final value 94.427726 converged Fitting Repeat 1 # weights: 103 initial value 103.087989 iter 10 value 94.489077 iter 20 value 93.406445 iter 30 value 93.027746 iter 40 value 92.991117 iter 50 value 86.279328 iter 60 value 84.899645 iter 70 value 84.041066 iter 80 value 83.942103 final value 83.941992 converged Fitting Repeat 2 # weights: 103 initial value 98.766460 iter 10 value 87.488261 iter 20 value 85.970466 iter 30 value 85.654394 iter 40 value 85.576803 iter 50 value 84.109922 iter 60 value 83.139012 iter 70 value 83.085450 final value 83.085437 converged Fitting Repeat 3 # weights: 103 initial value 101.644946 iter 10 value 94.323549 iter 20 value 89.424568 iter 30 value 87.696627 iter 40 value 86.895441 iter 50 value 84.699259 iter 60 value 84.432204 iter 70 value 83.805653 iter 80 value 83.369156 iter 90 value 83.199574 iter 100 value 83.108805 final value 83.108805 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.755811 iter 10 value 90.706457 iter 20 value 85.883367 iter 30 value 85.623566 iter 40 value 85.378071 iter 50 value 84.246050 iter 60 value 83.706992 iter 70 value 83.112927 iter 80 value 83.085439 final value 83.085437 converged Fitting Repeat 5 # weights: 103 initial value 96.817288 iter 10 value 94.539156 iter 20 value 93.564658 iter 30 value 88.675076 iter 40 value 87.465166 iter 50 value 86.033553 iter 60 value 83.622677 iter 70 value 83.431082 iter 80 value 83.345744 iter 90 value 83.066945 iter 100 value 82.872101 final value 82.872101 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 117.653615 iter 10 value 94.276047 iter 20 value 93.038508 iter 30 value 89.724065 iter 40 value 87.952015 iter 50 value 85.366404 iter 60 value 84.499825 iter 70 value 83.511737 iter 80 value 83.412773 iter 90 value 83.178914 iter 100 value 82.256921 final value 82.256921 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.069549 iter 10 value 94.357485 iter 20 value 84.214168 iter 30 value 83.740056 iter 40 value 83.475481 iter 50 value 83.251696 iter 60 value 83.125138 iter 70 value 83.077239 iter 80 value 83.047601 iter 90 value 82.861653 iter 100 value 81.908003 final value 81.908003 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.257148 iter 10 value 94.440731 iter 20 value 92.076509 iter 30 value 87.763069 iter 40 value 86.362459 iter 50 value 84.706805 iter 60 value 83.806088 iter 70 value 83.504919 iter 80 value 83.119791 iter 90 value 82.871007 iter 100 value 82.464963 final value 82.464963 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.327576 iter 10 value 93.814438 iter 20 value 86.709164 iter 30 value 84.799795 iter 40 value 84.286947 iter 50 value 84.085897 iter 60 value 83.890117 iter 70 value 83.744680 iter 80 value 83.649808 iter 90 value 83.327919 iter 100 value 82.465877 final value 82.465877 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.976698 iter 10 value 94.474517 iter 20 value 87.713412 iter 30 value 86.637038 iter 40 value 86.393586 iter 50 value 85.574280 iter 60 value 84.295826 iter 70 value 83.623548 iter 80 value 82.701900 iter 90 value 82.229641 iter 100 value 82.128917 final value 82.128917 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.845179 iter 10 value 94.492525 iter 20 value 93.858756 iter 30 value 86.668205 iter 40 value 86.174311 iter 50 value 83.739175 iter 60 value 83.221168 iter 70 value 82.065687 iter 80 value 81.403723 iter 90 value 81.206297 iter 100 value 81.080081 final value 81.080081 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.280415 iter 10 value 94.736592 iter 20 value 94.494685 iter 30 value 91.262727 iter 40 value 84.842214 iter 50 value 84.339188 iter 60 value 83.920637 iter 70 value 83.083736 iter 80 value 82.187385 iter 90 value 81.722885 iter 100 value 81.615919 final value 81.615919 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 132.307802 iter 10 value 97.036487 iter 20 value 86.382373 iter 30 value 84.966053 iter 40 value 84.314135 iter 50 value 83.612950 iter 60 value 82.639538 iter 70 value 82.360096 iter 80 value 81.756943 iter 90 value 81.667934 iter 100 value 81.629517 final value 81.629517 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.905705 iter 10 value 88.500984 iter 20 value 87.009399 iter 30 value 85.204086 iter 40 value 83.330149 iter 50 value 82.835176 iter 60 value 81.834133 iter 70 value 81.521655 iter 80 value 81.306482 iter 90 value 81.142485 iter 100 value 81.067744 final value 81.067744 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.180613 iter 10 value 94.778768 iter 20 value 91.362276 iter 30 value 88.868536 iter 40 value 87.541433 iter 50 value 87.287692 iter 60 value 86.491409 iter 70 value 85.696176 iter 80 value 85.408048 iter 90 value 85.042367 iter 100 value 84.215121 final value 84.215121 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.220276 final value 94.486264 converged Fitting Repeat 2 # weights: 103 initial value 99.634195 final value 94.485845 converged Fitting Repeat 3 # weights: 103 initial value 106.957227 final value 94.485641 converged Fitting Repeat 4 # weights: 103 initial value 100.320996 final value 94.485699 converged Fitting Repeat 5 # weights: 103 initial value 100.564452 final value 94.485736 converged Fitting Repeat 1 # weights: 305 initial value 104.036426 iter 10 value 94.489761 iter 20 value 94.484706 iter 30 value 94.477609 iter 40 value 94.207824 iter 50 value 88.522443 iter 60 value 86.203118 iter 70 value 85.478321 iter 80 value 85.154251 final value 85.152545 converged Fitting Repeat 2 # weights: 305 initial value 105.537527 iter 10 value 94.472472 iter 20 value 94.467699 iter 30 value 94.449219 iter 40 value 91.700038 iter 50 value 85.827353 iter 60 value 83.603858 iter 70 value 83.292753 iter 80 value 83.089611 iter 90 value 83.089438 iter 100 value 83.089237 final value 83.089237 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.618656 iter 10 value 94.489022 iter 20 value 94.427812 iter 30 value 94.255703 iter 40 value 92.754403 iter 50 value 85.533764 iter 60 value 85.532311 iter 70 value 84.417321 iter 80 value 83.377080 iter 90 value 82.786280 iter 100 value 82.443400 final value 82.443400 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.086441 iter 10 value 94.488722 iter 20 value 94.476222 final value 94.467576 converged Fitting Repeat 5 # weights: 305 initial value 97.323604 iter 10 value 94.357082 iter 20 value 94.309486 iter 30 value 94.051253 iter 40 value 94.047953 iter 50 value 87.824178 iter 60 value 84.747406 iter 70 value 84.539842 iter 80 value 84.434322 final value 84.429905 converged Fitting Repeat 1 # weights: 507 initial value 120.058680 iter 10 value 94.492149 iter 20 value 94.000682 iter 30 value 86.568837 iter 40 value 86.567244 iter 50 value 86.371657 iter 60 value 84.713186 iter 70 value 84.026523 iter 80 value 84.023026 iter 90 value 83.988240 iter 100 value 83.080184 final value 83.080184 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.921560 iter 10 value 94.055446 iter 20 value 92.282950 iter 30 value 85.792573 iter 40 value 83.650070 iter 50 value 83.182494 iter 60 value 83.060504 iter 70 value 82.758814 iter 80 value 82.529749 iter 90 value 82.523120 final value 82.523105 converged Fitting Repeat 3 # weights: 507 initial value 99.597345 iter 10 value 90.982824 iter 20 value 87.667028 iter 30 value 86.347806 iter 40 value 86.125473 iter 50 value 85.504883 iter 60 value 85.301824 iter 70 value 83.035749 iter 80 value 83.030168 iter 90 value 82.838469 final value 82.828235 converged Fitting Repeat 4 # weights: 507 initial value 117.130815 iter 10 value 94.492262 iter 20 value 94.453496 iter 30 value 93.431874 iter 40 value 92.604839 iter 50 value 92.602445 iter 60 value 84.122597 iter 70 value 82.628562 iter 80 value 82.183135 iter 90 value 82.182122 iter 100 value 82.182032 final value 82.182032 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 101.286451 iter 10 value 94.328540 iter 20 value 93.348287 iter 30 value 85.596459 iter 40 value 85.561554 iter 50 value 85.505708 iter 50 value 85.505708 final value 85.505708 converged Fitting Repeat 1 # weights: 103 initial value 96.867238 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.163485 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.421329 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.982989 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.676246 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.704239 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 104.495557 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.545493 iter 10 value 94.300217 final value 94.298189 converged Fitting Repeat 4 # weights: 305 initial value 94.837316 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 116.142880 iter 10 value 94.466823 iter 10 value 94.466823 iter 10 value 94.466823 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 94.705822 iter 10 value 92.093355 iter 20 value 91.607356 final value 91.486613 converged Fitting Repeat 2 # weights: 507 initial value 112.966474 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.245267 final value 94.483810 converged Fitting Repeat 4 # weights: 507 initial value 100.380905 iter 10 value 94.367881 iter 20 value 94.253973 final value 94.253431 converged Fitting Repeat 5 # weights: 507 initial value 94.336840 iter 10 value 89.988291 iter 20 value 89.845280 iter 30 value 89.637352 iter 40 value 89.636707 final value 89.636705 converged Fitting Repeat 1 # weights: 103 initial value 98.916207 iter 10 value 94.467082 iter 20 value 92.384859 iter 30 value 87.184539 iter 40 value 85.632046 iter 50 value 84.616293 iter 60 value 81.381904 iter 70 value 80.068247 iter 80 value 79.898669 iter 90 value 79.726518 final value 79.725535 converged Fitting Repeat 2 # weights: 103 initial value 98.663902 iter 10 value 94.264149 iter 20 value 87.575256 iter 30 value 87.115043 iter 40 value 86.547944 iter 50 value 85.625291 iter 60 value 85.287368 iter 70 value 84.598227 iter 80 value 84.124979 iter 90 value 84.112809 iter 90 value 84.112808 iter 90 value 84.112808 final value 84.112808 converged Fitting Repeat 3 # weights: 103 initial value 101.174612 iter 10 value 94.488541 iter 20 value 87.317474 iter 30 value 87.093151 iter 40 value 85.551072 iter 50 value 84.552999 iter 60 value 84.276011 iter 70 value 84.151189 iter 80 value 84.112810 final value 84.112809 converged Fitting Repeat 4 # weights: 103 initial value 101.533321 iter 10 value 94.244933 iter 20 value 91.690332 iter 30 value 91.416481 iter 40 value 84.708068 iter 50 value 84.262611 iter 60 value 83.947822 iter 70 value 82.927979 iter 80 value 82.633048 iter 90 value 82.540005 iter 100 value 82.456042 final value 82.456042 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.286868 iter 10 value 94.486470 iter 20 value 92.467690 iter 30 value 89.751516 iter 40 value 86.112114 iter 50 value 85.473707 iter 60 value 85.320618 iter 70 value 85.200100 iter 80 value 84.688787 iter 90 value 80.967572 iter 100 value 80.635289 final value 80.635289 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.435970 iter 10 value 94.577399 iter 20 value 93.589200 iter 30 value 92.560773 iter 40 value 90.972234 iter 50 value 90.268583 iter 60 value 87.767067 iter 70 value 86.192090 iter 80 value 84.392291 iter 90 value 83.250703 iter 100 value 82.957330 final value 82.957330 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.692438 iter 10 value 94.560497 iter 20 value 94.321124 iter 30 value 87.003717 iter 40 value 85.134605 iter 50 value 84.313892 iter 60 value 82.483646 iter 70 value 82.111811 iter 80 value 79.833720 iter 90 value 78.801028 iter 100 value 78.665610 final value 78.665610 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.749323 iter 10 value 94.476992 iter 20 value 90.685057 iter 30 value 87.698584 iter 40 value 86.770378 iter 50 value 82.563180 iter 60 value 81.219882 iter 70 value 80.278280 iter 80 value 80.030484 iter 90 value 79.487166 iter 100 value 79.222063 final value 79.222063 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.959754 iter 10 value 94.524798 iter 20 value 90.734601 iter 30 value 87.084616 iter 40 value 85.790349 iter 50 value 85.153795 iter 60 value 84.719562 iter 70 value 83.802968 iter 80 value 81.695279 iter 90 value 81.043266 iter 100 value 80.926621 final value 80.926621 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.845050 iter 10 value 94.466547 iter 20 value 86.066055 iter 30 value 82.524090 iter 40 value 82.159629 iter 50 value 80.321174 iter 60 value 79.383991 iter 70 value 79.134692 iter 80 value 78.817843 iter 90 value 78.740307 iter 100 value 78.579914 final value 78.579914 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.546197 iter 10 value 94.496974 iter 20 value 87.765068 iter 30 value 86.210940 iter 40 value 83.098116 iter 50 value 80.958553 iter 60 value 80.034585 iter 70 value 79.426404 iter 80 value 79.347757 iter 90 value 78.979081 iter 100 value 78.229548 final value 78.229548 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.437111 iter 10 value 94.511965 iter 20 value 87.728337 iter 30 value 85.572296 iter 40 value 85.183642 iter 50 value 81.749151 iter 60 value 80.661387 iter 70 value 80.303569 iter 80 value 79.238667 iter 90 value 78.592360 iter 100 value 78.167175 final value 78.167175 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.398675 iter 10 value 94.694258 iter 20 value 89.731320 iter 30 value 84.692205 iter 40 value 82.441512 iter 50 value 81.506531 iter 60 value 79.716403 iter 70 value 79.177949 iter 80 value 79.010156 iter 90 value 78.973135 iter 100 value 78.909719 final value 78.909719 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.080043 iter 10 value 93.620160 iter 20 value 88.022237 iter 30 value 86.420859 iter 40 value 83.290911 iter 50 value 81.274585 iter 60 value 80.141014 iter 70 value 79.472021 iter 80 value 79.066029 iter 90 value 78.956010 iter 100 value 78.937382 final value 78.937382 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.425196 iter 10 value 94.470735 iter 20 value 88.764769 iter 30 value 82.807983 iter 40 value 81.274393 iter 50 value 80.734620 iter 60 value 79.902853 iter 70 value 79.441159 iter 80 value 78.788496 iter 90 value 78.393403 iter 100 value 78.176414 final value 78.176414 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.798303 final value 94.486021 converged Fitting Repeat 2 # weights: 103 initial value 95.522591 final value 94.485903 converged Fitting Repeat 3 # weights: 103 initial value 97.316518 final value 94.485728 converged Fitting Repeat 4 # weights: 103 initial value 106.078064 final value 94.488350 converged Fitting Repeat 5 # weights: 103 initial value 96.777360 final value 94.486018 converged Fitting Repeat 1 # weights: 305 initial value 99.676822 iter 10 value 94.488253 iter 20 value 91.502904 iter 30 value 83.445119 iter 40 value 82.105462 iter 50 value 81.868683 iter 60 value 81.865740 iter 70 value 81.835899 iter 80 value 81.835478 final value 81.831287 converged Fitting Repeat 2 # weights: 305 initial value 109.370498 iter 10 value 94.489982 iter 20 value 94.484599 iter 30 value 94.383358 iter 40 value 84.663703 iter 50 value 84.601294 iter 60 value 82.204743 iter 70 value 82.164649 iter 80 value 81.690742 iter 90 value 80.773763 iter 100 value 80.740592 final value 80.740592 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 125.303607 iter 10 value 94.471375 iter 20 value 94.467536 iter 30 value 94.466912 final value 94.466911 converged Fitting Repeat 4 # weights: 305 initial value 96.554168 iter 10 value 94.487501 iter 20 value 94.476797 iter 30 value 91.032892 iter 40 value 88.277622 iter 50 value 88.204872 iter 60 value 88.027523 iter 70 value 87.514406 iter 80 value 87.496010 final value 87.495978 converged Fitting Repeat 5 # weights: 305 initial value 99.645945 iter 10 value 94.488504 iter 20 value 94.483062 iter 30 value 92.383115 iter 40 value 92.288805 iter 50 value 92.286008 iter 60 value 92.257645 iter 70 value 90.314043 iter 80 value 90.309695 iter 90 value 90.274616 iter 100 value 90.274468 final value 90.274468 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.069532 iter 10 value 94.086578 iter 20 value 93.225602 iter 30 value 86.115152 iter 40 value 85.696378 iter 50 value 85.344834 iter 60 value 79.262819 iter 70 value 78.911979 iter 80 value 78.910017 iter 90 value 78.909406 iter 100 value 78.905006 final value 78.905006 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.280742 iter 10 value 94.492529 iter 20 value 94.385269 iter 30 value 92.260588 iter 40 value 92.188691 iter 50 value 92.183261 final value 92.183247 converged Fitting Repeat 3 # weights: 507 initial value 95.598529 iter 10 value 94.474663 iter 20 value 89.831999 iter 30 value 86.301613 final value 86.300806 converged Fitting Repeat 4 # weights: 507 initial value 99.021813 iter 10 value 94.474918 iter 20 value 94.467499 final value 94.466989 converged Fitting Repeat 5 # weights: 507 initial value 121.782862 iter 10 value 94.492473 iter 20 value 94.484501 iter 30 value 89.441642 iter 40 value 84.217161 iter 50 value 83.337409 iter 60 value 82.886788 iter 70 value 82.873851 iter 80 value 82.872700 iter 90 value 82.870956 final value 82.869148 converged Fitting Repeat 1 # weights: 103 initial value 102.081770 final value 94.284001 converged Fitting Repeat 2 # weights: 103 initial value 100.241577 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.682029 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 104.161915 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.661162 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 115.527389 iter 10 value 92.716653 iter 20 value 90.451228 iter 30 value 85.416082 iter 30 value 85.416082 final value 85.416057 converged Fitting Repeat 2 # weights: 305 initial value 96.840286 iter 10 value 87.936882 iter 20 value 86.902107 final value 86.899567 converged Fitting Repeat 3 # weights: 305 initial value 96.907580 iter 10 value 90.412219 final value 90.350215 converged Fitting Repeat 4 # weights: 305 initial value 94.979704 iter 10 value 93.394938 final value 93.394928 converged Fitting Repeat 5 # weights: 305 initial value 101.765104 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 104.663358 iter 10 value 93.394928 iter 10 value 93.394928 iter 10 value 93.394928 final value 93.394928 converged Fitting Repeat 2 # weights: 507 initial value 111.738396 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 105.784852 iter 10 value 93.394932 final value 93.394928 converged Fitting Repeat 4 # weights: 507 initial value 95.164596 iter 10 value 93.221714 final value 93.221696 converged Fitting Repeat 5 # weights: 507 initial value 105.258720 iter 10 value 92.110244 iter 20 value 82.108583 iter 30 value 81.492460 iter 40 value 81.483978 iter 50 value 81.483362 final value 81.483361 converged Fitting Repeat 1 # weights: 103 initial value 100.171594 iter 10 value 94.486928 iter 20 value 93.862218 iter 30 value 93.710492 iter 40 value 93.512232 iter 50 value 87.061148 iter 60 value 84.974714 iter 70 value 82.047757 iter 80 value 81.156338 iter 90 value 81.129967 iter 100 value 79.869519 final value 79.869519 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.324591 iter 10 value 94.497175 iter 20 value 94.483308 iter 30 value 93.684947 iter 40 value 93.676670 iter 40 value 93.676669 iter 50 value 93.611703 iter 60 value 92.794904 iter 70 value 85.270523 iter 80 value 84.733833 iter 90 value 84.149163 iter 100 value 83.814439 final value 83.814439 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.887454 iter 10 value 94.318231 iter 20 value 88.730471 iter 30 value 86.781180 iter 40 value 86.426783 iter 50 value 84.617681 iter 60 value 83.881907 iter 70 value 82.307856 iter 80 value 81.894361 iter 90 value 81.718023 iter 100 value 81.392480 final value 81.392480 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.779451 iter 10 value 94.469229 iter 20 value 90.396698 iter 30 value 88.345538 iter 40 value 87.746549 iter 50 value 87.253378 iter 60 value 84.963055 iter 70 value 84.739311 iter 80 value 84.246298 iter 90 value 83.365672 iter 100 value 82.915885 final value 82.915885 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.533066 iter 10 value 92.102253 iter 20 value 87.763195 iter 30 value 87.227506 iter 40 value 86.626615 iter 50 value 86.441494 iter 60 value 83.929392 iter 70 value 82.949822 iter 80 value 82.906903 final value 82.906842 converged Fitting Repeat 1 # weights: 305 initial value 107.296805 iter 10 value 94.374144 iter 20 value 91.411840 iter 30 value 88.281977 iter 40 value 88.039570 iter 50 value 84.435647 iter 60 value 80.536962 iter 70 value 80.133873 iter 80 value 79.783307 iter 90 value 79.697896 iter 100 value 79.537072 final value 79.537072 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.280340 iter 10 value 94.499324 iter 20 value 93.854195 iter 30 value 93.676666 iter 40 value 93.621748 iter 50 value 92.710720 iter 60 value 89.611028 iter 70 value 89.235231 iter 80 value 89.166858 iter 90 value 86.172993 iter 100 value 81.369057 final value 81.369057 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.667385 iter 10 value 93.851604 iter 20 value 92.331257 iter 30 value 86.843304 iter 40 value 81.716121 iter 50 value 81.445050 iter 60 value 80.250084 iter 70 value 80.034430 iter 80 value 79.912581 iter 90 value 79.471405 iter 100 value 79.173657 final value 79.173657 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.328853 iter 10 value 94.388098 iter 20 value 84.786227 iter 30 value 82.916708 iter 40 value 81.890162 iter 50 value 80.082264 iter 60 value 79.345184 iter 70 value 78.867269 iter 80 value 78.681469 iter 90 value 78.557506 iter 100 value 78.388329 final value 78.388329 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.000951 iter 10 value 93.164991 iter 20 value 87.639680 iter 30 value 86.473982 iter 40 value 85.428878 iter 50 value 81.890790 iter 60 value 79.933576 iter 70 value 79.379552 iter 80 value 79.275556 iter 90 value 79.238771 iter 100 value 79.229507 final value 79.229507 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.712412 iter 10 value 94.493325 iter 20 value 93.525365 iter 30 value 83.944490 iter 40 value 82.603873 iter 50 value 80.474883 iter 60 value 79.842489 iter 70 value 79.453917 iter 80 value 78.849601 iter 90 value 78.487376 iter 100 value 78.143768 final value 78.143768 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.952859 iter 10 value 94.577765 iter 20 value 89.571545 iter 30 value 85.219973 iter 40 value 82.263931 iter 50 value 80.788343 iter 60 value 79.808740 iter 70 value 79.256470 iter 80 value 78.766364 iter 90 value 78.474000 iter 100 value 78.354124 final value 78.354124 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 141.150974 iter 10 value 96.826300 iter 20 value 94.050878 iter 30 value 91.810731 iter 40 value 91.025630 iter 50 value 90.153544 iter 60 value 86.252595 iter 70 value 82.189440 iter 80 value 80.045562 iter 90 value 79.336246 iter 100 value 79.016598 final value 79.016598 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.372229 iter 10 value 94.020678 iter 20 value 89.069483 iter 30 value 88.398435 iter 40 value 85.791366 iter 50 value 83.808618 iter 60 value 83.182303 iter 70 value 82.059372 iter 80 value 81.648886 iter 90 value 81.233175 iter 100 value 81.129875 final value 81.129875 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.685686 iter 10 value 94.602397 iter 20 value 88.577546 iter 30 value 86.996093 iter 40 value 85.701085 iter 50 value 81.074785 iter 60 value 80.074334 iter 70 value 79.827819 iter 80 value 79.784346 iter 90 value 78.883532 iter 100 value 78.827934 final value 78.827934 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 110.475888 final value 94.486083 converged Fitting Repeat 2 # weights: 103 initial value 98.777594 iter 10 value 94.486055 iter 20 value 94.484273 iter 30 value 93.728057 final value 93.688549 converged Fitting Repeat 3 # weights: 103 initial value 94.930167 iter 10 value 94.485732 iter 20 value 93.759779 iter 30 value 84.193875 iter 30 value 84.193875 iter 30 value 84.193875 final value 84.193875 converged Fitting Repeat 4 # weights: 103 initial value 113.002993 final value 94.486024 converged Fitting Repeat 5 # weights: 103 initial value 98.579824 final value 94.355749 converged Fitting Repeat 1 # weights: 305 initial value 102.895360 iter 10 value 94.488764 iter 20 value 94.461849 iter 30 value 93.395981 final value 93.395412 converged Fitting Repeat 2 # weights: 305 initial value 123.972195 iter 10 value 94.489067 iter 20 value 94.406413 iter 30 value 88.842553 iter 40 value 88.154641 iter 50 value 87.280391 iter 60 value 86.351677 iter 70 value 86.324737 iter 80 value 86.323404 iter 90 value 86.321791 iter 100 value 86.190922 final value 86.190922 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.715312 iter 10 value 94.493472 iter 20 value 93.584668 iter 30 value 93.400182 iter 40 value 93.395853 iter 50 value 93.181132 iter 60 value 86.344391 iter 70 value 86.323067 iter 80 value 86.320946 iter 90 value 86.320151 iter 100 value 86.319676 final value 86.319676 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.136154 iter 10 value 93.647899 iter 20 value 93.415426 iter 30 value 87.688754 iter 40 value 79.170504 iter 50 value 78.925765 final value 78.921650 converged Fitting Repeat 5 # weights: 305 initial value 111.166581 iter 10 value 93.400793 iter 20 value 93.398750 iter 30 value 84.936159 iter 40 value 81.204526 iter 50 value 79.927751 iter 60 value 79.783847 final value 79.783178 converged Fitting Repeat 1 # weights: 507 initial value 107.464106 iter 10 value 93.514108 iter 20 value 93.230018 iter 30 value 93.229277 iter 40 value 93.222730 iter 50 value 93.222657 iter 60 value 93.222268 iter 70 value 93.221984 iter 80 value 93.154955 iter 90 value 87.228618 iter 100 value 83.283086 final value 83.283086 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.347161 iter 10 value 93.423575 iter 20 value 93.231724 iter 30 value 93.225425 iter 40 value 93.222736 final value 93.222621 converged Fitting Repeat 3 # weights: 507 initial value 95.293509 iter 10 value 93.230124 iter 20 value 93.229734 iter 30 value 93.224130 iter 40 value 93.223684 iter 50 value 93.223343 iter 60 value 93.180380 iter 70 value 91.569812 iter 80 value 89.507099 iter 90 value 89.503740 iter 100 value 89.503419 final value 89.503419 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.859738 iter 10 value 93.230193 iter 20 value 93.225934 iter 30 value 93.222414 iter 40 value 93.136585 iter 50 value 90.912038 iter 60 value 89.677345 iter 70 value 89.627154 iter 80 value 89.318694 iter 90 value 88.639501 iter 100 value 87.808646 final value 87.808646 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.603760 iter 10 value 91.752717 iter 20 value 88.376758 iter 30 value 88.373958 iter 40 value 88.352618 final value 88.351849 converged Fitting Repeat 1 # weights: 507 initial value 121.341274 iter 10 value 117.898674 iter 20 value 117.888818 iter 30 value 112.934809 iter 40 value 108.680889 iter 50 value 108.272715 iter 60 value 107.247768 iter 70 value 102.844576 iter 80 value 102.512829 iter 90 value 102.512103 iter 100 value 102.231604 final value 102.231604 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.344951 iter 10 value 117.749300 iter 20 value 117.748390 iter 30 value 117.747801 iter 40 value 117.127303 iter 50 value 110.846023 iter 60 value 109.230882 iter 70 value 107.222421 iter 80 value 107.160996 iter 90 value 107.160960 iter 100 value 107.135398 final value 107.135398 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 144.056761 iter 10 value 117.546427 iter 20 value 117.543035 iter 30 value 117.541422 iter 40 value 117.539932 iter 50 value 117.529352 iter 60 value 117.254708 iter 70 value 115.607938 iter 80 value 114.538008 iter 90 value 114.532408 iter 100 value 114.529870 final value 114.529870 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.714843 iter 10 value 116.911953 final value 116.911156 converged Fitting Repeat 5 # weights: 507 initial value 137.233308 iter 10 value 117.539526 iter 20 value 117.532727 iter 30 value 115.889337 iter 40 value 108.535644 iter 50 value 108.528891 iter 50 value 108.528890 iter 50 value 108.528890 final value 108.528890 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sat Nov 2 01:27:04 2024 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.660 1.749 41.474
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 32.198 | 0.346 | 32.547 | |
FreqInteractors | 0.192 | 0.008 | 0.200 | |
calculateAAC | 0.030 | 0.005 | 0.035 | |
calculateAutocor | 0.273 | 0.022 | 0.295 | |
calculateCTDC | 0.063 | 0.000 | 0.063 | |
calculateCTDD | 0.462 | 0.000 | 0.463 | |
calculateCTDT | 0.177 | 0.000 | 0.177 | |
calculateCTriad | 0.328 | 0.013 | 0.341 | |
calculateDC | 0.077 | 0.000 | 0.078 | |
calculateF | 0.259 | 0.010 | 0.269 | |
calculateKSAAP | 0.085 | 0.000 | 0.085 | |
calculateQD_Sm | 1.502 | 0.020 | 1.523 | |
calculateTC | 1.356 | 0.021 | 1.378 | |
calculateTC_Sm | 0.233 | 0.002 | 0.234 | |
corr_plot | 31.868 | 0.208 | 32.080 | |
enrichfindP | 0.486 | 0.030 | 9.060 | |
enrichfind_hp | 0.096 | 0.004 | 1.007 | |
enrichplot | 0.318 | 0.027 | 0.344 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.407 | 0.001 | 4.317 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.003 | 0.000 | 0.002 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.003 | 0.000 | 0.003 | |
plotPPI | 0.078 | 0.004 | 0.082 | |
pred_ensembel | 13.393 | 0.486 | 10.441 | |
var_imp | 31.857 | 0.598 | 32.456 | |