Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-24 12:05 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4521 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4448 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4414 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-20 23:00:11 -0400 (Thu, 20 Mar 2025) |
EndedAt: 2025-03-20 23:15:59 -0400 (Thu, 20 Mar 2025) |
EllapsedTime: 948.0 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 * running under: Ubuntu 24.04.2 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.047 0.609 35.657 corr_plot 33.462 0.371 33.893 FSmethod 33.274 0.549 33.824 pred_ensembel 12.996 0.302 11.980 enrichfindP 0.496 0.035 8.843 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.581101 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.639029 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.213540 final value 94.325945 converged Fitting Repeat 4 # weights: 103 initial value 99.108344 iter 10 value 85.747474 iter 20 value 84.791761 iter 30 value 83.652969 final value 83.652698 converged Fitting Repeat 5 # weights: 103 initial value 95.657558 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.619985 iter 10 value 81.266338 iter 20 value 81.097057 final value 81.096851 converged Fitting Repeat 2 # weights: 305 initial value 108.696154 iter 10 value 93.772990 final value 93.772973 converged Fitting Repeat 3 # weights: 305 initial value 99.489735 iter 10 value 93.772975 final value 93.772973 converged Fitting Repeat 4 # weights: 305 initial value 110.022185 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.387649 iter 10 value 93.772992 final value 93.772973 converged Fitting Repeat 1 # weights: 507 initial value 111.756621 iter 10 value 93.772982 final value 93.772973 converged Fitting Repeat 2 # weights: 507 initial value 111.542115 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 109.414387 iter 10 value 93.642941 final value 93.642934 converged Fitting Repeat 4 # weights: 507 initial value 150.234500 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 100.900104 final value 94.470284 converged Fitting Repeat 1 # weights: 103 initial value 98.317829 iter 10 value 94.486567 iter 20 value 89.630625 iter 30 value 88.373223 iter 40 value 87.805804 iter 50 value 86.390148 iter 60 value 83.442451 iter 70 value 81.405649 iter 80 value 80.683856 iter 90 value 80.612574 iter 100 value 80.611299 final value 80.611299 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.264592 iter 10 value 92.887335 iter 20 value 83.703927 final value 83.607531 converged Fitting Repeat 3 # weights: 103 initial value 103.140070 iter 10 value 93.965213 iter 20 value 92.933987 iter 30 value 89.672320 iter 40 value 86.857399 iter 50 value 86.584777 iter 60 value 86.236589 iter 70 value 84.005100 iter 80 value 81.347294 iter 90 value 80.658412 iter 100 value 80.070432 final value 80.070432 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.863340 iter 10 value 94.486686 iter 20 value 94.110502 iter 30 value 89.767726 iter 40 value 82.817357 iter 50 value 82.241155 iter 60 value 82.121317 iter 70 value 81.157010 iter 80 value 80.615267 iter 90 value 80.611365 final value 80.611115 converged Fitting Repeat 5 # weights: 103 initial value 105.411322 iter 10 value 94.486860 iter 20 value 88.502697 iter 30 value 86.706387 iter 40 value 85.401140 iter 50 value 82.301302 iter 60 value 81.284799 iter 70 value 81.158965 iter 80 value 81.140815 iter 80 value 81.140815 iter 80 value 81.140815 final value 81.140815 converged Fitting Repeat 1 # weights: 305 initial value 101.301633 iter 10 value 94.913987 iter 20 value 88.427875 iter 30 value 82.461691 iter 40 value 82.112167 iter 50 value 79.875485 iter 60 value 79.620994 iter 70 value 79.271503 iter 80 value 79.130705 iter 90 value 79.046922 iter 100 value 78.828722 final value 78.828722 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.260088 iter 10 value 89.671411 iter 20 value 85.068761 iter 30 value 84.410396 iter 40 value 84.211596 iter 50 value 83.071745 iter 60 value 82.512414 iter 70 value 80.731397 iter 80 value 80.300608 iter 90 value 79.896578 iter 100 value 79.587071 final value 79.587071 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.122313 iter 10 value 101.107367 iter 20 value 93.949772 iter 30 value 83.597121 iter 40 value 82.640848 iter 50 value 82.026043 iter 60 value 79.265403 iter 70 value 77.863287 iter 80 value 77.404261 iter 90 value 77.278738 iter 100 value 77.174023 final value 77.174023 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.407714 iter 10 value 94.493298 iter 20 value 94.086925 iter 30 value 94.062839 iter 40 value 93.544205 iter 50 value 86.174550 iter 60 value 83.092819 iter 70 value 82.030536 iter 80 value 78.718598 iter 90 value 77.998644 iter 100 value 77.833784 final value 77.833784 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 119.910469 iter 10 value 95.244620 iter 20 value 93.175460 iter 30 value 91.900343 iter 40 value 85.987946 iter 50 value 82.856775 iter 60 value 82.044986 iter 70 value 79.803680 iter 80 value 78.390609 iter 90 value 78.040252 iter 100 value 77.594590 final value 77.594590 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.014005 iter 10 value 94.925388 iter 20 value 93.905010 iter 30 value 87.429948 iter 40 value 83.392188 iter 50 value 79.064817 iter 60 value 78.212162 iter 70 value 77.748815 iter 80 value 77.467909 iter 90 value 77.236926 iter 100 value 77.221640 final value 77.221640 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.094014 iter 10 value 95.276098 iter 20 value 89.643656 iter 30 value 83.147815 iter 40 value 82.230941 iter 50 value 81.493678 iter 60 value 78.275285 iter 70 value 77.628204 iter 80 value 77.505437 iter 90 value 77.341995 iter 100 value 77.191347 final value 77.191347 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.847929 iter 10 value 96.656123 iter 20 value 95.691705 iter 30 value 92.631998 iter 40 value 88.019285 iter 50 value 87.208071 iter 60 value 82.741847 iter 70 value 80.986166 iter 80 value 80.172179 iter 90 value 78.465218 iter 100 value 77.464285 final value 77.464285 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.313586 iter 10 value 91.560802 iter 20 value 84.152779 iter 30 value 82.792289 iter 40 value 81.883999 iter 50 value 81.050931 iter 60 value 80.898296 iter 70 value 79.890251 iter 80 value 78.466655 iter 90 value 77.973074 iter 100 value 77.846235 final value 77.846235 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.677420 iter 10 value 94.717148 iter 20 value 91.515080 iter 30 value 90.754120 iter 40 value 90.151914 iter 50 value 82.172772 iter 60 value 80.716681 iter 70 value 80.055202 iter 80 value 79.956077 iter 90 value 79.898744 iter 100 value 79.874659 final value 79.874659 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.556611 final value 94.486263 converged Fitting Repeat 2 # weights: 103 initial value 97.255744 final value 94.486093 converged Fitting Repeat 3 # weights: 103 initial value 95.978099 iter 10 value 94.485841 iter 20 value 94.251607 iter 30 value 82.481000 iter 40 value 82.478274 iter 50 value 82.478022 iter 60 value 82.473344 iter 70 value 81.774261 final value 81.773819 converged Fitting Repeat 4 # weights: 103 initial value 96.297022 final value 94.327406 converged Fitting Repeat 5 # weights: 103 initial value 97.708950 final value 94.486540 converged Fitting Repeat 1 # weights: 305 initial value 96.978773 iter 10 value 93.727449 iter 20 value 93.727087 iter 30 value 93.720600 iter 40 value 84.851016 iter 50 value 82.538995 iter 60 value 79.999033 iter 70 value 77.247717 iter 80 value 77.221656 iter 90 value 77.209114 final value 77.208869 converged Fitting Repeat 2 # weights: 305 initial value 96.238296 iter 10 value 92.470272 iter 20 value 92.469190 iter 30 value 90.409471 iter 40 value 90.152949 final value 90.139283 converged Fitting Repeat 3 # weights: 305 initial value 98.151682 iter 10 value 93.839818 iter 20 value 93.377823 iter 30 value 92.560157 iter 40 value 92.503559 iter 50 value 92.502700 iter 60 value 90.800630 iter 70 value 90.793063 iter 80 value 90.790767 iter 90 value 90.727653 iter 100 value 90.698990 final value 90.698990 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.085824 iter 10 value 94.489408 iter 20 value 94.484581 final value 94.484565 converged Fitting Repeat 5 # weights: 305 initial value 102.965229 iter 10 value 92.268761 iter 20 value 91.418800 iter 20 value 91.418800 final value 91.418800 converged Fitting Repeat 1 # weights: 507 initial value 124.354309 iter 10 value 94.492881 iter 20 value 94.147177 iter 30 value 92.613307 iter 40 value 91.700116 iter 50 value 90.948218 iter 60 value 90.945198 iter 70 value 90.936209 final value 90.934782 converged Fitting Repeat 2 # weights: 507 initial value 115.924877 iter 10 value 84.255211 iter 20 value 84.077576 iter 30 value 83.677609 iter 40 value 83.676859 iter 50 value 83.672046 iter 60 value 83.670156 iter 70 value 83.589243 iter 80 value 83.311180 final value 83.273350 converged Fitting Repeat 3 # weights: 507 initial value 99.487018 iter 10 value 94.491817 iter 20 value 94.410133 iter 30 value 93.923660 iter 40 value 93.732478 final value 93.724003 converged Fitting Repeat 4 # weights: 507 initial value 104.098587 iter 10 value 93.785414 iter 20 value 93.780662 iter 30 value 93.457686 iter 40 value 83.103663 iter 50 value 81.277867 iter 60 value 80.542935 iter 70 value 79.027349 iter 80 value 77.750435 iter 90 value 77.738329 iter 100 value 77.737858 final value 77.737858 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.228286 iter 10 value 93.780990 iter 20 value 92.473224 iter 30 value 90.596572 iter 40 value 83.255973 iter 50 value 79.408557 iter 60 value 77.678123 iter 70 value 77.578012 iter 80 value 77.576488 iter 90 value 77.576306 final value 77.576189 converged Fitting Repeat 1 # weights: 103 initial value 100.679105 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 111.398981 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.253830 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.944261 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.237898 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.810153 final value 94.467391 converged Fitting Repeat 2 # weights: 305 initial value 111.587307 iter 10 value 94.467521 iter 20 value 94.467393 iter 20 value 94.467392 iter 20 value 94.467392 final value 94.467392 converged Fitting Repeat 3 # weights: 305 initial value 97.976086 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 128.546042 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.189991 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.648674 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.145149 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 95.647105 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 98.358982 final value 94.453333 converged Fitting Repeat 5 # weights: 507 initial value 98.644406 iter 10 value 94.044265 iter 20 value 92.613932 final value 92.613874 converged Fitting Repeat 1 # weights: 103 initial value 98.766790 iter 10 value 94.429388 iter 20 value 91.276605 iter 30 value 88.008012 iter 40 value 87.422194 iter 50 value 87.238263 iter 60 value 86.267555 iter 70 value 85.695637 iter 80 value 85.393315 iter 90 value 85.378161 final value 85.378006 converged Fitting Repeat 2 # weights: 103 initial value 104.048386 iter 10 value 92.781760 iter 20 value 87.090349 iter 30 value 86.809324 iter 40 value 86.163974 iter 50 value 85.540856 iter 60 value 85.378844 final value 85.378006 converged Fitting Repeat 3 # weights: 103 initial value 100.789589 iter 10 value 94.251787 iter 20 value 87.721671 iter 30 value 86.973214 iter 40 value 86.504063 iter 50 value 86.045695 iter 60 value 85.778449 iter 70 value 85.744557 final value 85.744106 converged Fitting Repeat 4 # weights: 103 initial value 103.652802 iter 10 value 94.455386 iter 20 value 92.426866 iter 30 value 88.345717 iter 40 value 87.901842 iter 50 value 86.757322 iter 60 value 86.341917 iter 70 value 86.118885 iter 80 value 86.031750 iter 90 value 85.994371 iter 90 value 85.994371 iter 90 value 85.994371 final value 85.994371 converged Fitting Repeat 5 # weights: 103 initial value 101.073502 iter 10 value 93.974252 iter 20 value 88.380844 iter 30 value 87.911218 iter 40 value 87.152300 iter 50 value 86.722239 iter 60 value 86.258462 final value 86.241556 converged Fitting Repeat 1 # weights: 305 initial value 112.669924 iter 10 value 94.562676 iter 20 value 88.663447 iter 30 value 87.644647 iter 40 value 86.785429 iter 50 value 86.424229 iter 60 value 85.978861 iter 70 value 85.428296 iter 80 value 83.505691 iter 90 value 83.270912 iter 100 value 83.112620 final value 83.112620 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.183874 iter 10 value 94.207349 iter 20 value 88.864934 iter 30 value 87.452421 iter 40 value 87.044677 iter 50 value 87.024823 iter 60 value 86.656964 iter 70 value 84.968194 iter 80 value 84.385108 iter 90 value 84.083674 iter 100 value 83.217580 final value 83.217580 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.705268 iter 10 value 94.809711 iter 20 value 94.435254 iter 30 value 89.739558 iter 40 value 87.135830 iter 50 value 86.489574 iter 60 value 86.009638 iter 70 value 85.687288 iter 80 value 84.804296 iter 90 value 84.245533 iter 100 value 83.439016 final value 83.439016 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.666496 iter 10 value 93.709770 iter 20 value 92.453720 iter 30 value 92.411901 iter 40 value 92.308065 iter 50 value 87.518293 iter 60 value 86.517331 iter 70 value 86.322326 iter 80 value 84.863627 iter 90 value 84.008491 iter 100 value 83.596562 final value 83.596562 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.384748 iter 10 value 94.530131 iter 20 value 94.356143 iter 30 value 93.007859 iter 40 value 92.521722 iter 50 value 92.437212 iter 60 value 90.720745 iter 70 value 87.811580 iter 80 value 86.792094 iter 90 value 86.338287 iter 100 value 84.121797 final value 84.121797 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.020955 iter 10 value 94.524028 iter 20 value 93.784028 iter 30 value 86.189145 iter 40 value 85.580692 iter 50 value 85.174095 iter 60 value 84.237025 iter 70 value 83.793077 iter 80 value 83.383873 iter 90 value 83.242126 iter 100 value 83.193525 final value 83.193525 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.510105 iter 10 value 94.851745 iter 20 value 93.219891 iter 30 value 89.349226 iter 40 value 87.283583 iter 50 value 85.334989 iter 60 value 84.704797 iter 70 value 84.597888 iter 80 value 84.074952 iter 90 value 83.666737 iter 100 value 83.494753 final value 83.494753 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.858421 iter 10 value 97.612850 iter 20 value 88.483885 iter 30 value 86.720548 iter 40 value 86.068544 iter 50 value 85.795271 iter 60 value 84.292137 iter 70 value 83.456690 iter 80 value 83.086059 iter 90 value 83.029800 iter 100 value 83.015685 final value 83.015685 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.061828 iter 10 value 94.961478 iter 20 value 94.439647 iter 30 value 89.970001 iter 40 value 85.117807 iter 50 value 83.750686 iter 60 value 83.402975 iter 70 value 83.193522 iter 80 value 83.071779 iter 90 value 83.010658 iter 100 value 82.983160 final value 82.983160 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.552080 iter 10 value 94.317047 iter 20 value 90.867367 iter 30 value 88.789393 iter 40 value 87.902798 iter 50 value 86.752898 iter 60 value 84.397294 iter 70 value 83.741309 iter 80 value 83.149455 iter 90 value 83.001997 iter 100 value 82.899468 final value 82.899468 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.272511 iter 10 value 94.485855 iter 20 value 94.470820 iter 30 value 92.396142 iter 40 value 91.173789 iter 50 value 91.171554 iter 60 value 90.428917 iter 70 value 90.307427 iter 80 value 90.252212 iter 90 value 90.249840 final value 90.249802 converged Fitting Repeat 2 # weights: 103 initial value 95.681534 iter 10 value 88.446082 iter 20 value 88.341092 iter 30 value 88.036788 iter 40 value 88.027483 iter 50 value 87.653971 iter 60 value 87.600863 iter 70 value 85.829538 iter 80 value 84.254679 iter 90 value 83.387017 iter 100 value 83.244827 final value 83.244827 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.008312 final value 94.463120 converged Fitting Repeat 4 # weights: 103 initial value 96.296219 final value 94.485855 converged Fitting Repeat 5 # weights: 103 initial value 94.562192 final value 94.485701 converged Fitting Repeat 1 # weights: 305 initial value 129.209828 iter 10 value 94.488853 iter 20 value 94.484205 iter 30 value 94.365081 iter 40 value 94.274748 iter 50 value 88.570414 iter 60 value 86.138224 iter 70 value 85.540728 iter 80 value 85.413800 iter 90 value 85.365514 final value 85.270757 converged Fitting Repeat 2 # weights: 305 initial value 95.694583 final value 94.488917 converged Fitting Repeat 3 # weights: 305 initial value 101.327797 iter 10 value 94.507378 final value 94.502638 converged Fitting Repeat 4 # weights: 305 initial value 102.576656 iter 10 value 94.143448 iter 20 value 94.092372 iter 30 value 94.090674 iter 40 value 94.087473 iter 50 value 90.965586 iter 60 value 89.423509 iter 70 value 87.395296 iter 80 value 83.579768 iter 90 value 82.823256 iter 100 value 82.808724 final value 82.808724 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 96.680464 iter 10 value 94.488356 iter 20 value 93.647859 iter 30 value 92.627329 iter 40 value 92.623535 iter 50 value 92.622812 iter 60 value 92.514449 iter 70 value 85.886830 iter 80 value 85.657638 iter 90 value 85.635366 iter 100 value 85.602770 final value 85.602770 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.129563 iter 10 value 94.476518 iter 20 value 94.440704 iter 30 value 94.241046 iter 40 value 87.303773 iter 50 value 86.581322 iter 60 value 86.476591 iter 70 value 86.470429 iter 80 value 86.442228 iter 90 value 85.854602 iter 100 value 85.755108 final value 85.755108 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.081376 iter 10 value 94.492282 iter 20 value 93.610666 iter 30 value 88.448164 iter 40 value 87.923219 iter 50 value 85.484531 iter 60 value 85.394577 iter 70 value 85.392072 iter 80 value 85.368495 iter 90 value 85.358946 final value 85.358430 converged Fitting Repeat 3 # weights: 507 initial value 100.435791 iter 10 value 94.477403 iter 20 value 94.475779 iter 30 value 94.475082 iter 40 value 94.467292 iter 50 value 92.191843 iter 60 value 87.465749 iter 70 value 84.845335 iter 80 value 84.735592 final value 84.728710 converged Fitting Repeat 4 # weights: 507 initial value 96.313734 iter 10 value 94.492614 iter 20 value 94.477763 iter 30 value 90.624761 iter 40 value 87.161507 iter 50 value 87.117835 final value 87.117693 converged Fitting Repeat 5 # weights: 507 initial value 101.290226 iter 10 value 94.492592 iter 20 value 94.484205 iter 30 value 94.167381 iter 40 value 90.171595 iter 50 value 86.787371 iter 60 value 83.785056 iter 70 value 82.519298 iter 80 value 82.096845 iter 90 value 82.013679 iter 100 value 81.997374 final value 81.997374 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.346575 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.540796 final value 93.915746 converged Fitting Repeat 3 # weights: 103 initial value 96.274495 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.247251 iter 10 value 83.635358 iter 20 value 81.942590 iter 30 value 81.928962 final value 81.928955 converged Fitting Repeat 5 # weights: 103 initial value 96.590279 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.439966 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.384259 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.529188 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 105.243945 final value 94.052911 converged Fitting Repeat 5 # weights: 305 initial value 106.680495 iter 10 value 90.516154 iter 20 value 89.568673 iter 30 value 89.562196 iter 40 value 89.562148 final value 89.562147 converged Fitting Repeat 1 # weights: 507 initial value 96.200767 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 100.209365 iter 10 value 91.542602 iter 20 value 83.702836 final value 83.670403 converged Fitting Repeat 3 # weights: 507 initial value 120.347065 iter 10 value 93.860355 iter 10 value 93.860355 iter 10 value 93.860355 final value 93.860355 converged Fitting Repeat 4 # weights: 507 initial value 98.644492 iter 10 value 93.166445 iter 20 value 93.023932 iter 30 value 92.790376 iter 40 value 92.775622 iter 50 value 92.775001 iter 50 value 92.775001 iter 50 value 92.775001 final value 92.775001 converged Fitting Repeat 5 # weights: 507 initial value 95.262528 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 95.930442 iter 10 value 94.187266 iter 20 value 86.923181 iter 30 value 83.962466 iter 40 value 83.779378 iter 50 value 83.646576 iter 60 value 83.248995 iter 70 value 82.745398 iter 80 value 82.634175 iter 90 value 82.440815 iter 100 value 81.624464 final value 81.624464 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 111.428402 iter 10 value 94.041899 iter 20 value 91.580542 iter 30 value 88.018515 iter 40 value 87.629624 iter 50 value 86.741117 iter 60 value 81.503597 iter 70 value 80.923469 iter 80 value 80.614939 iter 90 value 80.252344 iter 100 value 80.049287 final value 80.049287 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.142355 iter 10 value 94.034960 iter 20 value 93.836616 iter 30 value 93.821027 iter 40 value 91.823802 iter 50 value 90.367787 iter 60 value 90.132779 iter 70 value 90.117253 iter 70 value 90.117253 iter 70 value 90.117253 final value 90.117253 converged Fitting Repeat 4 # weights: 103 initial value 101.930228 iter 10 value 94.251071 iter 20 value 94.056648 iter 30 value 86.097278 iter 40 value 84.857543 iter 50 value 84.012111 iter 60 value 82.282189 iter 70 value 81.343055 iter 80 value 81.307336 iter 90 value 81.175553 iter 100 value 80.668602 final value 80.668602 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 117.637366 iter 10 value 94.017350 iter 20 value 93.642170 iter 30 value 93.592024 iter 40 value 84.597357 iter 50 value 83.906804 iter 60 value 83.729729 iter 70 value 83.565420 iter 80 value 83.505104 iter 90 value 82.962331 iter 100 value 82.489732 final value 82.489732 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 103.689877 iter 10 value 94.064501 iter 20 value 93.907747 iter 30 value 90.789895 iter 40 value 90.116424 iter 50 value 89.120747 iter 60 value 82.709359 iter 70 value 81.234069 iter 80 value 80.327014 iter 90 value 79.980101 iter 100 value 79.812406 final value 79.812406 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.845921 iter 10 value 94.147501 iter 20 value 87.567564 iter 30 value 86.793607 iter 40 value 83.877806 iter 50 value 81.924379 iter 60 value 81.374739 iter 70 value 81.031101 iter 80 value 80.919739 iter 90 value 80.813558 iter 100 value 80.499783 final value 80.499783 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.367815 iter 10 value 94.230812 iter 20 value 86.168860 iter 30 value 84.542923 iter 40 value 81.808491 iter 50 value 80.550039 iter 60 value 80.083897 iter 70 value 79.812366 iter 80 value 79.757945 iter 90 value 79.320697 iter 100 value 78.899618 final value 78.899618 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 113.273074 iter 10 value 93.928267 iter 20 value 89.439266 iter 30 value 84.307814 iter 40 value 83.512851 iter 50 value 81.825640 iter 60 value 81.002876 iter 70 value 80.522845 iter 80 value 79.688664 iter 90 value 79.197506 iter 100 value 78.495694 final value 78.495694 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.272964 iter 10 value 94.754849 iter 20 value 94.100044 iter 30 value 91.014741 iter 40 value 84.089738 iter 50 value 80.259624 iter 60 value 79.641230 iter 70 value 78.706887 iter 80 value 78.628353 iter 90 value 78.579053 iter 100 value 78.545958 final value 78.545958 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.980590 iter 10 value 94.082866 iter 20 value 93.729528 iter 30 value 88.893944 iter 40 value 85.273439 iter 50 value 83.502711 iter 60 value 81.057386 iter 70 value 79.986335 iter 80 value 79.062664 iter 90 value 77.920103 iter 100 value 77.668241 final value 77.668241 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.741400 iter 10 value 96.588312 iter 20 value 91.043677 iter 30 value 84.120572 iter 40 value 82.825025 iter 50 value 81.850217 iter 60 value 79.759379 iter 70 value 78.803418 iter 80 value 78.528110 iter 90 value 78.357330 iter 100 value 77.929985 final value 77.929985 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.077806 iter 10 value 94.038163 iter 20 value 90.758081 iter 30 value 83.704804 iter 40 value 81.757261 iter 50 value 80.921911 iter 60 value 80.254399 iter 70 value 79.555825 iter 80 value 78.573374 iter 90 value 78.207432 iter 100 value 77.913862 final value 77.913862 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.289763 iter 10 value 94.068690 iter 20 value 93.871576 iter 30 value 91.711638 iter 40 value 85.044008 iter 50 value 82.241803 iter 60 value 80.473329 iter 70 value 80.360183 iter 80 value 79.660819 iter 90 value 79.314726 iter 100 value 78.578828 final value 78.578828 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.737501 iter 10 value 94.058575 iter 20 value 93.080304 iter 30 value 86.781274 iter 40 value 80.718710 iter 50 value 79.734464 iter 60 value 79.062156 iter 70 value 78.672090 iter 80 value 78.532294 iter 90 value 78.486399 iter 100 value 78.446450 final value 78.446450 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.499873 final value 94.054497 converged Fitting Repeat 2 # weights: 103 initial value 97.533042 iter 10 value 93.882288 final value 93.862109 converged Fitting Repeat 3 # weights: 103 initial value 114.304074 iter 10 value 90.644263 iter 20 value 90.476460 iter 30 value 90.451397 iter 40 value 90.450363 final value 90.450166 converged Fitting Repeat 4 # weights: 103 initial value 96.291895 final value 93.917247 converged Fitting Repeat 5 # weights: 103 initial value 94.689302 final value 94.054469 converged Fitting Repeat 1 # weights: 305 initial value 99.758121 iter 10 value 93.920907 iter 20 value 93.916731 iter 30 value 92.400030 iter 40 value 85.465277 iter 50 value 80.586864 iter 60 value 80.519541 iter 70 value 80.515886 iter 80 value 80.515570 final value 80.515568 converged Fitting Repeat 2 # weights: 305 initial value 93.784021 iter 10 value 88.059074 iter 20 value 85.414507 iter 30 value 85.297925 iter 40 value 85.297554 iter 50 value 85.294619 iter 60 value 82.313022 iter 70 value 80.052997 iter 80 value 80.039663 iter 90 value 77.830634 iter 100 value 77.540580 final value 77.540580 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 121.431212 iter 10 value 93.921166 iter 20 value 93.916799 iter 30 value 93.844218 final value 93.844211 converged Fitting Repeat 4 # weights: 305 initial value 100.097439 iter 10 value 94.057569 iter 20 value 94.052560 iter 30 value 93.805427 iter 40 value 91.816981 iter 50 value 83.664051 iter 60 value 83.648390 iter 70 value 83.636340 iter 80 value 82.765905 iter 90 value 82.670573 iter 100 value 82.631384 final value 82.631384 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.157673 iter 10 value 94.058411 iter 20 value 94.053667 iter 30 value 93.957324 iter 40 value 93.916278 final value 93.916130 converged Fitting Repeat 1 # weights: 507 initial value 100.075551 iter 10 value 94.067575 iter 20 value 94.059063 iter 30 value 92.544311 iter 40 value 82.675504 iter 50 value 82.041447 iter 60 value 82.029541 iter 70 value 81.197641 iter 80 value 79.667943 iter 90 value 78.619477 iter 100 value 78.618407 final value 78.618407 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.263465 iter 10 value 93.453855 iter 20 value 93.437731 iter 30 value 93.430264 iter 40 value 93.422897 iter 50 value 91.597584 iter 60 value 91.162648 iter 70 value 91.160311 iter 80 value 91.088154 final value 91.078463 converged Fitting Repeat 3 # weights: 507 initial value 96.122396 iter 10 value 93.999735 iter 20 value 88.896382 iter 30 value 82.015540 iter 40 value 80.208324 iter 50 value 80.165610 iter 60 value 80.165433 final value 80.164584 converged Fitting Repeat 4 # weights: 507 initial value 102.059771 iter 10 value 93.880004 iter 20 value 93.875753 iter 30 value 93.873421 iter 40 value 87.289625 iter 50 value 86.209015 iter 60 value 86.206606 iter 70 value 86.203231 iter 80 value 86.201226 iter 90 value 85.996995 iter 100 value 84.369211 final value 84.369211 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.705188 iter 10 value 93.923963 iter 20 value 93.085592 iter 30 value 83.791918 iter 40 value 82.983028 iter 50 value 82.445097 iter 60 value 80.787798 iter 70 value 79.088492 iter 80 value 78.535713 final value 78.535699 converged Fitting Repeat 1 # weights: 103 initial value 94.856208 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.731769 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.480401 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.720082 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.492627 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 96.318413 iter 10 value 87.493968 iter 20 value 84.275437 iter 30 value 83.631329 iter 40 value 83.625847 final value 83.625833 converged Fitting Repeat 2 # weights: 305 initial value 101.729522 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.244203 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.377874 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.231316 final value 94.466823 converged Fitting Repeat 1 # weights: 507 initial value 118.024879 iter 10 value 94.294335 final value 94.294332 converged Fitting Repeat 2 # weights: 507 initial value 97.086852 final value 94.476471 converged Fitting Repeat 3 # weights: 507 initial value 107.425888 iter 10 value 94.466823 iter 10 value 94.466823 iter 10 value 94.466823 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 107.949853 final value 94.214007 converged Fitting Repeat 5 # weights: 507 initial value 100.172979 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 101.957090 iter 10 value 94.480706 iter 20 value 93.948113 iter 30 value 93.797200 iter 40 value 93.230448 iter 50 value 90.020447 iter 60 value 89.494591 iter 70 value 84.926336 iter 80 value 83.780266 iter 90 value 82.124914 iter 100 value 81.404059 final value 81.404059 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.012707 iter 10 value 94.487311 iter 20 value 94.387753 iter 30 value 93.264466 iter 40 value 85.854930 iter 50 value 85.655977 iter 60 value 85.508030 iter 70 value 84.484923 iter 80 value 83.213714 iter 90 value 83.150624 iter 100 value 83.150208 final value 83.150208 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.639167 iter 10 value 94.465540 iter 20 value 93.975282 iter 30 value 93.751114 iter 40 value 93.668457 iter 50 value 90.606671 iter 60 value 84.756944 iter 70 value 84.478813 iter 80 value 82.127416 iter 90 value 81.366919 iter 100 value 80.975783 final value 80.975783 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.588765 iter 10 value 94.492096 iter 20 value 93.972530 iter 30 value 89.445502 iter 40 value 87.844276 iter 50 value 87.027573 iter 60 value 86.925633 iter 70 value 86.812617 iter 80 value 86.771190 iter 90 value 86.659820 final value 86.651629 converged Fitting Repeat 5 # weights: 103 initial value 102.055195 iter 10 value 92.961919 iter 20 value 91.286112 iter 30 value 90.340661 iter 40 value 89.807421 iter 50 value 89.795118 final value 89.795104 converged Fitting Repeat 1 # weights: 305 initial value 106.633792 iter 10 value 94.560665 iter 20 value 91.289722 iter 30 value 87.972921 iter 40 value 86.619332 iter 50 value 84.603093 iter 60 value 82.565705 iter 70 value 80.612424 iter 80 value 79.943458 iter 90 value 79.843809 iter 100 value 79.604698 final value 79.604698 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.399937 iter 10 value 94.471894 iter 20 value 89.971414 iter 30 value 85.399502 iter 40 value 83.145960 iter 50 value 80.902709 iter 60 value 80.051376 iter 70 value 79.928277 iter 80 value 79.897327 iter 90 value 79.788803 iter 100 value 79.638108 final value 79.638108 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.211868 iter 10 value 94.464863 iter 20 value 90.785848 iter 30 value 87.801770 iter 40 value 84.957381 iter 50 value 83.751319 iter 60 value 82.436290 iter 70 value 81.809287 iter 80 value 81.576065 iter 90 value 81.371151 iter 100 value 81.239922 final value 81.239922 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 129.106244 iter 10 value 94.422068 iter 20 value 87.741248 iter 30 value 84.880894 iter 40 value 84.489251 iter 50 value 83.800793 iter 60 value 83.178024 iter 70 value 82.720428 iter 80 value 81.677572 iter 90 value 81.413183 iter 100 value 81.363216 final value 81.363216 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.530867 iter 10 value 94.495171 iter 20 value 88.678034 iter 30 value 86.693841 iter 40 value 86.601025 iter 50 value 86.442739 iter 60 value 86.305936 iter 70 value 86.095106 iter 80 value 83.553934 iter 90 value 82.449261 iter 100 value 82.333615 final value 82.333615 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.759731 iter 10 value 94.647769 iter 20 value 89.020483 iter 30 value 85.599152 iter 40 value 82.823393 iter 50 value 81.753508 iter 60 value 80.727834 iter 70 value 80.181218 iter 80 value 79.629331 iter 90 value 79.408135 iter 100 value 79.372222 final value 79.372222 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.882356 iter 10 value 94.511044 iter 20 value 94.220901 iter 30 value 94.049794 iter 40 value 89.084221 iter 50 value 85.915227 iter 60 value 83.707875 iter 70 value 81.609950 iter 80 value 80.090578 iter 90 value 79.959902 iter 100 value 79.901487 final value 79.901487 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.891491 iter 10 value 95.141419 iter 20 value 94.886142 iter 30 value 93.964875 iter 40 value 90.694169 iter 50 value 88.541770 iter 60 value 88.412297 iter 70 value 86.713764 iter 80 value 83.535816 iter 90 value 83.409446 iter 100 value 83.108211 final value 83.108211 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.136265 iter 10 value 94.588672 iter 20 value 93.157842 iter 30 value 92.229438 iter 40 value 90.371438 iter 50 value 84.461785 iter 60 value 82.501351 iter 70 value 81.758870 iter 80 value 81.573089 iter 90 value 81.375924 iter 100 value 81.197000 final value 81.197000 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.920365 iter 10 value 94.718175 iter 20 value 86.155595 iter 30 value 81.787201 iter 40 value 80.927446 iter 50 value 80.323699 iter 60 value 79.608679 iter 70 value 79.458376 iter 80 value 79.405187 iter 90 value 79.389421 iter 100 value 79.323786 final value 79.323786 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.385441 iter 10 value 94.485905 iter 20 value 94.484211 iter 30 value 94.187431 iter 40 value 93.533508 final value 93.532734 converged Fitting Repeat 2 # weights: 103 initial value 98.620049 iter 10 value 94.485718 iter 20 value 94.484216 iter 30 value 89.481766 iter 40 value 89.144991 final value 89.140664 converged Fitting Repeat 3 # weights: 103 initial value 96.885832 iter 10 value 94.485941 iter 20 value 94.484273 iter 30 value 93.922463 final value 93.922441 converged Fitting Repeat 4 # weights: 103 initial value 103.829164 final value 94.468329 converged Fitting Repeat 5 # weights: 103 initial value 95.727813 iter 10 value 94.485753 iter 20 value 94.480917 iter 30 value 94.204790 iter 40 value 92.753565 iter 50 value 90.115840 iter 60 value 88.914803 iter 70 value 85.180808 iter 80 value 85.179903 iter 90 value 85.179665 final value 85.179660 converged Fitting Repeat 1 # weights: 305 initial value 110.179698 iter 10 value 94.489189 iter 20 value 94.431085 iter 30 value 93.854990 iter 40 value 93.164513 iter 50 value 93.140666 iter 60 value 92.765097 iter 70 value 92.753078 iter 80 value 92.751245 iter 90 value 92.750040 final value 92.748916 converged Fitting Repeat 2 # weights: 305 initial value 97.116657 iter 10 value 94.488852 iter 20 value 94.484466 iter 30 value 89.443217 iter 40 value 89.406599 iter 50 value 89.357890 iter 60 value 87.989892 iter 70 value 87.977558 iter 80 value 87.977170 iter 90 value 84.033093 iter 100 value 81.257105 final value 81.257105 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.825072 iter 10 value 94.471735 iter 20 value 94.265833 iter 30 value 91.244957 iter 40 value 87.544510 iter 50 value 86.327210 iter 60 value 86.184249 iter 70 value 86.183546 iter 80 value 85.176433 iter 90 value 84.937418 final value 84.935594 converged Fitting Repeat 4 # weights: 305 initial value 99.800699 iter 10 value 94.286707 iter 20 value 93.166973 iter 30 value 93.163948 iter 40 value 93.157590 iter 50 value 93.156881 final value 93.156795 converged Fitting Repeat 5 # weights: 305 initial value 102.070249 iter 10 value 94.490679 iter 20 value 94.485899 iter 30 value 92.961956 iter 40 value 89.969175 iter 50 value 89.898265 iter 60 value 89.885487 iter 70 value 89.842844 iter 80 value 89.840945 iter 80 value 89.840944 iter 90 value 89.839104 iter 100 value 89.829983 final value 89.829983 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.418722 iter 10 value 94.493520 iter 20 value 94.485579 iter 30 value 94.481127 iter 40 value 92.127936 iter 50 value 91.566316 iter 60 value 91.112556 iter 70 value 90.935065 iter 80 value 90.930997 final value 90.929901 converged Fitting Repeat 2 # weights: 507 initial value 96.019037 iter 10 value 92.638904 iter 20 value 91.731865 iter 30 value 89.876890 iter 40 value 89.872691 iter 50 value 89.440780 iter 60 value 89.402363 iter 70 value 89.391480 iter 80 value 89.391173 iter 90 value 87.919987 iter 100 value 87.741696 final value 87.741696 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.249889 iter 10 value 94.336457 iter 20 value 88.052824 iter 30 value 86.562811 iter 40 value 86.352793 iter 50 value 86.191658 iter 60 value 86.190383 iter 70 value 86.182711 iter 80 value 85.389719 iter 90 value 83.612179 iter 100 value 83.611747 final value 83.611747 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.077051 iter 10 value 94.491870 iter 20 value 94.479985 iter 30 value 93.980667 iter 40 value 93.810029 iter 50 value 91.942365 iter 60 value 87.560322 iter 70 value 83.306684 iter 80 value 83.289985 iter 90 value 80.871267 iter 100 value 80.782300 final value 80.782300 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.363021 iter 10 value 94.492311 iter 20 value 90.874915 iter 30 value 88.277288 iter 40 value 88.263145 iter 50 value 88.131756 final value 88.130616 converged Fitting Repeat 1 # weights: 103 initial value 101.378821 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.719236 iter 10 value 93.828915 final value 93.828167 converged Fitting Repeat 3 # weights: 103 initial value 102.506003 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 108.458977 iter 10 value 88.377121 iter 20 value 87.195991 iter 30 value 87.160261 iter 40 value 85.488453 iter 50 value 85.322578 final value 85.312893 converged Fitting Repeat 5 # weights: 103 initial value 98.511114 final value 93.356643 converged Fitting Repeat 1 # weights: 305 initial value 96.318961 final value 93.628453 converged Fitting Repeat 2 # weights: 305 initial value 99.828501 iter 10 value 94.053168 final value 94.052911 converged Fitting Repeat 3 # weights: 305 initial value 95.610800 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 99.703806 iter 10 value 93.477887 final value 93.034769 converged Fitting Repeat 5 # weights: 305 initial value 107.885401 final value 93.836066 converged Fitting Repeat 1 # weights: 507 initial value 110.666877 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 103.422216 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 97.954993 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 127.920181 iter 10 value 88.304221 iter 20 value 85.490174 iter 30 value 85.480521 final value 85.480503 converged Fitting Repeat 5 # weights: 507 initial value 108.494414 final value 93.104644 converged Fitting Repeat 1 # weights: 103 initial value 102.363325 iter 10 value 94.055640 iter 20 value 93.241305 iter 30 value 93.135650 iter 40 value 93.129067 iter 50 value 93.128630 final value 93.128217 converged Fitting Repeat 2 # weights: 103 initial value 97.032525 iter 10 value 93.426285 iter 20 value 93.200003 iter 30 value 93.134138 iter 40 value 90.757274 iter 50 value 86.999374 iter 60 value 86.842573 iter 70 value 84.173763 iter 80 value 83.606550 iter 90 value 83.515699 iter 100 value 83.501659 final value 83.501659 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.027658 iter 10 value 92.874671 iter 20 value 87.010672 iter 30 value 84.499617 iter 40 value 83.686726 final value 83.684987 converged Fitting Repeat 4 # weights: 103 initial value 104.318231 iter 10 value 93.716086 iter 20 value 90.391711 iter 30 value 89.084038 iter 40 value 87.858294 iter 50 value 87.399222 iter 60 value 86.889047 iter 70 value 86.865304 iter 80 value 86.853892 final value 86.853297 converged Fitting Repeat 5 # weights: 103 initial value 102.190448 iter 10 value 93.998804 iter 20 value 87.034116 iter 30 value 84.637647 iter 40 value 84.441982 iter 50 value 84.036994 iter 60 value 83.962645 final value 83.962500 converged Fitting Repeat 1 # weights: 305 initial value 103.437775 iter 10 value 94.143946 iter 20 value 91.654249 iter 30 value 87.379681 iter 40 value 85.744026 iter 50 value 85.039346 iter 60 value 84.555016 iter 70 value 84.231106 iter 80 value 83.883526 iter 90 value 83.628520 iter 100 value 82.522998 final value 82.522998 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.056232 iter 10 value 91.907363 iter 20 value 86.848798 iter 30 value 85.681122 iter 40 value 83.772682 iter 50 value 83.075390 iter 60 value 81.781330 iter 70 value 81.301184 iter 80 value 81.025706 iter 90 value 80.971973 iter 100 value 80.957068 final value 80.957068 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.385345 iter 10 value 94.071691 iter 20 value 93.420243 iter 30 value 87.167690 iter 40 value 85.080175 iter 50 value 83.773822 iter 60 value 82.387483 iter 70 value 81.991776 iter 80 value 81.562225 iter 90 value 81.401810 iter 100 value 81.316596 final value 81.316596 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.054741 iter 10 value 92.595976 iter 20 value 86.942557 iter 30 value 86.043531 iter 40 value 83.748341 iter 50 value 82.429165 iter 60 value 81.687077 iter 70 value 81.466386 iter 80 value 81.293184 iter 90 value 80.945648 iter 100 value 80.908534 final value 80.908534 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.374237 iter 10 value 93.234868 iter 20 value 88.681189 iter 30 value 85.025760 iter 40 value 84.187201 iter 50 value 83.744648 iter 60 value 83.659078 iter 70 value 82.994559 iter 80 value 82.037972 iter 90 value 81.577583 iter 100 value 81.432977 final value 81.432977 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.731391 iter 10 value 93.540051 iter 20 value 90.444691 iter 30 value 87.141942 iter 40 value 85.708253 iter 50 value 84.158880 iter 60 value 83.006516 iter 70 value 82.291753 iter 80 value 81.567118 iter 90 value 81.368210 iter 100 value 81.287092 final value 81.287092 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.236197 iter 10 value 93.821506 iter 20 value 87.559505 iter 30 value 87.202229 iter 40 value 86.493154 iter 50 value 84.674757 iter 60 value 83.251218 iter 70 value 82.858007 iter 80 value 82.396271 iter 90 value 82.296799 iter 100 value 82.281470 final value 82.281470 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.690392 iter 10 value 94.408186 iter 20 value 93.816873 iter 30 value 87.382335 iter 40 value 86.208621 iter 50 value 84.619202 iter 60 value 83.660011 iter 70 value 82.466582 iter 80 value 81.342500 iter 90 value 80.991376 iter 100 value 80.881120 final value 80.881120 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.442434 iter 10 value 96.061643 iter 20 value 93.291155 iter 30 value 93.136209 iter 40 value 88.089875 iter 50 value 86.631197 iter 60 value 85.955104 iter 70 value 83.725028 iter 80 value 83.483926 iter 90 value 82.725917 iter 100 value 82.157514 final value 82.157514 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.395013 iter 10 value 94.412901 iter 20 value 93.478853 iter 30 value 90.414017 iter 40 value 89.603160 iter 50 value 88.745209 iter 60 value 86.891081 iter 70 value 84.695067 iter 80 value 84.220350 iter 90 value 82.973275 iter 100 value 82.273007 final value 82.273007 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.460606 final value 94.054525 converged Fitting Repeat 2 # weights: 103 initial value 101.609210 final value 94.054495 converged Fitting Repeat 3 # weights: 103 initial value 97.296724 iter 10 value 94.054601 iter 20 value 94.052952 iter 30 value 93.859674 iter 40 value 93.358788 final value 93.357208 converged Fitting Repeat 4 # weights: 103 initial value 99.688394 final value 94.054688 converged Fitting Repeat 5 # weights: 103 initial value 96.958773 final value 94.054825 converged Fitting Repeat 1 # weights: 305 initial value 96.539546 iter 10 value 93.361734 iter 20 value 93.321128 iter 30 value 91.571674 iter 40 value 91.569398 iter 50 value 91.568664 iter 60 value 91.287484 iter 70 value 87.875469 iter 80 value 84.406919 iter 90 value 82.044381 iter 100 value 81.404705 final value 81.404705 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.721278 iter 10 value 93.844774 iter 20 value 93.122446 iter 30 value 90.370633 iter 40 value 90.158363 iter 50 value 90.003175 iter 60 value 90.001486 iter 70 value 89.883052 iter 80 value 89.869005 final value 89.868944 converged Fitting Repeat 3 # weights: 305 initial value 104.410925 iter 10 value 93.110016 iter 20 value 93.105327 iter 30 value 93.024169 iter 40 value 91.770595 iter 50 value 85.586723 iter 60 value 84.808424 iter 70 value 84.726246 iter 80 value 84.661668 final value 84.661049 converged Fitting Repeat 4 # weights: 305 initial value 113.591599 iter 10 value 94.057939 iter 20 value 94.039677 iter 30 value 86.015386 iter 40 value 85.754836 iter 50 value 85.749973 final value 85.749966 converged Fitting Repeat 5 # weights: 305 initial value 98.950856 iter 10 value 88.372688 iter 20 value 88.029205 iter 30 value 85.819676 iter 40 value 85.562634 iter 50 value 85.562044 iter 60 value 85.158715 iter 70 value 84.508058 iter 80 value 84.474819 iter 90 value 84.474705 final value 84.474704 converged Fitting Repeat 1 # weights: 507 initial value 124.652595 iter 10 value 93.845234 iter 20 value 93.838798 iter 30 value 92.714644 iter 40 value 86.225508 iter 50 value 85.863823 iter 60 value 83.286660 iter 70 value 82.941167 iter 80 value 82.939829 final value 82.939382 converged Fitting Repeat 2 # weights: 507 initial value 110.401169 iter 10 value 94.060196 iter 20 value 94.047775 iter 30 value 93.360381 iter 40 value 93.340962 final value 93.105461 converged Fitting Repeat 3 # weights: 507 initial value 97.559856 iter 10 value 94.060410 iter 20 value 94.053038 iter 30 value 93.163417 iter 40 value 85.304286 iter 50 value 84.717080 final value 84.685901 converged Fitting Repeat 4 # weights: 507 initial value 107.358028 iter 10 value 94.061737 iter 20 value 94.053023 iter 30 value 93.193514 final value 93.091058 converged Fitting Repeat 5 # weights: 507 initial value 99.653112 iter 10 value 93.310174 iter 20 value 88.739044 iter 30 value 84.313695 iter 40 value 83.273416 iter 50 value 83.261506 iter 60 value 83.260605 iter 70 value 82.772212 iter 80 value 82.731431 iter 90 value 82.132430 iter 100 value 81.778440 final value 81.778440 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.743977 iter 10 value 115.841947 iter 20 value 114.526436 iter 30 value 113.766291 iter 40 value 112.949537 iter 50 value 109.583151 iter 60 value 106.156079 iter 70 value 104.586664 iter 80 value 103.314101 iter 90 value 102.321153 iter 100 value 101.317691 final value 101.317691 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 164.371029 iter 10 value 117.933587 iter 20 value 111.904106 iter 30 value 110.797246 iter 40 value 108.595293 iter 50 value 103.578988 iter 60 value 101.919954 iter 70 value 101.398453 iter 80 value 101.082780 iter 90 value 101.014107 iter 100 value 100.926521 final value 100.926521 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 132.688098 iter 10 value 119.185247 iter 20 value 117.776146 iter 30 value 115.554229 iter 40 value 108.738854 iter 50 value 108.259775 iter 60 value 106.372323 iter 70 value 104.352055 iter 80 value 102.776476 iter 90 value 102.540723 iter 100 value 101.861699 final value 101.861699 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.826404 iter 10 value 118.408582 iter 20 value 117.599866 iter 30 value 111.773152 iter 40 value 107.809238 iter 50 value 105.627779 iter 60 value 104.115374 iter 70 value 102.527219 iter 80 value 101.951870 iter 90 value 101.452977 iter 100 value 100.674652 final value 100.674652 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 156.126315 iter 10 value 117.913658 iter 20 value 115.514045 iter 30 value 110.687995 iter 40 value 107.520580 iter 50 value 106.769611 iter 60 value 104.577230 iter 70 value 103.583781 iter 80 value 103.099960 iter 90 value 101.974128 iter 100 value 101.733328 final value 101.733328 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Mar 20 23:06:12 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 40.958 1.409 151.594
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.274 | 0.549 | 33.824 | |
FreqInteractors | 0.21 | 0.01 | 0.22 | |
calculateAAC | 0.030 | 0.008 | 0.039 | |
calculateAutocor | 0.274 | 0.026 | 0.300 | |
calculateCTDC | 0.07 | 0.00 | 0.07 | |
calculateCTDD | 0.484 | 0.002 | 0.487 | |
calculateCTDT | 0.187 | 0.000 | 0.187 | |
calculateCTriad | 0.390 | 0.006 | 0.396 | |
calculateDC | 0.078 | 0.004 | 0.081 | |
calculateF | 0.281 | 0.002 | 0.283 | |
calculateKSAAP | 0.085 | 0.001 | 0.086 | |
calculateQD_Sm | 1.474 | 0.040 | 1.514 | |
calculateTC | 1.426 | 0.029 | 1.455 | |
calculateTC_Sm | 0.295 | 0.003 | 0.298 | |
corr_plot | 33.462 | 0.371 | 33.893 | |
enrichfindP | 0.496 | 0.035 | 8.843 | |
enrichfind_hp | 0.101 | 0.006 | 1.065 | |
enrichplot | 0.350 | 0.004 | 0.354 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.452 | 0.008 | 3.896 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0.001 | 0.000 | 0.000 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.069 | 0.000 | 0.069 | |
pred_ensembel | 12.996 | 0.302 | 11.980 | |
var_imp | 35.047 | 0.609 | 35.657 | |