Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-24 12:08 -0400 (Mon, 24 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4763
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4494
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4521
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4448
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4414
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-03-20 13:00 -0400 (Thu, 20 Mar 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on merida1

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz
StartedAt: 2025-03-21 04:21:11 -0400 (Fri, 21 Mar 2025)
EndedAt: 2025-03-21 04:29:58 -0400 (Fri, 21 Mar 2025)
EllapsedTime: 526.4 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
var_imp       50.689  1.721  57.319
FSmethod      50.522  1.751  54.687
corr_plot     50.432  1.737  55.343
pred_ensembel 25.270  0.474  24.488
calculateTC    4.725  0.451   5.421
enrichfindP    0.908  0.086  13.554
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’
* installing *source* package ‘HPiP’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 102.686740 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.070142 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.627767 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.156461 
iter  10 value 88.959164
iter  20 value 86.868860
final  value 86.866841 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.998422 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.765459 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 118.476911 
iter  10 value 89.676191
iter  20 value 86.935374
iter  30 value 86.317320
final  value 86.315313 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.993679 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.543522 
final  value 92.608648 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.884159 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.580628 
final  value 93.568966 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.254623 
iter  10 value 94.484215
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.631478 
iter  10 value 93.568979
iter  10 value 93.568979
final  value 93.568970 
converged
Fitting Repeat 4 

# weights:  507
initial  value 112.429492 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  507
initial  value 97.325303 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.879697 
iter  10 value 94.459025
iter  20 value 91.496121
iter  30 value 89.230511
iter  40 value 83.463153
iter  50 value 82.645872
iter  60 value 81.967399
iter  70 value 81.889326
iter  80 value 81.884739
final  value 81.884734 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.803550 
iter  10 value 94.484407
iter  20 value 85.867766
iter  30 value 84.177305
iter  40 value 84.019083
iter  50 value 82.472398
iter  60 value 82.181398
iter  70 value 81.948311
iter  80 value 81.935462
iter  80 value 81.935462
iter  80 value 81.935462
final  value 81.935462 
converged
Fitting Repeat 3 

# weights:  103
initial  value 108.949518 
iter  10 value 94.507846
iter  20 value 94.391493
iter  30 value 94.304773
iter  40 value 92.524335
iter  50 value 85.981674
iter  60 value 85.429540
iter  70 value 81.724983
iter  80 value 81.617976
iter  90 value 81.535703
iter 100 value 81.483937
final  value 81.483937 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 103.578558 
iter  10 value 94.431695
iter  20 value 94.191466
iter  30 value 94.176666
iter  40 value 92.597745
iter  50 value 85.604948
iter  60 value 85.134732
iter  70 value 84.963858
iter  80 value 84.610411
iter  90 value 83.675391
iter 100 value 83.153092
final  value 83.153092 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 107.986708 
iter  10 value 94.489340
iter  20 value 94.296866
iter  30 value 94.265851
iter  40 value 85.474157
iter  50 value 85.123150
iter  60 value 84.512720
iter  70 value 81.788658
iter  80 value 81.143063
iter  90 value 80.348755
iter 100 value 80.230949
final  value 80.230949 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 108.538449 
iter  10 value 94.584117
iter  20 value 88.788208
iter  30 value 86.712662
iter  40 value 85.360207
iter  50 value 83.701676
iter  60 value 80.804888
iter  70 value 80.219534
iter  80 value 79.643635
iter  90 value 79.133467
iter 100 value 79.006824
final  value 79.006824 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.516504 
iter  10 value 94.682446
iter  20 value 82.470067
iter  30 value 81.660812
iter  40 value 81.579769
iter  50 value 81.501705
iter  60 value 81.476787
iter  70 value 81.153181
iter  80 value 80.444148
iter  90 value 80.252705
iter 100 value 80.202667
final  value 80.202667 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.699483 
iter  10 value 94.433970
iter  20 value 86.991728
iter  30 value 83.514996
iter  40 value 81.818546
iter  50 value 81.538192
iter  60 value 81.402951
iter  70 value 81.348997
iter  80 value 80.997659
iter  90 value 79.876083
iter 100 value 79.661596
final  value 79.661596 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.349209 
iter  10 value 96.221818
iter  20 value 86.680263
iter  30 value 84.904838
iter  40 value 82.215588
iter  50 value 81.822655
iter  60 value 81.670707
iter  70 value 81.370344
iter  80 value 79.360411
iter  90 value 79.122407
iter 100 value 78.980886
final  value 78.980886 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 112.304524 
iter  10 value 94.390350
iter  20 value 87.950005
iter  30 value 85.474407
iter  40 value 85.448782
iter  50 value 85.348833
iter  60 value 83.278252
iter  70 value 81.866021
iter  80 value 80.547143
iter  90 value 79.476677
iter 100 value 79.196311
final  value 79.196311 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 122.528872 
iter  10 value 94.794570
iter  20 value 94.366061
iter  30 value 92.210634
iter  40 value 86.732399
iter  50 value 85.921149
iter  60 value 84.913001
iter  70 value 84.473025
iter  80 value 83.058693
iter  90 value 81.892117
iter 100 value 80.150395
final  value 80.150395 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 137.005525 
iter  10 value 94.849654
iter  20 value 92.439915
iter  30 value 82.198708
iter  40 value 81.862460
iter  50 value 81.590303
iter  60 value 80.275822
iter  70 value 79.252598
iter  80 value 78.868254
iter  90 value 78.657036
iter 100 value 78.461013
final  value 78.461013 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.188786 
iter  10 value 96.357308
iter  20 value 94.094021
iter  30 value 91.026304
iter  40 value 85.001577
iter  50 value 81.934896
iter  60 value 81.685837
iter  70 value 81.402882
iter  80 value 81.279193
iter  90 value 81.260822
iter 100 value 81.132869
final  value 81.132869 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.199507 
iter  10 value 94.654025
iter  20 value 94.461585
iter  30 value 88.132477
iter  40 value 85.965142
iter  50 value 85.273351
iter  60 value 82.633465
iter  70 value 81.614554
iter  80 value 81.438872
iter  90 value 81.190550
iter 100 value 80.775126
final  value 80.775126 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 123.492657 
iter  10 value 94.678775
iter  20 value 86.074579
iter  30 value 84.121695
iter  40 value 82.944085
iter  50 value 81.307394
iter  60 value 80.181961
iter  70 value 79.636035
iter  80 value 79.382202
iter  90 value 79.093040
iter 100 value 79.063041
final  value 79.063041 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.379471 
final  value 94.485925 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.052631 
final  value 94.486027 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.302341 
iter  10 value 94.485850
iter  20 value 94.484225
iter  30 value 94.470459
iter  40 value 91.929370
iter  50 value 91.493138
iter  60 value 86.249923
iter  70 value 84.484616
iter  80 value 84.479639
iter  90 value 84.470918
final  value 84.470917 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.288213 
final  value 94.485892 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.939016 
final  value 94.485637 
converged
Fitting Repeat 1 

# weights:  305
initial  value 93.895214 
iter  10 value 80.716346
iter  20 value 80.693036
iter  30 value 80.440823
iter  40 value 80.410474
iter  50 value 80.399365
iter  60 value 80.394847
iter  70 value 80.355309
iter  80 value 80.354955
final  value 80.353973 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.201630 
iter  10 value 94.488831
iter  20 value 94.074289
iter  30 value 84.488681
final  value 84.484174 
converged
Fitting Repeat 3 

# weights:  305
initial  value 108.776675 
iter  10 value 94.488967
iter  20 value 94.405745
iter  30 value 92.786263
final  value 92.786182 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.319286 
iter  10 value 94.489061
iter  20 value 94.402961
iter  30 value 91.459388
iter  40 value 91.156967
iter  50 value 91.154295
final  value 91.154219 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.815519 
iter  10 value 91.949555
iter  20 value 91.416475
iter  30 value 91.415253
iter  40 value 91.415013
iter  50 value 91.327585
final  value 91.327336 
converged
Fitting Repeat 1 

# weights:  507
initial  value 128.338720 
iter  10 value 94.416945
iter  20 value 94.411082
final  value 94.408674 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.680144 
iter  10 value 94.474900
iter  20 value 91.721663
iter  30 value 84.482762
final  value 84.482759 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.436819 
iter  10 value 94.492114
iter  20 value 94.436759
iter  30 value 94.355378
iter  40 value 81.770228
iter  50 value 81.491708
iter  60 value 80.794027
iter  70 value 80.728416
iter  80 value 80.636937
iter  90 value 79.499170
iter 100 value 78.875780
final  value 78.875780 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.709157 
iter  10 value 94.474593
iter  20 value 94.473159
iter  30 value 94.470597
iter  40 value 94.466752
iter  50 value 94.427727
iter  60 value 84.522858
iter  70 value 84.470349
iter  80 value 84.468637
iter  90 value 80.700494
iter 100 value 80.691850
final  value 80.691850 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 101.070792 
iter  10 value 93.512347
iter  20 value 86.943923
iter  30 value 86.553116
iter  40 value 86.542060
iter  50 value 85.522946
iter  60 value 85.060288
iter  70 value 84.596734
iter  80 value 84.501640
iter  90 value 84.492412
iter 100 value 83.467619
final  value 83.467619 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.909180 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.195114 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.757383 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.872714 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.355506 
final  value 94.275362 
converged
Fitting Repeat 1 

# weights:  305
initial  value 108.859720 
final  value 94.275362 
converged
Fitting Repeat 2 

# weights:  305
initial  value 113.855172 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 3 

# weights:  305
initial  value 100.775116 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.126101 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.521895 
iter  10 value 94.484288
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 107.939838 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 104.037973 
iter  10 value 90.330248
iter  20 value 86.114846
iter  30 value 85.873475
iter  40 value 85.843752
final  value 85.843638 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.532720 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.973558 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.755167 
iter  10 value 90.006312
iter  20 value 88.652803
iter  30 value 88.541571
iter  40 value 88.541405
iter  40 value 88.541405
iter  40 value 88.541405
final  value 88.541405 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.796351 
iter  10 value 94.487178
iter  20 value 92.578989
iter  30 value 91.296707
iter  40 value 90.130748
iter  50 value 89.889671
iter  60 value 81.994112
iter  70 value 80.910898
iter  80 value 80.495257
final  value 80.495026 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.827380 
iter  10 value 94.437725
iter  20 value 90.347657
iter  30 value 87.458286
iter  40 value 86.002227
iter  50 value 84.428762
iter  60 value 83.594985
iter  70 value 83.543263
iter  80 value 83.512439
final  value 83.512432 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.402851 
iter  10 value 94.091078
iter  20 value 86.622599
iter  30 value 86.070758
iter  40 value 84.007059
iter  50 value 83.044439
iter  60 value 82.491112
iter  70 value 80.914192
iter  80 value 80.503743
iter  90 value 80.498454
iter 100 value 80.495756
final  value 80.495756 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 98.537422 
iter  10 value 94.493298
iter  20 value 88.804290
iter  30 value 85.512018
iter  40 value 84.296181
iter  50 value 83.643391
iter  60 value 81.207457
iter  70 value 80.591366
iter  80 value 80.293469
final  value 80.292846 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.170908 
iter  10 value 94.474423
iter  20 value 90.861535
iter  30 value 88.663559
iter  40 value 84.704494
iter  50 value 82.863451
iter  60 value 81.831990
iter  70 value 80.873071
iter  80 value 80.486794
iter  90 value 80.343410
final  value 80.292846 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.320279 
iter  10 value 94.479625
iter  20 value 93.877150
iter  30 value 93.776292
iter  40 value 89.706891
iter  50 value 85.217885
iter  60 value 83.808241
iter  70 value 83.196302
iter  80 value 82.613085
iter  90 value 80.473540
iter 100 value 79.640873
final  value 79.640873 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.945528 
iter  10 value 94.750685
iter  20 value 93.883056
iter  30 value 93.654534
iter  40 value 89.038877
iter  50 value 83.347115
iter  60 value 82.377793
iter  70 value 81.462052
iter  80 value 80.795278
iter  90 value 79.471820
iter 100 value 79.307663
final  value 79.307663 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.551468 
iter  10 value 94.670779
iter  20 value 92.511136
iter  30 value 91.833759
iter  40 value 86.320564
iter  50 value 85.714835
iter  60 value 84.511332
iter  70 value 84.229007
iter  80 value 82.046511
iter  90 value 81.623902
iter 100 value 80.845646
final  value 80.845646 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 109.441164 
iter  10 value 94.967128
iter  20 value 91.681397
iter  30 value 86.908383
iter  40 value 85.484444
iter  50 value 83.602975
iter  60 value 82.000988
iter  70 value 79.794562
iter  80 value 79.245375
iter  90 value 79.006614
iter 100 value 78.653878
final  value 78.653878 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.311824 
iter  10 value 94.448848
iter  20 value 89.219893
iter  30 value 88.324235
iter  40 value 86.967923
iter  50 value 83.287861
iter  60 value 82.387724
iter  70 value 81.871810
iter  80 value 81.323986
iter  90 value 80.097703
iter 100 value 78.757081
final  value 78.757081 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 118.739938 
iter  10 value 94.563982
iter  20 value 86.852042
iter  30 value 85.136362
iter  40 value 84.566249
iter  50 value 83.604513
iter  60 value 81.870469
iter  70 value 81.017556
iter  80 value 80.089744
iter  90 value 79.846433
iter 100 value 79.625466
final  value 79.625466 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 103.747564 
iter  10 value 100.915851
iter  20 value 94.361617
iter  30 value 92.947587
iter  40 value 92.312341
iter  50 value 91.967892
iter  60 value 91.653711
iter  70 value 91.065069
iter  80 value 90.926734
iter  90 value 90.614126
iter 100 value 84.256204
final  value 84.256204 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 124.959209 
iter  10 value 93.621983
iter  20 value 91.468472
iter  30 value 85.238181
iter  40 value 83.532916
iter  50 value 81.317558
iter  60 value 81.170664
iter  70 value 80.429829
iter  80 value 79.437894
iter  90 value 79.179889
iter 100 value 79.132799
final  value 79.132799 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 142.845162 
iter  10 value 95.725936
iter  20 value 94.440360
iter  30 value 87.145188
iter  40 value 85.806112
iter  50 value 84.482471
iter  60 value 83.255990
iter  70 value 79.968094
iter  80 value 78.994672
iter  90 value 78.593601
iter 100 value 78.476652
final  value 78.476652 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.163755 
iter  10 value 94.096572
iter  20 value 84.965631
iter  30 value 84.598758
iter  40 value 81.380785
iter  50 value 80.110719
iter  60 value 79.683019
iter  70 value 79.136255
iter  80 value 79.045938
iter  90 value 78.917454
iter 100 value 78.842454
final  value 78.842454 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.460134 
final  value 94.485869 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.623878 
iter  10 value 94.012134
iter  20 value 93.924738
iter  30 value 93.923994
final  value 93.922815 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.976095 
final  value 94.485851 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.705378 
final  value 94.276940 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.774732 
iter  10 value 94.485964
iter  20 value 94.484232
iter  30 value 94.275499
iter  30 value 94.275499
iter  30 value 94.275499
final  value 94.275499 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.665339 
iter  10 value 94.488386
iter  20 value 94.166785
iter  30 value 93.788503
iter  40 value 93.776873
iter  50 value 93.708049
iter  60 value 93.707565
final  value 93.707536 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.218097 
iter  10 value 94.280863
iter  20 value 94.277596
iter  30 value 94.274772
iter  40 value 88.164107
iter  50 value 86.968710
iter  60 value 86.962230
iter  70 value 85.922410
iter  80 value 85.704751
iter  90 value 85.702890
iter 100 value 85.701919
final  value 85.701919 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.811265 
iter  10 value 94.489459
iter  20 value 94.279183
iter  30 value 87.852477
iter  40 value 85.280084
iter  50 value 85.033201
final  value 85.032975 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.991840 
iter  10 value 94.488921
iter  20 value 94.321395
final  value 93.788643 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.221152 
iter  10 value 94.489109
iter  20 value 94.462006
iter  30 value 94.323250
iter  40 value 92.554613
iter  50 value 88.251106
iter  60 value 87.194199
iter  60 value 87.194198
iter  60 value 87.194198
final  value 87.194198 
converged
Fitting Repeat 1 

# weights:  507
initial  value 94.461594 
iter  10 value 85.517629
iter  20 value 84.081143
iter  30 value 84.077416
iter  40 value 84.076746
iter  50 value 84.075490
iter  60 value 84.075002
final  value 84.074846 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.592406 
iter  10 value 94.341261
iter  20 value 94.101129
iter  30 value 88.804605
iter  40 value 82.345649
iter  50 value 82.323135
iter  60 value 82.298070
iter  70 value 81.694469
iter  80 value 81.595728
iter  90 value 80.199653
iter 100 value 79.075677
final  value 79.075677 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.641939 
iter  10 value 94.492826
iter  20 value 94.484692
iter  30 value 94.279983
iter  40 value 94.276036
iter  50 value 94.269383
iter  60 value 93.790878
iter  70 value 93.788905
iter  80 value 93.788764
iter  90 value 93.762996
iter 100 value 93.675047
final  value 93.675047 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 96.750324 
iter  10 value 94.283537
iter  20 value 93.740782
iter  30 value 84.947702
iter  40 value 82.986658
iter  50 value 82.743042
iter  60 value 82.733261
final  value 82.733245 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.755959 
iter  10 value 94.320517
iter  20 value 91.799770
iter  30 value 87.992395
iter  40 value 87.296354
iter  50 value 86.766473
iter  60 value 85.073765
iter  70 value 82.041168
iter  80 value 81.577795
iter  90 value 80.868395
iter 100 value 79.526987
final  value 79.526987 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.946394 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.983331 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.360687 
final  value 93.836066 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.636107 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.068676 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.555443 
final  value 93.836066 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.645437 
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  305
initial  value 113.011182 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.109522 
iter  10 value 94.054253
iter  20 value 94.052911
iter  20 value 94.052911
iter  20 value 94.052911
final  value 94.052911 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.525642 
final  value 93.836066 
converged
Fitting Repeat 1 

# weights:  507
initial  value 109.462278 
iter  10 value 94.095683
iter  20 value 84.857601
iter  30 value 84.674353
iter  40 value 84.578285
final  value 84.578275 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.152064 
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.400044 
final  value 93.836066 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.440761 
final  value 93.836066 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.481337 
iter  10 value 94.055756
iter  20 value 94.052777
iter  30 value 93.852953
final  value 93.836066 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.806594 
iter  10 value 94.005084
iter  20 value 89.283984
iter  30 value 86.528136
iter  40 value 84.354229
iter  50 value 83.679361
iter  60 value 82.640555
iter  70 value 82.225109
iter  80 value 82.043068
iter  90 value 82.042004
final  value 82.041938 
converged
Fitting Repeat 2 

# weights:  103
initial  value 106.129291 
iter  10 value 93.938120
iter  20 value 86.438573
iter  30 value 82.555933
iter  40 value 80.574397
iter  50 value 79.883728
iter  60 value 79.697479
iter  70 value 79.634017
iter  80 value 79.596235
final  value 79.596234 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.491652 
iter  10 value 93.963475
iter  20 value 89.148341
iter  30 value 88.015335
iter  40 value 84.958840
iter  50 value 84.242889
iter  60 value 83.026084
iter  70 value 82.654223
iter  80 value 82.381974
iter  90 value 82.347915
iter 100 value 80.126196
final  value 80.126196 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 113.717014 
iter  10 value 93.889032
iter  20 value 91.088584
iter  30 value 85.863528
iter  40 value 85.543848
iter  50 value 85.499387
iter  60 value 85.404780
iter  70 value 83.108319
iter  80 value 83.010872
iter  90 value 83.006265
iter 100 value 83.005426
final  value 83.005426 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 97.083275 
iter  10 value 94.063588
iter  20 value 94.036570
iter  30 value 92.026701
iter  40 value 91.558436
iter  50 value 91.495355
iter  60 value 83.992149
iter  70 value 83.534468
iter  80 value 83.250704
iter  90 value 83.029393
iter 100 value 83.010388
final  value 83.010388 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 104.383510 
iter  10 value 94.024341
iter  20 value 90.582345
iter  30 value 86.984487
iter  40 value 83.404807
iter  50 value 83.121772
iter  60 value 83.053326
iter  70 value 83.016129
iter  80 value 82.904330
iter  90 value 82.394993
iter 100 value 79.831248
final  value 79.831248 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.213902 
iter  10 value 93.467823
iter  20 value 87.124502
iter  30 value 83.792243
iter  40 value 83.187985
iter  50 value 82.872249
iter  60 value 82.399493
iter  70 value 79.452872
iter  80 value 78.359123
iter  90 value 78.182927
iter 100 value 78.000629
final  value 78.000629 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 129.134396 
iter  10 value 95.598630
iter  20 value 91.938417
iter  30 value 88.837599
iter  40 value 88.717847
iter  50 value 87.599985
iter  60 value 82.095410
iter  70 value 81.387091
iter  80 value 80.988115
iter  90 value 80.690138
iter 100 value 80.426070
final  value 80.426070 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.777994 
iter  10 value 94.079175
iter  20 value 93.908018
iter  30 value 85.276542
iter  40 value 84.721700
iter  50 value 84.024269
iter  60 value 83.430499
iter  70 value 83.147508
iter  80 value 82.854302
iter  90 value 82.748140
iter 100 value 82.546828
final  value 82.546828 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.031017 
iter  10 value 94.151140
iter  20 value 86.300222
iter  30 value 85.408668
iter  40 value 84.845112
iter  50 value 83.723921
iter  60 value 82.802115
iter  70 value 82.675371
iter  80 value 82.613927
iter  90 value 82.608462
iter 100 value 82.426107
final  value 82.426107 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 121.134327 
iter  10 value 94.443697
iter  20 value 94.058666
iter  30 value 93.397880
iter  40 value 89.245072
iter  50 value 84.614379
iter  60 value 82.616953
iter  70 value 81.571815
iter  80 value 81.048131
iter  90 value 78.741257
iter 100 value 77.735241
final  value 77.735241 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.497512 
iter  10 value 93.071987
iter  20 value 89.704340
iter  30 value 86.327937
iter  40 value 83.559180
iter  50 value 81.112396
iter  60 value 79.961317
iter  70 value 79.586700
iter  80 value 79.387090
iter  90 value 79.330477
iter 100 value 79.274872
final  value 79.274872 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.380334 
iter  10 value 94.199323
iter  20 value 94.057432
iter  30 value 90.855395
iter  40 value 83.608928
iter  50 value 82.010932
iter  60 value 80.782824
iter  70 value 78.972156
iter  80 value 78.715217
iter  90 value 78.463519
iter 100 value 78.209180
final  value 78.209180 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.826919 
iter  10 value 94.184939
iter  20 value 86.762718
iter  30 value 84.128460
iter  40 value 82.040023
iter  50 value 79.493343
iter  60 value 79.031128
iter  70 value 78.625893
iter  80 value 78.375900
iter  90 value 78.213399
iter 100 value 78.177484
final  value 78.177484 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.336398 
iter  10 value 92.477555
iter  20 value 84.140969
iter  30 value 82.962921
iter  40 value 82.759737
iter  50 value 82.375553
iter  60 value 82.093577
iter  70 value 81.670389
iter  80 value 81.235770
iter  90 value 81.068220
iter 100 value 80.907739
final  value 80.907739 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.881003 
iter  10 value 91.508804
iter  20 value 83.668812
iter  30 value 83.636498
iter  40 value 83.635817
final  value 83.635072 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.542551 
final  value 94.054344 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.721594 
iter  10 value 94.054645
iter  20 value 94.052950
final  value 93.836280 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.365023 
iter  10 value 93.811961
iter  20 value 93.807882
final  value 93.807262 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.416892 
final  value 94.054542 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.490918 
iter  10 value 94.057597
iter  20 value 93.707537
iter  30 value 84.722831
iter  40 value 84.651999
iter  50 value 83.652037
iter  60 value 83.257861
iter  70 value 83.255137
iter  80 value 83.182583
iter  90 value 78.683238
iter 100 value 78.656738
final  value 78.656738 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.295638 
iter  10 value 84.138820
iter  20 value 83.636562
iter  30 value 83.634674
iter  40 value 83.619131
iter  50 value 83.485940
iter  60 value 83.452954
final  value 83.452410 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.088686 
iter  10 value 94.057661
iter  20 value 92.458361
iter  30 value 83.978436
iter  40 value 80.584391
iter  50 value 78.845437
iter  60 value 78.781847
final  value 78.781725 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.775010 
iter  10 value 93.840988
iter  20 value 92.791331
iter  30 value 85.435166
iter  40 value 80.720622
iter  50 value 79.788166
iter  60 value 79.594916
iter  70 value 79.583932
iter  80 value 79.582140
iter  90 value 79.578441
iter 100 value 79.559375
final  value 79.559375 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 112.871090 
iter  10 value 93.840958
iter  20 value 93.836443
iter  30 value 93.810464
iter  40 value 92.645748
iter  50 value 86.918197
iter  60 value 79.752836
iter  70 value 78.500659
iter  80 value 78.426484
iter  90 value 78.426144
iter 100 value 78.422275
final  value 78.422275 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 100.690687 
iter  10 value 93.844690
iter  20 value 93.837043
iter  30 value 92.089317
iter  40 value 81.428841
iter  50 value 80.995784
iter  50 value 80.995784
final  value 80.995784 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.886699 
iter  10 value 93.806136
iter  20 value 93.781758
iter  30 value 93.779033
iter  40 value 93.772154
final  value 93.771377 
converged
Fitting Repeat 3 

# weights:  507
initial  value 114.084740 
iter  10 value 92.951953
iter  20 value 92.579378
iter  30 value 90.820525
iter  40 value 90.795751
iter  50 value 90.777419
iter  60 value 90.746790
iter  70 value 89.195236
iter  80 value 88.605378
iter  90 value 88.597908
iter 100 value 88.553954
final  value 88.553954 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 113.362551 
iter  10 value 94.061287
iter  20 value 93.945460
iter  30 value 83.449183
iter  40 value 79.172377
iter  50 value 76.702245
iter  60 value 76.389453
iter  70 value 76.071436
iter  80 value 75.873779
iter  90 value 75.853380
iter 100 value 75.852837
final  value 75.852837 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 133.969884 
iter  10 value 94.061112
iter  20 value 94.052095
iter  30 value 85.923902
iter  40 value 83.197861
iter  50 value 80.268435
iter  60 value 78.754305
iter  70 value 78.517552
iter  80 value 78.372792
iter  90 value 77.768859
iter 100 value 76.642219
final  value 76.642219 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.651581 
iter  10 value 94.192095
iter  20 value 89.898921
iter  30 value 89.878316
final  value 89.878271 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.915213 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.749020 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.467251 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.326428 
iter  10 value 93.939237
final  value 93.939206 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.416792 
iter  10 value 93.975471
iter  20 value 92.343237
iter  30 value 92.121637
iter  30 value 92.121637
iter  30 value 92.121637
final  value 92.121637 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.531612 
final  value 94.467391 
converged
Fitting Repeat 3 

# weights:  305
initial  value 110.235031 
final  value 94.484209 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.353300 
iter  10 value 94.472273
iter  10 value 94.472273
iter  10 value 94.472273
final  value 94.472273 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.886621 
final  value 94.467391 
converged
Fitting Repeat 1 

# weights:  507
initial  value 113.989062 
final  value 94.467391 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.503683 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.944858 
iter  10 value 94.484591
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.128851 
final  value 94.467391 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.151503 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.451530 
iter  10 value 94.411368
iter  20 value 89.374328
iter  30 value 86.161685
iter  40 value 84.209585
iter  50 value 84.010049
iter  60 value 83.883642
iter  70 value 83.206516
iter  80 value 82.638276
iter  90 value 82.603874
final  value 82.603870 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.332428 
iter  10 value 94.488545
iter  20 value 94.452624
iter  30 value 89.995034
iter  40 value 88.870691
iter  50 value 88.479972
iter  60 value 85.444412
iter  70 value 85.093310
iter  80 value 84.694828
iter  90 value 84.663737
final  value 84.663315 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.438512 
iter  10 value 94.191787
iter  20 value 86.720628
iter  30 value 85.762157
iter  40 value 85.210906
iter  50 value 85.032549
iter  60 value 84.994536
final  value 84.994447 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.165311 
iter  10 value 93.260555
iter  20 value 90.574700
iter  30 value 88.310825
iter  40 value 87.418811
iter  50 value 86.349741
iter  60 value 85.237793
iter  70 value 82.852228
iter  80 value 82.622328
iter  90 value 82.608095
final  value 82.603869 
converged
Fitting Repeat 5 

# weights:  103
initial  value 113.623842 
iter  10 value 93.597234
iter  20 value 86.498100
iter  30 value 85.665562
iter  40 value 85.513228
iter  50 value 85.466720
final  value 85.465101 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.590714 
iter  10 value 94.501353
iter  20 value 94.425873
iter  30 value 93.655712
iter  40 value 89.907704
iter  50 value 87.282291
iter  60 value 85.722177
iter  70 value 83.012218
iter  80 value 82.507553
iter  90 value 82.023541
iter 100 value 81.645235
final  value 81.645235 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.440233 
iter  10 value 94.616340
iter  20 value 91.389901
iter  30 value 89.953685
iter  40 value 88.891716
iter  50 value 86.253746
iter  60 value 85.562144
iter  70 value 85.465161
iter  80 value 84.729145
iter  90 value 84.387599
iter 100 value 84.382583
final  value 84.382583 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.680988 
iter  10 value 94.493912
iter  20 value 93.845953
iter  30 value 90.071829
iter  40 value 87.552682
iter  50 value 86.378145
iter  60 value 84.891765
iter  70 value 84.254390
iter  80 value 83.098914
iter  90 value 82.266545
iter 100 value 81.875045
final  value 81.875045 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.488667 
iter  10 value 94.547605
iter  20 value 90.876669
iter  30 value 86.329281
iter  40 value 85.345450
iter  50 value 84.967217
iter  60 value 84.591884
iter  70 value 83.628741
iter  80 value 83.083846
iter  90 value 82.671648
iter 100 value 82.244284
final  value 82.244284 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.770447 
iter  10 value 95.032494
iter  20 value 94.484820
iter  30 value 92.738190
iter  40 value 92.328182
iter  50 value 92.085341
iter  60 value 91.673010
iter  70 value 86.942794
iter  80 value 85.506214
iter  90 value 83.870204
iter 100 value 83.280121
final  value 83.280121 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.914919 
iter  10 value 94.875828
iter  20 value 87.027736
iter  30 value 83.527925
iter  40 value 82.876367
iter  50 value 81.738387
iter  60 value 81.606202
iter  70 value 81.478146
iter  80 value 81.292743
iter  90 value 81.192457
iter 100 value 81.012467
final  value 81.012467 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.023129 
iter  10 value 95.730299
iter  20 value 94.501860
iter  30 value 89.147610
iter  40 value 85.521386
iter  50 value 83.272802
iter  60 value 82.714394
iter  70 value 82.248094
iter  80 value 81.847284
iter  90 value 81.616492
iter 100 value 81.233375
final  value 81.233375 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 125.742164 
iter  10 value 94.707939
iter  20 value 93.856399
iter  30 value 93.220000
iter  40 value 92.074350
iter  50 value 91.612227
iter  60 value 91.262667
iter  70 value 86.966654
iter  80 value 85.000928
iter  90 value 84.155196
iter 100 value 82.861153
final  value 82.861153 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 125.084674 
iter  10 value 95.692591
iter  20 value 94.763033
iter  30 value 92.347558
iter  40 value 89.808412
iter  50 value 89.133798
iter  60 value 83.592610
iter  70 value 82.351197
iter  80 value 81.941631
iter  90 value 81.753324
iter 100 value 81.644843
final  value 81.644843 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 125.460455 
iter  10 value 94.286223
iter  20 value 92.290515
iter  30 value 92.182944
iter  40 value 92.120288
iter  50 value 92.059975
iter  60 value 86.166926
iter  70 value 84.514675
iter  80 value 83.319439
iter  90 value 82.178897
iter 100 value 82.076581
final  value 82.076581 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.639399 
final  value 94.485811 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.934726 
final  value 94.469274 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.271932 
final  value 94.486097 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.475951 
final  value 94.485937 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.321287 
final  value 94.468995 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.262893 
iter  10 value 94.487324
iter  20 value 94.413738
iter  30 value 88.187766
iter  40 value 87.227104
iter  50 value 86.572760
iter  60 value 86.545339
iter  70 value 86.542956
iter  80 value 86.528072
iter  90 value 86.154241
iter 100 value 85.137163
final  value 85.137163 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.083836 
iter  10 value 94.483961
iter  20 value 94.467673
final  value 94.467539 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.305039 
iter  10 value 93.937706
iter  20 value 93.905582
iter  30 value 93.902588
iter  40 value 93.853273
iter  50 value 93.843828
iter  60 value 92.478463
iter  70 value 92.235380
iter  80 value 92.222403
final  value 92.222362 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.826934 
iter  10 value 94.088834
iter  20 value 93.564399
iter  30 value 88.562354
iter  40 value 88.558177
iter  50 value 87.556063
final  value 86.952581 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.719278 
iter  10 value 94.489058
iter  20 value 94.478383
iter  30 value 93.281907
iter  40 value 93.136482
iter  50 value 93.136434
iter  60 value 93.129265
final  value 93.129263 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.795353 
iter  10 value 94.492233
iter  20 value 91.349851
iter  30 value 87.315012
iter  40 value 82.476176
iter  50 value 81.319654
iter  60 value 80.979790
iter  70 value 80.717417
iter  80 value 80.681043
iter  90 value 80.659170
iter 100 value 80.482560
final  value 80.482560 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 98.633144 
iter  10 value 94.492423
iter  20 value 94.475845
iter  30 value 91.003813
iter  40 value 89.562782
iter  50 value 88.456322
iter  60 value 86.628413
final  value 86.621264 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.206820 
iter  10 value 94.491885
iter  20 value 94.126422
iter  30 value 87.919881
iter  40 value 87.030987
iter  50 value 85.879856
iter  60 value 85.539781
iter  70 value 82.898780
iter  80 value 82.747235
iter  90 value 82.740197
iter 100 value 82.694652
final  value 82.694652 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 101.345114 
iter  10 value 94.492707
iter  20 value 94.439307
iter  30 value 93.438541
iter  40 value 89.607832
iter  50 value 86.031091
iter  60 value 85.930000
iter  70 value 83.806944
iter  80 value 83.475802
iter  90 value 83.365218
iter 100 value 82.468279
final  value 82.468279 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.074516 
iter  10 value 94.475576
iter  20 value 94.463845
iter  30 value 92.401787
iter  40 value 92.136163
iter  50 value 92.135707
final  value 92.135694 
converged
Fitting Repeat 1 

# weights:  103
initial  value 94.835944 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.241592 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.151979 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.749871 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.068078 
final  value 93.582418 
converged
Fitting Repeat 1 

# weights:  305
initial  value 93.990645 
final  value 92.142857 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.217251 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.720757 
final  value 93.582418 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.534341 
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  305
initial  value 115.716154 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.513565 
final  value 93.582418 
converged
Fitting Repeat 2 

# weights:  507
initial  value 100.441700 
iter  10 value 93.486191
iter  20 value 92.676015
iter  30 value 92.669560
final  value 92.669553 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.697632 
final  value 93.582418 
converged
Fitting Repeat 4 

# weights:  507
initial  value 107.415237 
iter  10 value 93.582418
iter  10 value 93.582418
iter  10 value 93.582418
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.420492 
final  value 92.861582 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.407864 
iter  10 value 94.046964
iter  20 value 93.337122
iter  30 value 93.238950
iter  40 value 92.709806
iter  50 value 89.147727
iter  60 value 87.603146
iter  70 value 87.051694
iter  80 value 86.566709
iter  90 value 85.447749
iter 100 value 84.615655
final  value 84.615655 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 97.258388 
iter  10 value 93.992411
iter  20 value 90.637524
iter  30 value 89.581859
iter  40 value 88.797446
iter  50 value 88.138833
iter  60 value 88.048300
iter  70 value 85.758374
iter  80 value 84.727918
iter  90 value 84.528117
final  value 84.527940 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.990665 
iter  10 value 94.055002
iter  20 value 90.648413
iter  30 value 88.317003
iter  40 value 87.180511
iter  50 value 86.702117
iter  60 value 85.261605
iter  70 value 84.607430
iter  80 value 84.562903
iter  90 value 84.545980
iter 100 value 84.527944
final  value 84.527944 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 103.088755 
iter  10 value 94.033443
iter  20 value 92.441674
iter  30 value 88.255312
iter  40 value 87.063783
iter  50 value 86.585714
iter  60 value 86.288506
iter  70 value 85.436647
iter  80 value 84.598602
iter  90 value 84.539303
iter 100 value 84.535469
final  value 84.535469 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 109.423605 
iter  10 value 93.954173
iter  20 value 92.135761
iter  30 value 88.063529
iter  40 value 87.634501
iter  50 value 86.997362
iter  60 value 86.939172
iter  70 value 86.509140
iter  80 value 86.294096
iter  90 value 85.157440
iter 100 value 84.538205
final  value 84.538205 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.218277 
iter  10 value 93.996385
iter  20 value 93.783730
iter  30 value 90.025847
iter  40 value 89.227565
iter  50 value 88.879399
iter  60 value 88.490426
iter  70 value 86.990032
iter  80 value 86.577474
iter  90 value 86.158660
iter 100 value 85.956882
final  value 85.956882 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.854075 
iter  10 value 93.979682
iter  20 value 92.859955
iter  30 value 88.423209
iter  40 value 86.457777
iter  50 value 85.090401
iter  60 value 84.302060
iter  70 value 84.065441
iter  80 value 83.924640
iter  90 value 83.801633
iter 100 value 83.624289
final  value 83.624289 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 102.644483 
iter  10 value 94.707983
iter  20 value 90.457023
iter  30 value 87.395525
iter  40 value 85.681266
iter  50 value 84.490512
iter  60 value 83.735676
iter  70 value 83.616479
iter  80 value 83.520373
iter  90 value 83.453384
iter 100 value 83.433920
final  value 83.433920 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.917536 
iter  10 value 94.284315
iter  20 value 93.074265
iter  30 value 91.098595
iter  40 value 87.719902
iter  50 value 86.412627
iter  60 value 84.695189
iter  70 value 84.155644
iter  80 value 83.970048
iter  90 value 83.754446
iter 100 value 83.694919
final  value 83.694919 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 110.671596 
iter  10 value 94.559375
iter  20 value 94.065426
iter  30 value 89.240590
iter  40 value 87.553155
iter  50 value 85.893584
iter  60 value 84.455047
iter  70 value 84.371387
iter  80 value 84.341236
iter  90 value 84.184755
iter 100 value 83.737330
final  value 83.737330 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 113.859511 
iter  10 value 93.781709
iter  20 value 89.431951
iter  30 value 88.151455
iter  40 value 85.512443
iter  50 value 84.935344
iter  60 value 84.836285
iter  70 value 84.230988
iter  80 value 83.838843
iter  90 value 83.608158
iter 100 value 83.521646
final  value 83.521646 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 119.729498 
iter  10 value 94.807811
iter  20 value 90.963234
iter  30 value 88.149676
iter  40 value 85.675417
iter  50 value 83.917986
iter  60 value 83.570365
iter  70 value 83.526830
iter  80 value 83.520846
iter  90 value 83.497941
iter 100 value 83.463748
final  value 83.463748 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.101859 
iter  10 value 94.053114
iter  20 value 88.432640
iter  30 value 87.630878
iter  40 value 85.910155
iter  50 value 84.678478
iter  60 value 84.076539
iter  70 value 83.968148
iter  80 value 83.771614
iter  90 value 83.593711
iter 100 value 83.487272
final  value 83.487272 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.403387 
iter  10 value 94.023105
iter  20 value 92.954373
iter  30 value 89.908084
iter  40 value 87.877880
iter  50 value 87.286425
iter  60 value 86.940431
iter  70 value 86.844278
iter  80 value 86.473207
iter  90 value 85.402900
iter 100 value 85.010460
final  value 85.010460 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 121.991239 
iter  10 value 94.078489
iter  20 value 93.429739
iter  30 value 92.301625
iter  40 value 91.619739
iter  50 value 90.257056
iter  60 value 87.168774
iter  70 value 86.067276
iter  80 value 85.752770
iter  90 value 84.588384
iter 100 value 83.986052
final  value 83.986052 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.278441 
final  value 94.054402 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.841599 
iter  10 value 94.054332
iter  20 value 94.052918
iter  30 value 87.488946
iter  40 value 87.241113
iter  50 value 87.025616
iter  60 value 86.270655
iter  70 value 86.120503
iter  80 value 86.074898
iter  80 value 86.074897
final  value 86.074897 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.868425 
final  value 94.054479 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.279845 
final  value 94.054689 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.287604 
iter  10 value 93.584015
iter  20 value 93.582886
iter  30 value 93.582567
iter  40 value 92.705605
iter  50 value 87.735526
iter  60 value 85.718477
iter  70 value 83.804196
iter  80 value 83.575755
iter  90 value 83.519893
iter 100 value 83.006061
final  value 83.006061 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 114.599258 
iter  10 value 93.587455
iter  20 value 93.584094
iter  30 value 93.582282
iter  40 value 90.072073
iter  50 value 88.166029
iter  60 value 88.117524
iter  70 value 88.114926
iter  80 value 88.006900
iter  90 value 87.986242
final  value 87.986189 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.389521 
iter  10 value 94.057534
iter  20 value 94.052907
iter  30 value 92.854412
iter  40 value 92.810660
iter  50 value 92.810090
iter  60 value 92.809610
iter  60 value 92.809609
final  value 92.809609 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.579348 
iter  10 value 88.587058
iter  20 value 88.356412
iter  30 value 88.312978
iter  40 value 88.311242
iter  50 value 88.310676
iter  60 value 88.309834
iter  70 value 88.308611
iter  80 value 88.308546
final  value 88.308542 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.000913 
iter  10 value 93.915518
iter  20 value 93.588868
iter  30 value 93.585108
iter  40 value 93.538268
iter  50 value 93.306065
iter  60 value 93.003551
final  value 92.819491 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.206717 
iter  10 value 93.116035
iter  20 value 92.864373
iter  30 value 92.857716
iter  40 value 92.821726
iter  50 value 92.819986
iter  60 value 92.809589
iter  60 value 92.809589
iter  60 value 92.809589
final  value 92.809589 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.419748 
iter  10 value 93.590554
iter  20 value 93.586373
iter  30 value 93.584671
iter  40 value 92.920386
iter  50 value 92.853816
iter  60 value 92.852355
final  value 92.852327 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.587802 
iter  10 value 93.571135
iter  20 value 93.567825
iter  30 value 93.559061
iter  40 value 92.791688
iter  50 value 92.612241
iter  60 value 92.447313
iter  70 value 92.444817
final  value 92.444446 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.598636 
iter  10 value 93.908000
iter  20 value 93.906363
iter  30 value 93.454791
final  value 93.452241 
converged
Fitting Repeat 4 

# weights:  507
initial  value 118.095678 
iter  10 value 93.593049
iter  20 value 93.586794
iter  30 value 93.585104
final  value 93.584895 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.637507 
iter  10 value 92.869863
iter  20 value 92.858467
iter  30 value 92.852448
iter  40 value 92.834022
iter  50 value 92.809571
final  value 92.809570 
converged
Fitting Repeat 1 

# weights:  305
initial  value 136.987953 
iter  10 value 117.954925
iter  20 value 111.636875
iter  30 value 107.764569
iter  40 value 106.745706
iter  50 value 106.575050
iter  60 value 106.482161
iter  70 value 105.909106
iter  80 value 104.321240
iter  90 value 103.923341
iter 100 value 103.754377
final  value 103.754377 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 125.574676 
iter  10 value 118.047914
iter  20 value 115.123533
iter  30 value 109.923064
iter  40 value 109.778237
iter  50 value 106.409140
iter  60 value 104.444653
iter  70 value 104.219575
iter  80 value 102.629507
iter  90 value 101.989607
iter 100 value 101.696852
final  value 101.696852 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 131.682367 
iter  10 value 117.832411
iter  20 value 116.992401
iter  30 value 112.397289
iter  40 value 106.020663
iter  50 value 103.681210
iter  60 value 103.003127
iter  70 value 102.868651
iter  80 value 102.498448
iter  90 value 101.886372
iter 100 value 101.714608
final  value 101.714608 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 123.815215 
iter  10 value 117.758400
iter  20 value 111.458785
iter  30 value 109.200757
iter  40 value 108.456459
iter  50 value 105.602193
iter  60 value 105.016370
iter  70 value 105.013764
iter  80 value 104.965768
iter  90 value 104.662725
iter 100 value 103.618677
final  value 103.618677 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 125.545262 
iter  10 value 117.867895
iter  20 value 109.180446
iter  30 value 107.333151
iter  40 value 106.721305
iter  50 value 106.038531
iter  60 value 105.366108
iter  70 value 103.523781
iter  80 value 102.996207
iter  90 value 102.796112
iter 100 value 102.563659
final  value 102.563659 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Mar 21 04:29:43 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 77.012   2.135 120.924 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod50.522 1.75154.687
FreqInteractors0.4730.0270.526
calculateAAC0.0700.0150.087
calculateAutocor0.8780.1151.034
calculateCTDC0.1460.0070.159
calculateCTDD1.2320.0351.382
calculateCTDT0.4370.0170.477
calculateCTriad0.7730.0430.872
calculateDC0.2500.0270.286
calculateF0.7040.0220.753
calculateKSAAP0.2810.0250.310
calculateQD_Sm3.5520.1793.898
calculateTC4.7250.4515.421
calculateTC_Sm0.5950.0450.672
corr_plot50.432 1.73755.343
enrichfindP 0.908 0.08613.554
enrichfind_hp0.1290.0281.114
enrichplot0.8270.0190.984
filter_missing_values0.0020.0000.003
getFASTA0.1230.0233.016
getHPI0.0010.0010.002
get_negativePPI0.0030.0010.004
get_positivePPI000
impute_missing_data0.0020.0010.003
plotPPI0.1360.0050.140
pred_ensembel25.270 0.47424.488
var_imp50.689 1.72157.319