Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-24 12:08 -0400 (Mon, 24 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4763 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4521 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4448 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4414 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-21 04:21:11 -0400 (Fri, 21 Mar 2025) |
EndedAt: 2025-03-21 04:29:58 -0400 (Fri, 21 Mar 2025) |
EllapsedTime: 526.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 50.689 1.721 57.319 FSmethod 50.522 1.751 54.687 corr_plot 50.432 1.737 55.343 pred_ensembel 25.270 0.474 24.488 calculateTC 4.725 0.451 5.421 enrichfindP 0.908 0.086 13.554 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 102.686740 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.070142 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.627767 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.156461 iter 10 value 88.959164 iter 20 value 86.868860 final value 86.866841 converged Fitting Repeat 5 # weights: 103 initial value 103.998422 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.765459 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 118.476911 iter 10 value 89.676191 iter 20 value 86.935374 iter 30 value 86.317320 final value 86.315313 converged Fitting Repeat 3 # weights: 305 initial value 101.993679 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 94.543522 final value 92.608648 converged Fitting Repeat 5 # weights: 305 initial value 98.884159 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.580628 final value 93.568966 converged Fitting Repeat 2 # weights: 507 initial value 96.254623 iter 10 value 94.484215 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.631478 iter 10 value 93.568979 iter 10 value 93.568979 final value 93.568970 converged Fitting Repeat 4 # weights: 507 initial value 112.429492 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 97.325303 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 102.879697 iter 10 value 94.459025 iter 20 value 91.496121 iter 30 value 89.230511 iter 40 value 83.463153 iter 50 value 82.645872 iter 60 value 81.967399 iter 70 value 81.889326 iter 80 value 81.884739 final value 81.884734 converged Fitting Repeat 2 # weights: 103 initial value 98.803550 iter 10 value 94.484407 iter 20 value 85.867766 iter 30 value 84.177305 iter 40 value 84.019083 iter 50 value 82.472398 iter 60 value 82.181398 iter 70 value 81.948311 iter 80 value 81.935462 iter 80 value 81.935462 iter 80 value 81.935462 final value 81.935462 converged Fitting Repeat 3 # weights: 103 initial value 108.949518 iter 10 value 94.507846 iter 20 value 94.391493 iter 30 value 94.304773 iter 40 value 92.524335 iter 50 value 85.981674 iter 60 value 85.429540 iter 70 value 81.724983 iter 80 value 81.617976 iter 90 value 81.535703 iter 100 value 81.483937 final value 81.483937 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.578558 iter 10 value 94.431695 iter 20 value 94.191466 iter 30 value 94.176666 iter 40 value 92.597745 iter 50 value 85.604948 iter 60 value 85.134732 iter 70 value 84.963858 iter 80 value 84.610411 iter 90 value 83.675391 iter 100 value 83.153092 final value 83.153092 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 107.986708 iter 10 value 94.489340 iter 20 value 94.296866 iter 30 value 94.265851 iter 40 value 85.474157 iter 50 value 85.123150 iter 60 value 84.512720 iter 70 value 81.788658 iter 80 value 81.143063 iter 90 value 80.348755 iter 100 value 80.230949 final value 80.230949 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.538449 iter 10 value 94.584117 iter 20 value 88.788208 iter 30 value 86.712662 iter 40 value 85.360207 iter 50 value 83.701676 iter 60 value 80.804888 iter 70 value 80.219534 iter 80 value 79.643635 iter 90 value 79.133467 iter 100 value 79.006824 final value 79.006824 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.516504 iter 10 value 94.682446 iter 20 value 82.470067 iter 30 value 81.660812 iter 40 value 81.579769 iter 50 value 81.501705 iter 60 value 81.476787 iter 70 value 81.153181 iter 80 value 80.444148 iter 90 value 80.252705 iter 100 value 80.202667 final value 80.202667 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.699483 iter 10 value 94.433970 iter 20 value 86.991728 iter 30 value 83.514996 iter 40 value 81.818546 iter 50 value 81.538192 iter 60 value 81.402951 iter 70 value 81.348997 iter 80 value 80.997659 iter 90 value 79.876083 iter 100 value 79.661596 final value 79.661596 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.349209 iter 10 value 96.221818 iter 20 value 86.680263 iter 30 value 84.904838 iter 40 value 82.215588 iter 50 value 81.822655 iter 60 value 81.670707 iter 70 value 81.370344 iter 80 value 79.360411 iter 90 value 79.122407 iter 100 value 78.980886 final value 78.980886 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.304524 iter 10 value 94.390350 iter 20 value 87.950005 iter 30 value 85.474407 iter 40 value 85.448782 iter 50 value 85.348833 iter 60 value 83.278252 iter 70 value 81.866021 iter 80 value 80.547143 iter 90 value 79.476677 iter 100 value 79.196311 final value 79.196311 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.528872 iter 10 value 94.794570 iter 20 value 94.366061 iter 30 value 92.210634 iter 40 value 86.732399 iter 50 value 85.921149 iter 60 value 84.913001 iter 70 value 84.473025 iter 80 value 83.058693 iter 90 value 81.892117 iter 100 value 80.150395 final value 80.150395 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.005525 iter 10 value 94.849654 iter 20 value 92.439915 iter 30 value 82.198708 iter 40 value 81.862460 iter 50 value 81.590303 iter 60 value 80.275822 iter 70 value 79.252598 iter 80 value 78.868254 iter 90 value 78.657036 iter 100 value 78.461013 final value 78.461013 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.188786 iter 10 value 96.357308 iter 20 value 94.094021 iter 30 value 91.026304 iter 40 value 85.001577 iter 50 value 81.934896 iter 60 value 81.685837 iter 70 value 81.402882 iter 80 value 81.279193 iter 90 value 81.260822 iter 100 value 81.132869 final value 81.132869 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.199507 iter 10 value 94.654025 iter 20 value 94.461585 iter 30 value 88.132477 iter 40 value 85.965142 iter 50 value 85.273351 iter 60 value 82.633465 iter 70 value 81.614554 iter 80 value 81.438872 iter 90 value 81.190550 iter 100 value 80.775126 final value 80.775126 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.492657 iter 10 value 94.678775 iter 20 value 86.074579 iter 30 value 84.121695 iter 40 value 82.944085 iter 50 value 81.307394 iter 60 value 80.181961 iter 70 value 79.636035 iter 80 value 79.382202 iter 90 value 79.093040 iter 100 value 79.063041 final value 79.063041 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.379471 final value 94.485925 converged Fitting Repeat 2 # weights: 103 initial value 97.052631 final value 94.486027 converged Fitting Repeat 3 # weights: 103 initial value 95.302341 iter 10 value 94.485850 iter 20 value 94.484225 iter 30 value 94.470459 iter 40 value 91.929370 iter 50 value 91.493138 iter 60 value 86.249923 iter 70 value 84.484616 iter 80 value 84.479639 iter 90 value 84.470918 final value 84.470917 converged Fitting Repeat 4 # weights: 103 initial value 95.288213 final value 94.485892 converged Fitting Repeat 5 # weights: 103 initial value 95.939016 final value 94.485637 converged Fitting Repeat 1 # weights: 305 initial value 93.895214 iter 10 value 80.716346 iter 20 value 80.693036 iter 30 value 80.440823 iter 40 value 80.410474 iter 50 value 80.399365 iter 60 value 80.394847 iter 70 value 80.355309 iter 80 value 80.354955 final value 80.353973 converged Fitting Repeat 2 # weights: 305 initial value 101.201630 iter 10 value 94.488831 iter 20 value 94.074289 iter 30 value 84.488681 final value 84.484174 converged Fitting Repeat 3 # weights: 305 initial value 108.776675 iter 10 value 94.488967 iter 20 value 94.405745 iter 30 value 92.786263 final value 92.786182 converged Fitting Repeat 4 # weights: 305 initial value 108.319286 iter 10 value 94.489061 iter 20 value 94.402961 iter 30 value 91.459388 iter 40 value 91.156967 iter 50 value 91.154295 final value 91.154219 converged Fitting Repeat 5 # weights: 305 initial value 96.815519 iter 10 value 91.949555 iter 20 value 91.416475 iter 30 value 91.415253 iter 40 value 91.415013 iter 50 value 91.327585 final value 91.327336 converged Fitting Repeat 1 # weights: 507 initial value 128.338720 iter 10 value 94.416945 iter 20 value 94.411082 final value 94.408674 converged Fitting Repeat 2 # weights: 507 initial value 110.680144 iter 10 value 94.474900 iter 20 value 91.721663 iter 30 value 84.482762 final value 84.482759 converged Fitting Repeat 3 # weights: 507 initial value 104.436819 iter 10 value 94.492114 iter 20 value 94.436759 iter 30 value 94.355378 iter 40 value 81.770228 iter 50 value 81.491708 iter 60 value 80.794027 iter 70 value 80.728416 iter 80 value 80.636937 iter 90 value 79.499170 iter 100 value 78.875780 final value 78.875780 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.709157 iter 10 value 94.474593 iter 20 value 94.473159 iter 30 value 94.470597 iter 40 value 94.466752 iter 50 value 94.427727 iter 60 value 84.522858 iter 70 value 84.470349 iter 80 value 84.468637 iter 90 value 80.700494 iter 100 value 80.691850 final value 80.691850 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 101.070792 iter 10 value 93.512347 iter 20 value 86.943923 iter 30 value 86.553116 iter 40 value 86.542060 iter 50 value 85.522946 iter 60 value 85.060288 iter 70 value 84.596734 iter 80 value 84.501640 iter 90 value 84.492412 iter 100 value 83.467619 final value 83.467619 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.909180 iter 10 value 94.275362 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 2 # weights: 103 initial value 103.195114 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.757383 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.872714 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.355506 final value 94.275362 converged Fitting Repeat 1 # weights: 305 initial value 108.859720 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 113.855172 iter 10 value 94.275362 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 3 # weights: 305 initial value 100.775116 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.126101 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 104.521895 iter 10 value 94.484288 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 107.939838 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.037973 iter 10 value 90.330248 iter 20 value 86.114846 iter 30 value 85.873475 iter 40 value 85.843752 final value 85.843638 converged Fitting Repeat 3 # weights: 507 initial value 97.532720 iter 10 value 94.275362 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 4 # weights: 507 initial value 98.973558 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.755167 iter 10 value 90.006312 iter 20 value 88.652803 iter 30 value 88.541571 iter 40 value 88.541405 iter 40 value 88.541405 iter 40 value 88.541405 final value 88.541405 converged Fitting Repeat 1 # weights: 103 initial value 102.796351 iter 10 value 94.487178 iter 20 value 92.578989 iter 30 value 91.296707 iter 40 value 90.130748 iter 50 value 89.889671 iter 60 value 81.994112 iter 70 value 80.910898 iter 80 value 80.495257 final value 80.495026 converged Fitting Repeat 2 # weights: 103 initial value 97.827380 iter 10 value 94.437725 iter 20 value 90.347657 iter 30 value 87.458286 iter 40 value 86.002227 iter 50 value 84.428762 iter 60 value 83.594985 iter 70 value 83.543263 iter 80 value 83.512439 final value 83.512432 converged Fitting Repeat 3 # weights: 103 initial value 105.402851 iter 10 value 94.091078 iter 20 value 86.622599 iter 30 value 86.070758 iter 40 value 84.007059 iter 50 value 83.044439 iter 60 value 82.491112 iter 70 value 80.914192 iter 80 value 80.503743 iter 90 value 80.498454 iter 100 value 80.495756 final value 80.495756 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.537422 iter 10 value 94.493298 iter 20 value 88.804290 iter 30 value 85.512018 iter 40 value 84.296181 iter 50 value 83.643391 iter 60 value 81.207457 iter 70 value 80.591366 iter 80 value 80.293469 final value 80.292846 converged Fitting Repeat 5 # weights: 103 initial value 96.170908 iter 10 value 94.474423 iter 20 value 90.861535 iter 30 value 88.663559 iter 40 value 84.704494 iter 50 value 82.863451 iter 60 value 81.831990 iter 70 value 80.873071 iter 80 value 80.486794 iter 90 value 80.343410 final value 80.292846 converged Fitting Repeat 1 # weights: 305 initial value 110.320279 iter 10 value 94.479625 iter 20 value 93.877150 iter 30 value 93.776292 iter 40 value 89.706891 iter 50 value 85.217885 iter 60 value 83.808241 iter 70 value 83.196302 iter 80 value 82.613085 iter 90 value 80.473540 iter 100 value 79.640873 final value 79.640873 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.945528 iter 10 value 94.750685 iter 20 value 93.883056 iter 30 value 93.654534 iter 40 value 89.038877 iter 50 value 83.347115 iter 60 value 82.377793 iter 70 value 81.462052 iter 80 value 80.795278 iter 90 value 79.471820 iter 100 value 79.307663 final value 79.307663 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.551468 iter 10 value 94.670779 iter 20 value 92.511136 iter 30 value 91.833759 iter 40 value 86.320564 iter 50 value 85.714835 iter 60 value 84.511332 iter 70 value 84.229007 iter 80 value 82.046511 iter 90 value 81.623902 iter 100 value 80.845646 final value 80.845646 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.441164 iter 10 value 94.967128 iter 20 value 91.681397 iter 30 value 86.908383 iter 40 value 85.484444 iter 50 value 83.602975 iter 60 value 82.000988 iter 70 value 79.794562 iter 80 value 79.245375 iter 90 value 79.006614 iter 100 value 78.653878 final value 78.653878 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.311824 iter 10 value 94.448848 iter 20 value 89.219893 iter 30 value 88.324235 iter 40 value 86.967923 iter 50 value 83.287861 iter 60 value 82.387724 iter 70 value 81.871810 iter 80 value 81.323986 iter 90 value 80.097703 iter 100 value 78.757081 final value 78.757081 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.739938 iter 10 value 94.563982 iter 20 value 86.852042 iter 30 value 85.136362 iter 40 value 84.566249 iter 50 value 83.604513 iter 60 value 81.870469 iter 70 value 81.017556 iter 80 value 80.089744 iter 90 value 79.846433 iter 100 value 79.625466 final value 79.625466 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.747564 iter 10 value 100.915851 iter 20 value 94.361617 iter 30 value 92.947587 iter 40 value 92.312341 iter 50 value 91.967892 iter 60 value 91.653711 iter 70 value 91.065069 iter 80 value 90.926734 iter 90 value 90.614126 iter 100 value 84.256204 final value 84.256204 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.959209 iter 10 value 93.621983 iter 20 value 91.468472 iter 30 value 85.238181 iter 40 value 83.532916 iter 50 value 81.317558 iter 60 value 81.170664 iter 70 value 80.429829 iter 80 value 79.437894 iter 90 value 79.179889 iter 100 value 79.132799 final value 79.132799 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 142.845162 iter 10 value 95.725936 iter 20 value 94.440360 iter 30 value 87.145188 iter 40 value 85.806112 iter 50 value 84.482471 iter 60 value 83.255990 iter 70 value 79.968094 iter 80 value 78.994672 iter 90 value 78.593601 iter 100 value 78.476652 final value 78.476652 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.163755 iter 10 value 94.096572 iter 20 value 84.965631 iter 30 value 84.598758 iter 40 value 81.380785 iter 50 value 80.110719 iter 60 value 79.683019 iter 70 value 79.136255 iter 80 value 79.045938 iter 90 value 78.917454 iter 100 value 78.842454 final value 78.842454 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.460134 final value 94.485869 converged Fitting Repeat 2 # weights: 103 initial value 106.623878 iter 10 value 94.012134 iter 20 value 93.924738 iter 30 value 93.923994 final value 93.922815 converged Fitting Repeat 3 # weights: 103 initial value 94.976095 final value 94.485851 converged Fitting Repeat 4 # weights: 103 initial value 96.705378 final value 94.276940 converged Fitting Repeat 5 # weights: 103 initial value 95.774732 iter 10 value 94.485964 iter 20 value 94.484232 iter 30 value 94.275499 iter 30 value 94.275499 iter 30 value 94.275499 final value 94.275499 converged Fitting Repeat 1 # weights: 305 initial value 98.665339 iter 10 value 94.488386 iter 20 value 94.166785 iter 30 value 93.788503 iter 40 value 93.776873 iter 50 value 93.708049 iter 60 value 93.707565 final value 93.707536 converged Fitting Repeat 2 # weights: 305 initial value 103.218097 iter 10 value 94.280863 iter 20 value 94.277596 iter 30 value 94.274772 iter 40 value 88.164107 iter 50 value 86.968710 iter 60 value 86.962230 iter 70 value 85.922410 iter 80 value 85.704751 iter 90 value 85.702890 iter 100 value 85.701919 final value 85.701919 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.811265 iter 10 value 94.489459 iter 20 value 94.279183 iter 30 value 87.852477 iter 40 value 85.280084 iter 50 value 85.033201 final value 85.032975 converged Fitting Repeat 4 # weights: 305 initial value 100.991840 iter 10 value 94.488921 iter 20 value 94.321395 final value 93.788643 converged Fitting Repeat 5 # weights: 305 initial value 96.221152 iter 10 value 94.489109 iter 20 value 94.462006 iter 30 value 94.323250 iter 40 value 92.554613 iter 50 value 88.251106 iter 60 value 87.194199 iter 60 value 87.194198 iter 60 value 87.194198 final value 87.194198 converged Fitting Repeat 1 # weights: 507 initial value 94.461594 iter 10 value 85.517629 iter 20 value 84.081143 iter 30 value 84.077416 iter 40 value 84.076746 iter 50 value 84.075490 iter 60 value 84.075002 final value 84.074846 converged Fitting Repeat 2 # weights: 507 initial value 107.592406 iter 10 value 94.341261 iter 20 value 94.101129 iter 30 value 88.804605 iter 40 value 82.345649 iter 50 value 82.323135 iter 60 value 82.298070 iter 70 value 81.694469 iter 80 value 81.595728 iter 90 value 80.199653 iter 100 value 79.075677 final value 79.075677 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.641939 iter 10 value 94.492826 iter 20 value 94.484692 iter 30 value 94.279983 iter 40 value 94.276036 iter 50 value 94.269383 iter 60 value 93.790878 iter 70 value 93.788905 iter 80 value 93.788764 iter 90 value 93.762996 iter 100 value 93.675047 final value 93.675047 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.750324 iter 10 value 94.283537 iter 20 value 93.740782 iter 30 value 84.947702 iter 40 value 82.986658 iter 50 value 82.743042 iter 60 value 82.733261 final value 82.733245 converged Fitting Repeat 5 # weights: 507 initial value 104.755959 iter 10 value 94.320517 iter 20 value 91.799770 iter 30 value 87.992395 iter 40 value 87.296354 iter 50 value 86.766473 iter 60 value 85.073765 iter 70 value 82.041168 iter 80 value 81.577795 iter 90 value 80.868395 iter 100 value 79.526987 final value 79.526987 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.946394 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.983331 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.360687 final value 93.836066 converged Fitting Repeat 4 # weights: 103 initial value 99.636107 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 106.068676 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.555443 final value 93.836066 converged Fitting Repeat 2 # weights: 305 initial value 99.645437 final value 93.836066 converged Fitting Repeat 3 # weights: 305 initial value 113.011182 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 95.109522 iter 10 value 94.054253 iter 20 value 94.052911 iter 20 value 94.052911 iter 20 value 94.052911 final value 94.052911 converged Fitting Repeat 5 # weights: 305 initial value 96.525642 final value 93.836066 converged Fitting Repeat 1 # weights: 507 initial value 109.462278 iter 10 value 94.095683 iter 20 value 84.857601 iter 30 value 84.674353 iter 40 value 84.578285 final value 84.578275 converged Fitting Repeat 2 # weights: 507 initial value 107.152064 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 110.400044 final value 93.836066 converged Fitting Repeat 4 # weights: 507 initial value 103.440761 final value 93.836066 converged Fitting Repeat 5 # weights: 507 initial value 104.481337 iter 10 value 94.055756 iter 20 value 94.052777 iter 30 value 93.852953 final value 93.836066 converged Fitting Repeat 1 # weights: 103 initial value 97.806594 iter 10 value 94.005084 iter 20 value 89.283984 iter 30 value 86.528136 iter 40 value 84.354229 iter 50 value 83.679361 iter 60 value 82.640555 iter 70 value 82.225109 iter 80 value 82.043068 iter 90 value 82.042004 final value 82.041938 converged Fitting Repeat 2 # weights: 103 initial value 106.129291 iter 10 value 93.938120 iter 20 value 86.438573 iter 30 value 82.555933 iter 40 value 80.574397 iter 50 value 79.883728 iter 60 value 79.697479 iter 70 value 79.634017 iter 80 value 79.596235 final value 79.596234 converged Fitting Repeat 3 # weights: 103 initial value 105.491652 iter 10 value 93.963475 iter 20 value 89.148341 iter 30 value 88.015335 iter 40 value 84.958840 iter 50 value 84.242889 iter 60 value 83.026084 iter 70 value 82.654223 iter 80 value 82.381974 iter 90 value 82.347915 iter 100 value 80.126196 final value 80.126196 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 113.717014 iter 10 value 93.889032 iter 20 value 91.088584 iter 30 value 85.863528 iter 40 value 85.543848 iter 50 value 85.499387 iter 60 value 85.404780 iter 70 value 83.108319 iter 80 value 83.010872 iter 90 value 83.006265 iter 100 value 83.005426 final value 83.005426 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.083275 iter 10 value 94.063588 iter 20 value 94.036570 iter 30 value 92.026701 iter 40 value 91.558436 iter 50 value 91.495355 iter 60 value 83.992149 iter 70 value 83.534468 iter 80 value 83.250704 iter 90 value 83.029393 iter 100 value 83.010388 final value 83.010388 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.383510 iter 10 value 94.024341 iter 20 value 90.582345 iter 30 value 86.984487 iter 40 value 83.404807 iter 50 value 83.121772 iter 60 value 83.053326 iter 70 value 83.016129 iter 80 value 82.904330 iter 90 value 82.394993 iter 100 value 79.831248 final value 79.831248 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.213902 iter 10 value 93.467823 iter 20 value 87.124502 iter 30 value 83.792243 iter 40 value 83.187985 iter 50 value 82.872249 iter 60 value 82.399493 iter 70 value 79.452872 iter 80 value 78.359123 iter 90 value 78.182927 iter 100 value 78.000629 final value 78.000629 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 129.134396 iter 10 value 95.598630 iter 20 value 91.938417 iter 30 value 88.837599 iter 40 value 88.717847 iter 50 value 87.599985 iter 60 value 82.095410 iter 70 value 81.387091 iter 80 value 80.988115 iter 90 value 80.690138 iter 100 value 80.426070 final value 80.426070 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.777994 iter 10 value 94.079175 iter 20 value 93.908018 iter 30 value 85.276542 iter 40 value 84.721700 iter 50 value 84.024269 iter 60 value 83.430499 iter 70 value 83.147508 iter 80 value 82.854302 iter 90 value 82.748140 iter 100 value 82.546828 final value 82.546828 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.031017 iter 10 value 94.151140 iter 20 value 86.300222 iter 30 value 85.408668 iter 40 value 84.845112 iter 50 value 83.723921 iter 60 value 82.802115 iter 70 value 82.675371 iter 80 value 82.613927 iter 90 value 82.608462 iter 100 value 82.426107 final value 82.426107 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 121.134327 iter 10 value 94.443697 iter 20 value 94.058666 iter 30 value 93.397880 iter 40 value 89.245072 iter 50 value 84.614379 iter 60 value 82.616953 iter 70 value 81.571815 iter 80 value 81.048131 iter 90 value 78.741257 iter 100 value 77.735241 final value 77.735241 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.497512 iter 10 value 93.071987 iter 20 value 89.704340 iter 30 value 86.327937 iter 40 value 83.559180 iter 50 value 81.112396 iter 60 value 79.961317 iter 70 value 79.586700 iter 80 value 79.387090 iter 90 value 79.330477 iter 100 value 79.274872 final value 79.274872 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.380334 iter 10 value 94.199323 iter 20 value 94.057432 iter 30 value 90.855395 iter 40 value 83.608928 iter 50 value 82.010932 iter 60 value 80.782824 iter 70 value 78.972156 iter 80 value 78.715217 iter 90 value 78.463519 iter 100 value 78.209180 final value 78.209180 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.826919 iter 10 value 94.184939 iter 20 value 86.762718 iter 30 value 84.128460 iter 40 value 82.040023 iter 50 value 79.493343 iter 60 value 79.031128 iter 70 value 78.625893 iter 80 value 78.375900 iter 90 value 78.213399 iter 100 value 78.177484 final value 78.177484 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.336398 iter 10 value 92.477555 iter 20 value 84.140969 iter 30 value 82.962921 iter 40 value 82.759737 iter 50 value 82.375553 iter 60 value 82.093577 iter 70 value 81.670389 iter 80 value 81.235770 iter 90 value 81.068220 iter 100 value 80.907739 final value 80.907739 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.881003 iter 10 value 91.508804 iter 20 value 83.668812 iter 30 value 83.636498 iter 40 value 83.635817 final value 83.635072 converged Fitting Repeat 2 # weights: 103 initial value 96.542551 final value 94.054344 converged Fitting Repeat 3 # weights: 103 initial value 94.721594 iter 10 value 94.054645 iter 20 value 94.052950 final value 93.836280 converged Fitting Repeat 4 # weights: 103 initial value 94.365023 iter 10 value 93.811961 iter 20 value 93.807882 final value 93.807262 converged Fitting Repeat 5 # weights: 103 initial value 103.416892 final value 94.054542 converged Fitting Repeat 1 # weights: 305 initial value 95.490918 iter 10 value 94.057597 iter 20 value 93.707537 iter 30 value 84.722831 iter 40 value 84.651999 iter 50 value 83.652037 iter 60 value 83.257861 iter 70 value 83.255137 iter 80 value 83.182583 iter 90 value 78.683238 iter 100 value 78.656738 final value 78.656738 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.295638 iter 10 value 84.138820 iter 20 value 83.636562 iter 30 value 83.634674 iter 40 value 83.619131 iter 50 value 83.485940 iter 60 value 83.452954 final value 83.452410 converged Fitting Repeat 3 # weights: 305 initial value 106.088686 iter 10 value 94.057661 iter 20 value 92.458361 iter 30 value 83.978436 iter 40 value 80.584391 iter 50 value 78.845437 iter 60 value 78.781847 final value 78.781725 converged Fitting Repeat 4 # weights: 305 initial value 105.775010 iter 10 value 93.840988 iter 20 value 92.791331 iter 30 value 85.435166 iter 40 value 80.720622 iter 50 value 79.788166 iter 60 value 79.594916 iter 70 value 79.583932 iter 80 value 79.582140 iter 90 value 79.578441 iter 100 value 79.559375 final value 79.559375 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 112.871090 iter 10 value 93.840958 iter 20 value 93.836443 iter 30 value 93.810464 iter 40 value 92.645748 iter 50 value 86.918197 iter 60 value 79.752836 iter 70 value 78.500659 iter 80 value 78.426484 iter 90 value 78.426144 iter 100 value 78.422275 final value 78.422275 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.690687 iter 10 value 93.844690 iter 20 value 93.837043 iter 30 value 92.089317 iter 40 value 81.428841 iter 50 value 80.995784 iter 50 value 80.995784 final value 80.995784 converged Fitting Repeat 2 # weights: 507 initial value 101.886699 iter 10 value 93.806136 iter 20 value 93.781758 iter 30 value 93.779033 iter 40 value 93.772154 final value 93.771377 converged Fitting Repeat 3 # weights: 507 initial value 114.084740 iter 10 value 92.951953 iter 20 value 92.579378 iter 30 value 90.820525 iter 40 value 90.795751 iter 50 value 90.777419 iter 60 value 90.746790 iter 70 value 89.195236 iter 80 value 88.605378 iter 90 value 88.597908 iter 100 value 88.553954 final value 88.553954 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.362551 iter 10 value 94.061287 iter 20 value 93.945460 iter 30 value 83.449183 iter 40 value 79.172377 iter 50 value 76.702245 iter 60 value 76.389453 iter 70 value 76.071436 iter 80 value 75.873779 iter 90 value 75.853380 iter 100 value 75.852837 final value 75.852837 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 133.969884 iter 10 value 94.061112 iter 20 value 94.052095 iter 30 value 85.923902 iter 40 value 83.197861 iter 50 value 80.268435 iter 60 value 78.754305 iter 70 value 78.517552 iter 80 value 78.372792 iter 90 value 77.768859 iter 100 value 76.642219 final value 76.642219 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.651581 iter 10 value 94.192095 iter 20 value 89.898921 iter 30 value 89.878316 final value 89.878271 converged Fitting Repeat 2 # weights: 103 initial value 95.915213 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.749020 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.467251 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.326428 iter 10 value 93.939237 final value 93.939206 converged Fitting Repeat 1 # weights: 305 initial value 110.416792 iter 10 value 93.975471 iter 20 value 92.343237 iter 30 value 92.121637 iter 30 value 92.121637 iter 30 value 92.121637 final value 92.121637 converged Fitting Repeat 2 # weights: 305 initial value 100.531612 final value 94.467391 converged Fitting Repeat 3 # weights: 305 initial value 110.235031 final value 94.484209 converged Fitting Repeat 4 # weights: 305 initial value 103.353300 iter 10 value 94.472273 iter 10 value 94.472273 iter 10 value 94.472273 final value 94.472273 converged Fitting Repeat 5 # weights: 305 initial value 101.886621 final value 94.467391 converged Fitting Repeat 1 # weights: 507 initial value 113.989062 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 110.503683 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 95.944858 iter 10 value 94.484591 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 99.128851 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 107.151503 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 106.451530 iter 10 value 94.411368 iter 20 value 89.374328 iter 30 value 86.161685 iter 40 value 84.209585 iter 50 value 84.010049 iter 60 value 83.883642 iter 70 value 83.206516 iter 80 value 82.638276 iter 90 value 82.603874 final value 82.603870 converged Fitting Repeat 2 # weights: 103 initial value 103.332428 iter 10 value 94.488545 iter 20 value 94.452624 iter 30 value 89.995034 iter 40 value 88.870691 iter 50 value 88.479972 iter 60 value 85.444412 iter 70 value 85.093310 iter 80 value 84.694828 iter 90 value 84.663737 final value 84.663315 converged Fitting Repeat 3 # weights: 103 initial value 106.438512 iter 10 value 94.191787 iter 20 value 86.720628 iter 30 value 85.762157 iter 40 value 85.210906 iter 50 value 85.032549 iter 60 value 84.994536 final value 84.994447 converged Fitting Repeat 4 # weights: 103 initial value 98.165311 iter 10 value 93.260555 iter 20 value 90.574700 iter 30 value 88.310825 iter 40 value 87.418811 iter 50 value 86.349741 iter 60 value 85.237793 iter 70 value 82.852228 iter 80 value 82.622328 iter 90 value 82.608095 final value 82.603869 converged Fitting Repeat 5 # weights: 103 initial value 113.623842 iter 10 value 93.597234 iter 20 value 86.498100 iter 30 value 85.665562 iter 40 value 85.513228 iter 50 value 85.466720 final value 85.465101 converged Fitting Repeat 1 # weights: 305 initial value 102.590714 iter 10 value 94.501353 iter 20 value 94.425873 iter 30 value 93.655712 iter 40 value 89.907704 iter 50 value 87.282291 iter 60 value 85.722177 iter 70 value 83.012218 iter 80 value 82.507553 iter 90 value 82.023541 iter 100 value 81.645235 final value 81.645235 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.440233 iter 10 value 94.616340 iter 20 value 91.389901 iter 30 value 89.953685 iter 40 value 88.891716 iter 50 value 86.253746 iter 60 value 85.562144 iter 70 value 85.465161 iter 80 value 84.729145 iter 90 value 84.387599 iter 100 value 84.382583 final value 84.382583 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.680988 iter 10 value 94.493912 iter 20 value 93.845953 iter 30 value 90.071829 iter 40 value 87.552682 iter 50 value 86.378145 iter 60 value 84.891765 iter 70 value 84.254390 iter 80 value 83.098914 iter 90 value 82.266545 iter 100 value 81.875045 final value 81.875045 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.488667 iter 10 value 94.547605 iter 20 value 90.876669 iter 30 value 86.329281 iter 40 value 85.345450 iter 50 value 84.967217 iter 60 value 84.591884 iter 70 value 83.628741 iter 80 value 83.083846 iter 90 value 82.671648 iter 100 value 82.244284 final value 82.244284 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.770447 iter 10 value 95.032494 iter 20 value 94.484820 iter 30 value 92.738190 iter 40 value 92.328182 iter 50 value 92.085341 iter 60 value 91.673010 iter 70 value 86.942794 iter 80 value 85.506214 iter 90 value 83.870204 iter 100 value 83.280121 final value 83.280121 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.914919 iter 10 value 94.875828 iter 20 value 87.027736 iter 30 value 83.527925 iter 40 value 82.876367 iter 50 value 81.738387 iter 60 value 81.606202 iter 70 value 81.478146 iter 80 value 81.292743 iter 90 value 81.192457 iter 100 value 81.012467 final value 81.012467 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.023129 iter 10 value 95.730299 iter 20 value 94.501860 iter 30 value 89.147610 iter 40 value 85.521386 iter 50 value 83.272802 iter 60 value 82.714394 iter 70 value 82.248094 iter 80 value 81.847284 iter 90 value 81.616492 iter 100 value 81.233375 final value 81.233375 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.742164 iter 10 value 94.707939 iter 20 value 93.856399 iter 30 value 93.220000 iter 40 value 92.074350 iter 50 value 91.612227 iter 60 value 91.262667 iter 70 value 86.966654 iter 80 value 85.000928 iter 90 value 84.155196 iter 100 value 82.861153 final value 82.861153 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.084674 iter 10 value 95.692591 iter 20 value 94.763033 iter 30 value 92.347558 iter 40 value 89.808412 iter 50 value 89.133798 iter 60 value 83.592610 iter 70 value 82.351197 iter 80 value 81.941631 iter 90 value 81.753324 iter 100 value 81.644843 final value 81.644843 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 125.460455 iter 10 value 94.286223 iter 20 value 92.290515 iter 30 value 92.182944 iter 40 value 92.120288 iter 50 value 92.059975 iter 60 value 86.166926 iter 70 value 84.514675 iter 80 value 83.319439 iter 90 value 82.178897 iter 100 value 82.076581 final value 82.076581 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.639399 final value 94.485811 converged Fitting Repeat 2 # weights: 103 initial value 100.934726 final value 94.469274 converged Fitting Repeat 3 # weights: 103 initial value 100.271932 final value 94.486097 converged Fitting Repeat 4 # weights: 103 initial value 96.475951 final value 94.485937 converged Fitting Repeat 5 # weights: 103 initial value 100.321287 final value 94.468995 converged Fitting Repeat 1 # weights: 305 initial value 100.262893 iter 10 value 94.487324 iter 20 value 94.413738 iter 30 value 88.187766 iter 40 value 87.227104 iter 50 value 86.572760 iter 60 value 86.545339 iter 70 value 86.542956 iter 80 value 86.528072 iter 90 value 86.154241 iter 100 value 85.137163 final value 85.137163 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.083836 iter 10 value 94.483961 iter 20 value 94.467673 final value 94.467539 converged Fitting Repeat 3 # weights: 305 initial value 112.305039 iter 10 value 93.937706 iter 20 value 93.905582 iter 30 value 93.902588 iter 40 value 93.853273 iter 50 value 93.843828 iter 60 value 92.478463 iter 70 value 92.235380 iter 80 value 92.222403 final value 92.222362 converged Fitting Repeat 4 # weights: 305 initial value 95.826934 iter 10 value 94.088834 iter 20 value 93.564399 iter 30 value 88.562354 iter 40 value 88.558177 iter 50 value 87.556063 final value 86.952581 converged Fitting Repeat 5 # weights: 305 initial value 97.719278 iter 10 value 94.489058 iter 20 value 94.478383 iter 30 value 93.281907 iter 40 value 93.136482 iter 50 value 93.136434 iter 60 value 93.129265 final value 93.129263 converged Fitting Repeat 1 # weights: 507 initial value 98.795353 iter 10 value 94.492233 iter 20 value 91.349851 iter 30 value 87.315012 iter 40 value 82.476176 iter 50 value 81.319654 iter 60 value 80.979790 iter 70 value 80.717417 iter 80 value 80.681043 iter 90 value 80.659170 iter 100 value 80.482560 final value 80.482560 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.633144 iter 10 value 94.492423 iter 20 value 94.475845 iter 30 value 91.003813 iter 40 value 89.562782 iter 50 value 88.456322 iter 60 value 86.628413 final value 86.621264 converged Fitting Repeat 3 # weights: 507 initial value 107.206820 iter 10 value 94.491885 iter 20 value 94.126422 iter 30 value 87.919881 iter 40 value 87.030987 iter 50 value 85.879856 iter 60 value 85.539781 iter 70 value 82.898780 iter 80 value 82.747235 iter 90 value 82.740197 iter 100 value 82.694652 final value 82.694652 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.345114 iter 10 value 94.492707 iter 20 value 94.439307 iter 30 value 93.438541 iter 40 value 89.607832 iter 50 value 86.031091 iter 60 value 85.930000 iter 70 value 83.806944 iter 80 value 83.475802 iter 90 value 83.365218 iter 100 value 82.468279 final value 82.468279 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.074516 iter 10 value 94.475576 iter 20 value 94.463845 iter 30 value 92.401787 iter 40 value 92.136163 iter 50 value 92.135707 final value 92.135694 converged Fitting Repeat 1 # weights: 103 initial value 94.835944 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.241592 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 102.151979 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.749871 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.068078 final value 93.582418 converged Fitting Repeat 1 # weights: 305 initial value 93.990645 final value 92.142857 converged Fitting Repeat 2 # weights: 305 initial value 105.217251 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.720757 final value 93.582418 converged Fitting Repeat 4 # weights: 305 initial value 101.534341 final value 93.582418 converged Fitting Repeat 5 # weights: 305 initial value 115.716154 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.513565 final value 93.582418 converged Fitting Repeat 2 # weights: 507 initial value 100.441700 iter 10 value 93.486191 iter 20 value 92.676015 iter 30 value 92.669560 final value 92.669553 converged Fitting Repeat 3 # weights: 507 initial value 103.697632 final value 93.582418 converged Fitting Repeat 4 # weights: 507 initial value 107.415237 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 101.420492 final value 92.861582 converged Fitting Repeat 1 # weights: 103 initial value 99.407864 iter 10 value 94.046964 iter 20 value 93.337122 iter 30 value 93.238950 iter 40 value 92.709806 iter 50 value 89.147727 iter 60 value 87.603146 iter 70 value 87.051694 iter 80 value 86.566709 iter 90 value 85.447749 iter 100 value 84.615655 final value 84.615655 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.258388 iter 10 value 93.992411 iter 20 value 90.637524 iter 30 value 89.581859 iter 40 value 88.797446 iter 50 value 88.138833 iter 60 value 88.048300 iter 70 value 85.758374 iter 80 value 84.727918 iter 90 value 84.528117 final value 84.527940 converged Fitting Repeat 3 # weights: 103 initial value 103.990665 iter 10 value 94.055002 iter 20 value 90.648413 iter 30 value 88.317003 iter 40 value 87.180511 iter 50 value 86.702117 iter 60 value 85.261605 iter 70 value 84.607430 iter 80 value 84.562903 iter 90 value 84.545980 iter 100 value 84.527944 final value 84.527944 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.088755 iter 10 value 94.033443 iter 20 value 92.441674 iter 30 value 88.255312 iter 40 value 87.063783 iter 50 value 86.585714 iter 60 value 86.288506 iter 70 value 85.436647 iter 80 value 84.598602 iter 90 value 84.539303 iter 100 value 84.535469 final value 84.535469 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 109.423605 iter 10 value 93.954173 iter 20 value 92.135761 iter 30 value 88.063529 iter 40 value 87.634501 iter 50 value 86.997362 iter 60 value 86.939172 iter 70 value 86.509140 iter 80 value 86.294096 iter 90 value 85.157440 iter 100 value 84.538205 final value 84.538205 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.218277 iter 10 value 93.996385 iter 20 value 93.783730 iter 30 value 90.025847 iter 40 value 89.227565 iter 50 value 88.879399 iter 60 value 88.490426 iter 70 value 86.990032 iter 80 value 86.577474 iter 90 value 86.158660 iter 100 value 85.956882 final value 85.956882 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.854075 iter 10 value 93.979682 iter 20 value 92.859955 iter 30 value 88.423209 iter 40 value 86.457777 iter 50 value 85.090401 iter 60 value 84.302060 iter 70 value 84.065441 iter 80 value 83.924640 iter 90 value 83.801633 iter 100 value 83.624289 final value 83.624289 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.644483 iter 10 value 94.707983 iter 20 value 90.457023 iter 30 value 87.395525 iter 40 value 85.681266 iter 50 value 84.490512 iter 60 value 83.735676 iter 70 value 83.616479 iter 80 value 83.520373 iter 90 value 83.453384 iter 100 value 83.433920 final value 83.433920 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.917536 iter 10 value 94.284315 iter 20 value 93.074265 iter 30 value 91.098595 iter 40 value 87.719902 iter 50 value 86.412627 iter 60 value 84.695189 iter 70 value 84.155644 iter 80 value 83.970048 iter 90 value 83.754446 iter 100 value 83.694919 final value 83.694919 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.671596 iter 10 value 94.559375 iter 20 value 94.065426 iter 30 value 89.240590 iter 40 value 87.553155 iter 50 value 85.893584 iter 60 value 84.455047 iter 70 value 84.371387 iter 80 value 84.341236 iter 90 value 84.184755 iter 100 value 83.737330 final value 83.737330 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.859511 iter 10 value 93.781709 iter 20 value 89.431951 iter 30 value 88.151455 iter 40 value 85.512443 iter 50 value 84.935344 iter 60 value 84.836285 iter 70 value 84.230988 iter 80 value 83.838843 iter 90 value 83.608158 iter 100 value 83.521646 final value 83.521646 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.729498 iter 10 value 94.807811 iter 20 value 90.963234 iter 30 value 88.149676 iter 40 value 85.675417 iter 50 value 83.917986 iter 60 value 83.570365 iter 70 value 83.526830 iter 80 value 83.520846 iter 90 value 83.497941 iter 100 value 83.463748 final value 83.463748 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.101859 iter 10 value 94.053114 iter 20 value 88.432640 iter 30 value 87.630878 iter 40 value 85.910155 iter 50 value 84.678478 iter 60 value 84.076539 iter 70 value 83.968148 iter 80 value 83.771614 iter 90 value 83.593711 iter 100 value 83.487272 final value 83.487272 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.403387 iter 10 value 94.023105 iter 20 value 92.954373 iter 30 value 89.908084 iter 40 value 87.877880 iter 50 value 87.286425 iter 60 value 86.940431 iter 70 value 86.844278 iter 80 value 86.473207 iter 90 value 85.402900 iter 100 value 85.010460 final value 85.010460 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.991239 iter 10 value 94.078489 iter 20 value 93.429739 iter 30 value 92.301625 iter 40 value 91.619739 iter 50 value 90.257056 iter 60 value 87.168774 iter 70 value 86.067276 iter 80 value 85.752770 iter 90 value 84.588384 iter 100 value 83.986052 final value 83.986052 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.278441 final value 94.054402 converged Fitting Repeat 2 # weights: 103 initial value 98.841599 iter 10 value 94.054332 iter 20 value 94.052918 iter 30 value 87.488946 iter 40 value 87.241113 iter 50 value 87.025616 iter 60 value 86.270655 iter 70 value 86.120503 iter 80 value 86.074898 iter 80 value 86.074897 final value 86.074897 converged Fitting Repeat 3 # weights: 103 initial value 96.868425 final value 94.054479 converged Fitting Repeat 4 # weights: 103 initial value 95.279845 final value 94.054689 converged Fitting Repeat 5 # weights: 103 initial value 99.287604 iter 10 value 93.584015 iter 20 value 93.582886 iter 30 value 93.582567 iter 40 value 92.705605 iter 50 value 87.735526 iter 60 value 85.718477 iter 70 value 83.804196 iter 80 value 83.575755 iter 90 value 83.519893 iter 100 value 83.006061 final value 83.006061 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.599258 iter 10 value 93.587455 iter 20 value 93.584094 iter 30 value 93.582282 iter 40 value 90.072073 iter 50 value 88.166029 iter 60 value 88.117524 iter 70 value 88.114926 iter 80 value 88.006900 iter 90 value 87.986242 final value 87.986189 converged Fitting Repeat 2 # weights: 305 initial value 96.389521 iter 10 value 94.057534 iter 20 value 94.052907 iter 30 value 92.854412 iter 40 value 92.810660 iter 50 value 92.810090 iter 60 value 92.809610 iter 60 value 92.809609 final value 92.809609 converged Fitting Repeat 3 # weights: 305 initial value 97.579348 iter 10 value 88.587058 iter 20 value 88.356412 iter 30 value 88.312978 iter 40 value 88.311242 iter 50 value 88.310676 iter 60 value 88.309834 iter 70 value 88.308611 iter 80 value 88.308546 final value 88.308542 converged Fitting Repeat 4 # weights: 305 initial value 97.000913 iter 10 value 93.915518 iter 20 value 93.588868 iter 30 value 93.585108 iter 40 value 93.538268 iter 50 value 93.306065 iter 60 value 93.003551 final value 92.819491 converged Fitting Repeat 5 # weights: 305 initial value 103.206717 iter 10 value 93.116035 iter 20 value 92.864373 iter 30 value 92.857716 iter 40 value 92.821726 iter 50 value 92.819986 iter 60 value 92.809589 iter 60 value 92.809589 iter 60 value 92.809589 final value 92.809589 converged Fitting Repeat 1 # weights: 507 initial value 97.419748 iter 10 value 93.590554 iter 20 value 93.586373 iter 30 value 93.584671 iter 40 value 92.920386 iter 50 value 92.853816 iter 60 value 92.852355 final value 92.852327 converged Fitting Repeat 2 # weights: 507 initial value 96.587802 iter 10 value 93.571135 iter 20 value 93.567825 iter 30 value 93.559061 iter 40 value 92.791688 iter 50 value 92.612241 iter 60 value 92.447313 iter 70 value 92.444817 final value 92.444446 converged Fitting Repeat 3 # weights: 507 initial value 106.598636 iter 10 value 93.908000 iter 20 value 93.906363 iter 30 value 93.454791 final value 93.452241 converged Fitting Repeat 4 # weights: 507 initial value 118.095678 iter 10 value 93.593049 iter 20 value 93.586794 iter 30 value 93.585104 final value 93.584895 converged Fitting Repeat 5 # weights: 507 initial value 95.637507 iter 10 value 92.869863 iter 20 value 92.858467 iter 30 value 92.852448 iter 40 value 92.834022 iter 50 value 92.809571 final value 92.809570 converged Fitting Repeat 1 # weights: 305 initial value 136.987953 iter 10 value 117.954925 iter 20 value 111.636875 iter 30 value 107.764569 iter 40 value 106.745706 iter 50 value 106.575050 iter 60 value 106.482161 iter 70 value 105.909106 iter 80 value 104.321240 iter 90 value 103.923341 iter 100 value 103.754377 final value 103.754377 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 125.574676 iter 10 value 118.047914 iter 20 value 115.123533 iter 30 value 109.923064 iter 40 value 109.778237 iter 50 value 106.409140 iter 60 value 104.444653 iter 70 value 104.219575 iter 80 value 102.629507 iter 90 value 101.989607 iter 100 value 101.696852 final value 101.696852 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 131.682367 iter 10 value 117.832411 iter 20 value 116.992401 iter 30 value 112.397289 iter 40 value 106.020663 iter 50 value 103.681210 iter 60 value 103.003127 iter 70 value 102.868651 iter 80 value 102.498448 iter 90 value 101.886372 iter 100 value 101.714608 final value 101.714608 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 123.815215 iter 10 value 117.758400 iter 20 value 111.458785 iter 30 value 109.200757 iter 40 value 108.456459 iter 50 value 105.602193 iter 60 value 105.016370 iter 70 value 105.013764 iter 80 value 104.965768 iter 90 value 104.662725 iter 100 value 103.618677 final value 103.618677 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 125.545262 iter 10 value 117.867895 iter 20 value 109.180446 iter 30 value 107.333151 iter 40 value 106.721305 iter 50 value 106.038531 iter 60 value 105.366108 iter 70 value 103.523781 iter 80 value 102.996207 iter 90 value 102.796112 iter 100 value 102.563659 final value 102.563659 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Mar 21 04:29:43 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 77.012 2.135 120.924
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.522 | 1.751 | 54.687 | |
FreqInteractors | 0.473 | 0.027 | 0.526 | |
calculateAAC | 0.070 | 0.015 | 0.087 | |
calculateAutocor | 0.878 | 0.115 | 1.034 | |
calculateCTDC | 0.146 | 0.007 | 0.159 | |
calculateCTDD | 1.232 | 0.035 | 1.382 | |
calculateCTDT | 0.437 | 0.017 | 0.477 | |
calculateCTriad | 0.773 | 0.043 | 0.872 | |
calculateDC | 0.250 | 0.027 | 0.286 | |
calculateF | 0.704 | 0.022 | 0.753 | |
calculateKSAAP | 0.281 | 0.025 | 0.310 | |
calculateQD_Sm | 3.552 | 0.179 | 3.898 | |
calculateTC | 4.725 | 0.451 | 5.421 | |
calculateTC_Sm | 0.595 | 0.045 | 0.672 | |
corr_plot | 50.432 | 1.737 | 55.343 | |
enrichfindP | 0.908 | 0.086 | 13.554 | |
enrichfind_hp | 0.129 | 0.028 | 1.114 | |
enrichplot | 0.827 | 0.019 | 0.984 | |
filter_missing_values | 0.002 | 0.000 | 0.003 | |
getFASTA | 0.123 | 0.023 | 3.016 | |
getHPI | 0.001 | 0.001 | 0.002 | |
get_negativePPI | 0.003 | 0.001 | 0.004 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.001 | 0.003 | |
plotPPI | 0.136 | 0.005 | 0.140 | |
pred_ensembel | 25.270 | 0.474 | 24.488 | |
var_imp | 50.689 | 1.721 | 57.319 | |