Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-01-23 12:11 -0500 (Thu, 23 Jan 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4746
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4493
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4517
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4469
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4394
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-01-20 13:00 -0500 (Mon, 20 Jan 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on taishan

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-01-21 05:15:10 -0000 (Tue, 21 Jan 2025)
EndedAt: 2025-01-21 05:15:34 -0000 (Tue, 21 Jan 2025)
EllapsedTime: 24.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 12.3.1 (openEuler 12.3.1-36.oe2403)
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.4.2/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0’
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -I"/home/biocbuild/R/R/include" -DNDEBUG   -I/usr/local/include    -fPIC  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
/opt/ohpc/pub/compiler/gcc/14.2.0/bin/aarch64-unknown-linux-gnu-gcc -shared -L/home/biocbuild/R/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/R/R/lib -lR
installing to /home/biocbuild/R/R-4.4.2/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.289   0.053   0.329 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 471793 25.2    1026264 54.9   643431 34.4
Vcells 871915  6.7    8388608 64.0  2046348 15.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Jan 21 05:15:29 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Jan 21 05:15:29 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x19e3d3c0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Jan 21 05:15:29 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Jan 21 05:15:29 2025"
> 
> ColMode(tmp2)
<pointer: 0x19e3d3c0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.9753905 0.27204204  0.5972355 -2.2011033
[2,]  -0.6895838 1.27221340 -0.8612513 -1.1803596
[3,]   1.2395924 0.04594203  0.6617278 -1.1662420
[4,]   0.5201743 0.65545562 -1.7707429 -0.8478749
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]       [,2]      [,3]      [,4]
[1,] 100.9753905 0.27204204 0.5972355 2.2011033
[2,]   0.6895838 1.27221340 0.8612513 1.1803596
[3,]   1.2395924 0.04594203 0.6617278 1.1662420
[4,]   0.5201743 0.65545562 1.7707429 0.8478749
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0486512 0.5215765 0.7728101 1.4836116
[2,]  0.8304118 1.1279244 0.9280362 1.0864436
[3,]  1.1133698 0.2143409 0.8134665 1.0799269
[4,]  0.7212311 0.8096021 1.3306926 0.9208012
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 226.46190 30.48781 33.32534 42.03722
[2,]  33.99370 37.55146 35.14161 37.04480
[3,]  37.37329 27.18935 33.79639 36.96551
[4,]  32.73249 33.75148 40.07767 35.05589
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x1b824ad0>
> exp(tmp5)
<pointer: 0x1b824ad0>
> log(tmp5,2)
<pointer: 0x1b824ad0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 471.3508
> Min(tmp5)
[1] 53.50409
> mean(tmp5)
[1] 72.64347
> Sum(tmp5)
[1] 14528.69
> Var(tmp5)
[1] 876.925
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 88.53736 69.74596 75.07056 71.24753 69.51669 73.86677 68.53004 69.45539
 [9] 70.26689 70.19752
> rowSums(tmp5)
 [1] 1770.747 1394.919 1501.411 1424.951 1390.334 1477.335 1370.601 1389.108
 [9] 1405.338 1403.950
> rowVars(tmp5)
 [1] 8191.24831   46.68035   76.86148   57.59045   38.39869   80.03065
 [7]   79.86914   94.46540   65.95279  117.91881
> rowSd(tmp5)
 [1] 90.505515  6.832302  8.767068  7.588837  6.196668  8.945985  8.936954
 [8]  9.719331  8.121133 10.859043
> rowMax(tmp5)
 [1] 471.35078  80.17951  94.48896  83.41642  79.00728  94.25199  84.33974
 [8]  83.78385  79.91971  93.04746
> rowMin(tmp5)
 [1] 54.16568 58.50280 56.59107 58.53726 56.50778 56.64663 55.55374 53.50409
 [9] 55.37881 54.46596
> 
> colMeans(tmp5)
 [1] 110.90482  71.21438  67.76238  75.45453  71.29823  68.04552  71.06979
 [8]  65.35961  71.77008  74.24342  72.06550  65.76039  68.10683  71.02281
[15]  72.25023  74.71901  72.10393  72.82773  70.29134  66.59892
> colSums(tmp5)
 [1] 1109.0482  712.1438  677.6238  754.5453  712.9823  680.4552  710.6979
 [8]  653.5961  717.7008  742.4342  720.6550  657.6039  681.0683  710.2281
[15]  722.5023  747.1901  721.0393  728.2773  702.9134  665.9892
> colVars(tmp5)
 [1] 16087.47104    53.63341    71.59701    32.97502    39.03306    63.87992
 [7]   143.86097    43.83725    93.81909   104.64735    43.51659    75.10557
[13]    40.34676    70.80019    55.14949    27.88825    64.45578   120.96490
[19]   132.81227   138.12663
> colSd(tmp5)
 [1] 126.836395   7.323484   8.461502   5.742388   6.247645   7.992491
 [7]  11.994206   6.620971   9.686026  10.229729   6.596711   8.666347
[13]   6.351910   8.414285   7.426270   5.280932   8.028436  10.998404
[19]  11.524421  11.752728
> colMax(tmp5)
 [1] 471.35078  79.89046  83.41642  87.49496  80.76854  82.25479  93.04746
 [8]  77.20992  91.51712  88.43947  81.95071  83.30089  75.68142  84.33974
[15]  83.80890  83.88707  83.78385  94.48896  94.25199  91.53439
> colMin(tmp5)
 [1] 55.37881 56.59107 56.50778 67.52384 63.07601 54.46596 57.73671 56.64663
 [9] 58.80662 54.95641 58.18060 54.16568 59.18443 58.38822 60.49514 67.08338
[17] 58.27061 58.53726 53.50409 54.75955
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 88.53736 69.74596 75.07056 71.24753 69.51669 73.86677 68.53004       NA
 [9] 70.26689 70.19752
> rowSums(tmp5)
 [1] 1770.747 1394.919 1501.411 1424.951 1390.334 1477.335 1370.601       NA
 [9] 1405.338 1403.950
> rowVars(tmp5)
 [1] 8191.24831   46.68035   76.86148   57.59045   38.39869   80.03065
 [7]   79.86914   99.56935   65.95279  117.91881
> rowSd(tmp5)
 [1] 90.505515  6.832302  8.767068  7.588837  6.196668  8.945985  8.936954
 [8]  9.978444  8.121133 10.859043
> rowMax(tmp5)
 [1] 471.35078  80.17951  94.48896  83.41642  79.00728  94.25199  84.33974
 [8]        NA  79.91971  93.04746
> rowMin(tmp5)
 [1] 54.16568 58.50280 56.59107 58.53726 56.50778 56.64663 55.55374       NA
 [9] 55.37881 54.46596
> 
> colMeans(tmp5)
 [1] 110.90482  71.21438  67.76238  75.45453  71.29823        NA  71.06979
 [8]  65.35961  71.77008  74.24342  72.06550  65.76039  68.10683  71.02281
[15]  72.25023  74.71901  72.10393  72.82773  70.29134  66.59892
> colSums(tmp5)
 [1] 1109.0482  712.1438  677.6238  754.5453  712.9823        NA  710.6979
 [8]  653.5961  717.7008  742.4342  720.6550  657.6039  681.0683  710.2281
[15]  722.5023  747.1901  721.0393  728.2773  702.9134  665.9892
> colVars(tmp5)
 [1] 16087.47104    53.63341    71.59701    32.97502    39.03306          NA
 [7]   143.86097    43.83725    93.81909   104.64735    43.51659    75.10557
[13]    40.34676    70.80019    55.14949    27.88825    64.45578   120.96490
[19]   132.81227   138.12663
> colSd(tmp5)
 [1] 126.836395   7.323484   8.461502   5.742388   6.247645         NA
 [7]  11.994206   6.620971   9.686026  10.229729   6.596711   8.666347
[13]   6.351910   8.414285   7.426270   5.280932   8.028436  10.998404
[19]  11.524421  11.752728
> colMax(tmp5)
 [1] 471.35078  79.89046  83.41642  87.49496  80.76854        NA  93.04746
 [8]  77.20992  91.51712  88.43947  81.95071  83.30089  75.68142  84.33974
[15]  83.80890  83.88707  83.78385  94.48896  94.25199  91.53439
> colMin(tmp5)
 [1] 55.37881 56.59107 56.50778 67.52384 63.07601       NA 57.73671 56.64663
 [9] 58.80662 54.95641 58.18060 54.16568 59.18443 58.38822 60.49514 67.08338
[17] 58.27061 58.53726 53.50409 54.75955
> 
> Max(tmp5,na.rm=TRUE)
[1] 471.3508
> Min(tmp5,na.rm=TRUE)
[1] 53.50409
> mean(tmp5,na.rm=TRUE)
[1] 72.6516
> Sum(tmp5,na.rm=TRUE)
[1] 14457.67
> Var(tmp5,na.rm=TRUE)
[1] 881.3407
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 88.53736 69.74596 75.07056 71.24753 69.51669 73.86677 68.53004 69.37276
 [9] 70.26689 70.19752
> rowSums(tmp5,na.rm=TRUE)
 [1] 1770.747 1394.919 1501.411 1424.951 1390.334 1477.335 1370.601 1318.082
 [9] 1405.338 1403.950
> rowVars(tmp5,na.rm=TRUE)
 [1] 8191.24831   46.68035   76.86148   57.59045   38.39869   80.03065
 [7]   79.86914   99.56935   65.95279  117.91881
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.505515  6.832302  8.767068  7.588837  6.196668  8.945985  8.936954
 [8]  9.978444  8.121133 10.859043
> rowMax(tmp5,na.rm=TRUE)
 [1] 471.35078  80.17951  94.48896  83.41642  79.00728  94.25199  84.33974
 [8]  83.78385  79.91971  93.04746
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.16568 58.50280 56.59107 58.53726 56.50778 56.64663 55.55374 53.50409
 [9] 55.37881 54.46596
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.90482  71.21438  67.76238  75.45453  71.29823  67.71444  71.06979
 [8]  65.35961  71.77008  74.24342  72.06550  65.76039  68.10683  71.02281
[15]  72.25023  74.71901  72.10393  72.82773  70.29134  66.59892
> colSums(tmp5,na.rm=TRUE)
 [1] 1109.0482  712.1438  677.6238  754.5453  712.9823  609.4299  710.6979
 [8]  653.5961  717.7008  742.4342  720.6550  657.6039  681.0683  710.2281
[15]  722.5023  747.1901  721.0393  728.2773  702.9134  665.9892
> colVars(tmp5,na.rm=TRUE)
 [1] 16087.47104    53.63341    71.59701    32.97502    39.03306    70.63173
 [7]   143.86097    43.83725    93.81909   104.64735    43.51659    75.10557
[13]    40.34676    70.80019    55.14949    27.88825    64.45578   120.96490
[19]   132.81227   138.12663
> colSd(tmp5,na.rm=TRUE)
 [1] 126.836395   7.323484   8.461502   5.742388   6.247645   8.404268
 [7]  11.994206   6.620971   9.686026  10.229729   6.596711   8.666347
[13]   6.351910   8.414285   7.426270   5.280932   8.028436  10.998404
[19]  11.524421  11.752728
> colMax(tmp5,na.rm=TRUE)
 [1] 471.35078  79.89046  83.41642  87.49496  80.76854  82.25479  93.04746
 [8]  77.20992  91.51712  88.43947  81.95071  83.30089  75.68142  84.33974
[15]  83.80890  83.88707  83.78385  94.48896  94.25199  91.53439
> colMin(tmp5,na.rm=TRUE)
 [1] 55.37881 56.59107 56.50778 67.52384 63.07601 54.46596 57.73671 56.64663
 [9] 58.80662 54.95641 58.18060 54.16568 59.18443 58.38822 60.49514 67.08338
[17] 58.27061 58.53726 53.50409 54.75955
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 88.53736 69.74596 75.07056 71.24753 69.51669 73.86677 68.53004      NaN
 [9] 70.26689 70.19752
> rowSums(tmp5,na.rm=TRUE)
 [1] 1770.747 1394.919 1501.411 1424.951 1390.334 1477.335 1370.601    0.000
 [9] 1405.338 1403.950
> rowVars(tmp5,na.rm=TRUE)
 [1] 8191.24831   46.68035   76.86148   57.59045   38.39869   80.03065
 [7]   79.86914         NA   65.95279  117.91881
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.505515  6.832302  8.767068  7.588837  6.196668  8.945985  8.936954
 [8]        NA  8.121133 10.859043
> rowMax(tmp5,na.rm=TRUE)
 [1] 471.35078  80.17951  94.48896  83.41642  79.00728  94.25199  84.33974
 [8]        NA  79.91971  93.04746
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.16568 58.50280 56.59107 58.53726 56.50778 56.64663 55.55374       NA
 [9] 55.37881 54.46596
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.62169  71.53843  68.49670  75.35289  71.84018       NaN  72.55124
 [8]  64.04290  71.54560  73.69862  72.53794  63.81145  69.07461  71.73588
[15]  73.55635  74.34231  70.80616  71.61569  72.15659  67.91441
> colSums(tmp5,na.rm=TRUE)
 [1] 1040.5952  643.8459  616.4703  678.1760  646.5616    0.0000  652.9612
 [8]  576.3861  643.9104  663.2876  652.8415  574.3030  621.6715  645.6229
[15]  662.0071  669.0807  637.2555  644.5412  649.4093  611.2296
> colVars(tmp5,na.rm=TRUE)
 [1] 17848.10522    59.15620    74.48022    36.98066    40.60791          NA
 [7]   137.15318    29.81274   104.97958   114.38921    46.44513    41.76193
[13]    34.85327    73.93008    42.85123    29.77783    53.56546   119.55877
[19]   110.27330   135.92430
> colSd(tmp5,na.rm=TRUE)
 [1] 133.596801   7.691307   8.630193   6.081173   6.372433         NA
 [7]  11.711242   5.460105  10.245955  10.695289   6.815066   6.462347
[13]   5.903666   8.598260   6.546085   5.456906   7.318843  10.934293
[19]  10.501110  11.658658
> colMax(tmp5,na.rm=TRUE)
 [1] 471.35078  79.89046  83.41642  87.49496  80.76854      -Inf  93.04746
 [8]  72.84952  91.51712  88.43947  81.95071  76.43573  75.68142  84.33974
[15]  83.80890  83.88707  82.04092  94.48896  94.25199  91.53439
> colMin(tmp5,na.rm=TRUE)
 [1] 55.37881 56.59107 56.50778 67.52384 63.07601      Inf 59.25462 56.64663
 [9] 58.80662 54.95641 58.18060 54.16568 59.18443 58.38822 63.46050 67.08338
[17] 58.27061 58.53726 57.20635 55.55374
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 171.7357 111.6508 263.1557 246.8694 149.2811 248.8656 300.6988 276.3730
 [9] 104.4528 129.5581
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 171.7357 111.6508 263.1557 246.8694 149.2811 248.8656 300.6988 276.3730
 [9] 104.4528 129.5581
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -2.842171e-14  5.684342e-14 -3.410605e-13  5.684342e-14  0.000000e+00
 [6] -8.526513e-14  4.263256e-14 -5.684342e-14  2.842171e-14  1.705303e-13
[11]  5.684342e-14 -1.278977e-13 -1.136868e-13  2.273737e-13  0.000000e+00
[16]  0.000000e+00 -1.136868e-13 -1.705303e-13 -2.557954e-13 -2.842171e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
5   13 
3   13 
1   12 
6   2 
7   16 
9   19 
10   5 
2   11 
9   4 
9   14 
2   11 
4   4 
10   11 
7   7 
9   15 
7   1 
10   15 
9   3 
9   13 
5   14 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.039394
> Min(tmp)
[1] -2.323733
> mean(tmp)
[1] -0.06837967
> Sum(tmp)
[1] -6.837967
> Var(tmp)
[1] 0.9423034
> 
> rowMeans(tmp)
[1] -0.06837967
> rowSums(tmp)
[1] -6.837967
> rowVars(tmp)
[1] 0.9423034
> rowSd(tmp)
[1] 0.9707231
> rowMax(tmp)
[1] 2.039394
> rowMin(tmp)
[1] -2.323733
> 
> colMeans(tmp)
  [1] -0.719710778  0.280877711 -0.124562700  1.014494456 -0.047061796
  [6] -1.318527740  0.581060251 -0.565824854  1.326691023 -0.421324832
 [11] -0.332214754 -0.609074898  1.550272697 -1.537342244 -1.402062935
 [16]  0.159294286 -0.697824291 -0.680573225  0.173945630  0.348485630
 [21] -0.437662817  0.945666874  1.344685336  0.435081814  0.733235156
 [26]  1.216651633  0.151625728  0.020726562 -0.528236858  1.596290485
 [31] -0.060683696 -0.679311751  0.934895173 -0.528473262  1.356344905
 [36] -0.873649748 -0.628149696  0.711410200  2.010610841 -1.406226435
 [41] -0.774223218 -0.559296288  1.639440174 -0.924594088 -0.645391062
 [46]  0.486734258  0.321982174 -0.689000054 -0.594880489  0.586837404
 [51]  0.115037308 -0.260462714 -1.851838527  1.315437338  1.585611656
 [56] -0.556726763 -0.595431410  0.839483250  0.415992419  0.996816280
 [61] -1.338393701  0.093775195 -1.052276877 -0.144789846  0.128214147
 [66] -0.886328245  0.636658767 -1.422072338 -2.222244407  0.519990333
 [71]  0.096756133  0.227740423  0.879660793  1.993406389  0.365116980
 [76] -2.323733349 -0.557810243 -0.583840976 -0.604114654  0.260491069
 [81]  0.572443425 -0.004973134  1.249961521  0.842653009 -0.244391564
 [86] -0.140433983 -1.338838168 -0.591964475  2.039393631 -0.830079762
 [91] -2.068807666 -1.502463084  0.220712298 -1.293624952 -0.435538650
 [96] -0.675999538  1.037047161 -0.512205307 -0.593322863 -0.779115080
> colSums(tmp)
  [1] -0.719710778  0.280877711 -0.124562700  1.014494456 -0.047061796
  [6] -1.318527740  0.581060251 -0.565824854  1.326691023 -0.421324832
 [11] -0.332214754 -0.609074898  1.550272697 -1.537342244 -1.402062935
 [16]  0.159294286 -0.697824291 -0.680573225  0.173945630  0.348485630
 [21] -0.437662817  0.945666874  1.344685336  0.435081814  0.733235156
 [26]  1.216651633  0.151625728  0.020726562 -0.528236858  1.596290485
 [31] -0.060683696 -0.679311751  0.934895173 -0.528473262  1.356344905
 [36] -0.873649748 -0.628149696  0.711410200  2.010610841 -1.406226435
 [41] -0.774223218 -0.559296288  1.639440174 -0.924594088 -0.645391062
 [46]  0.486734258  0.321982174 -0.689000054 -0.594880489  0.586837404
 [51]  0.115037308 -0.260462714 -1.851838527  1.315437338  1.585611656
 [56] -0.556726763 -0.595431410  0.839483250  0.415992419  0.996816280
 [61] -1.338393701  0.093775195 -1.052276877 -0.144789846  0.128214147
 [66] -0.886328245  0.636658767 -1.422072338 -2.222244407  0.519990333
 [71]  0.096756133  0.227740423  0.879660793  1.993406389  0.365116980
 [76] -2.323733349 -0.557810243 -0.583840976 -0.604114654  0.260491069
 [81]  0.572443425 -0.004973134  1.249961521  0.842653009 -0.244391564
 [86] -0.140433983 -1.338838168 -0.591964475  2.039393631 -0.830079762
 [91] -2.068807666 -1.502463084  0.220712298 -1.293624952 -0.435538650
 [96] -0.675999538  1.037047161 -0.512205307 -0.593322863 -0.779115080
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.719710778  0.280877711 -0.124562700  1.014494456 -0.047061796
  [6] -1.318527740  0.581060251 -0.565824854  1.326691023 -0.421324832
 [11] -0.332214754 -0.609074898  1.550272697 -1.537342244 -1.402062935
 [16]  0.159294286 -0.697824291 -0.680573225  0.173945630  0.348485630
 [21] -0.437662817  0.945666874  1.344685336  0.435081814  0.733235156
 [26]  1.216651633  0.151625728  0.020726562 -0.528236858  1.596290485
 [31] -0.060683696 -0.679311751  0.934895173 -0.528473262  1.356344905
 [36] -0.873649748 -0.628149696  0.711410200  2.010610841 -1.406226435
 [41] -0.774223218 -0.559296288  1.639440174 -0.924594088 -0.645391062
 [46]  0.486734258  0.321982174 -0.689000054 -0.594880489  0.586837404
 [51]  0.115037308 -0.260462714 -1.851838527  1.315437338  1.585611656
 [56] -0.556726763 -0.595431410  0.839483250  0.415992419  0.996816280
 [61] -1.338393701  0.093775195 -1.052276877 -0.144789846  0.128214147
 [66] -0.886328245  0.636658767 -1.422072338 -2.222244407  0.519990333
 [71]  0.096756133  0.227740423  0.879660793  1.993406389  0.365116980
 [76] -2.323733349 -0.557810243 -0.583840976 -0.604114654  0.260491069
 [81]  0.572443425 -0.004973134  1.249961521  0.842653009 -0.244391564
 [86] -0.140433983 -1.338838168 -0.591964475  2.039393631 -0.830079762
 [91] -2.068807666 -1.502463084  0.220712298 -1.293624952 -0.435538650
 [96] -0.675999538  1.037047161 -0.512205307 -0.593322863 -0.779115080
> colMin(tmp)
  [1] -0.719710778  0.280877711 -0.124562700  1.014494456 -0.047061796
  [6] -1.318527740  0.581060251 -0.565824854  1.326691023 -0.421324832
 [11] -0.332214754 -0.609074898  1.550272697 -1.537342244 -1.402062935
 [16]  0.159294286 -0.697824291 -0.680573225  0.173945630  0.348485630
 [21] -0.437662817  0.945666874  1.344685336  0.435081814  0.733235156
 [26]  1.216651633  0.151625728  0.020726562 -0.528236858  1.596290485
 [31] -0.060683696 -0.679311751  0.934895173 -0.528473262  1.356344905
 [36] -0.873649748 -0.628149696  0.711410200  2.010610841 -1.406226435
 [41] -0.774223218 -0.559296288  1.639440174 -0.924594088 -0.645391062
 [46]  0.486734258  0.321982174 -0.689000054 -0.594880489  0.586837404
 [51]  0.115037308 -0.260462714 -1.851838527  1.315437338  1.585611656
 [56] -0.556726763 -0.595431410  0.839483250  0.415992419  0.996816280
 [61] -1.338393701  0.093775195 -1.052276877 -0.144789846  0.128214147
 [66] -0.886328245  0.636658767 -1.422072338 -2.222244407  0.519990333
 [71]  0.096756133  0.227740423  0.879660793  1.993406389  0.365116980
 [76] -2.323733349 -0.557810243 -0.583840976 -0.604114654  0.260491069
 [81]  0.572443425 -0.004973134  1.249961521  0.842653009 -0.244391564
 [86] -0.140433983 -1.338838168 -0.591964475  2.039393631 -0.830079762
 [91] -2.068807666 -1.502463084  0.220712298 -1.293624952 -0.435538650
 [96] -0.675999538  1.037047161 -0.512205307 -0.593322863 -0.779115080
> colMedians(tmp)
  [1] -0.719710778  0.280877711 -0.124562700  1.014494456 -0.047061796
  [6] -1.318527740  0.581060251 -0.565824854  1.326691023 -0.421324832
 [11] -0.332214754 -0.609074898  1.550272697 -1.537342244 -1.402062935
 [16]  0.159294286 -0.697824291 -0.680573225  0.173945630  0.348485630
 [21] -0.437662817  0.945666874  1.344685336  0.435081814  0.733235156
 [26]  1.216651633  0.151625728  0.020726562 -0.528236858  1.596290485
 [31] -0.060683696 -0.679311751  0.934895173 -0.528473262  1.356344905
 [36] -0.873649748 -0.628149696  0.711410200  2.010610841 -1.406226435
 [41] -0.774223218 -0.559296288  1.639440174 -0.924594088 -0.645391062
 [46]  0.486734258  0.321982174 -0.689000054 -0.594880489  0.586837404
 [51]  0.115037308 -0.260462714 -1.851838527  1.315437338  1.585611656
 [56] -0.556726763 -0.595431410  0.839483250  0.415992419  0.996816280
 [61] -1.338393701  0.093775195 -1.052276877 -0.144789846  0.128214147
 [66] -0.886328245  0.636658767 -1.422072338 -2.222244407  0.519990333
 [71]  0.096756133  0.227740423  0.879660793  1.993406389  0.365116980
 [76] -2.323733349 -0.557810243 -0.583840976 -0.604114654  0.260491069
 [81]  0.572443425 -0.004973134  1.249961521  0.842653009 -0.244391564
 [86] -0.140433983 -1.338838168 -0.591964475  2.039393631 -0.830079762
 [91] -2.068807666 -1.502463084  0.220712298 -1.293624952 -0.435538650
 [96] -0.675999538  1.037047161 -0.512205307 -0.593322863 -0.779115080
> colRanges(tmp)
           [,1]      [,2]       [,3]     [,4]       [,5]      [,6]      [,7]
[1,] -0.7197108 0.2808777 -0.1245627 1.014494 -0.0470618 -1.318528 0.5810603
[2,] -0.7197108 0.2808777 -0.1245627 1.014494 -0.0470618 -1.318528 0.5810603
           [,8]     [,9]      [,10]      [,11]      [,12]    [,13]     [,14]
[1,] -0.5658249 1.326691 -0.4213248 -0.3322148 -0.6090749 1.550273 -1.537342
[2,] -0.5658249 1.326691 -0.4213248 -0.3322148 -0.6090749 1.550273 -1.537342
         [,15]     [,16]      [,17]      [,18]     [,19]     [,20]      [,21]
[1,] -1.402063 0.1592943 -0.6978243 -0.6805732 0.1739456 0.3484856 -0.4376628
[2,] -1.402063 0.1592943 -0.6978243 -0.6805732 0.1739456 0.3484856 -0.4376628
         [,22]    [,23]     [,24]     [,25]    [,26]     [,27]      [,28]
[1,] 0.9456669 1.344685 0.4350818 0.7332352 1.216652 0.1516257 0.02072656
[2,] 0.9456669 1.344685 0.4350818 0.7332352 1.216652 0.1516257 0.02072656
          [,29]   [,30]      [,31]      [,32]     [,33]      [,34]    [,35]
[1,] -0.5282369 1.59629 -0.0606837 -0.6793118 0.9348952 -0.5284733 1.356345
[2,] -0.5282369 1.59629 -0.0606837 -0.6793118 0.9348952 -0.5284733 1.356345
          [,36]      [,37]     [,38]    [,39]     [,40]      [,41]      [,42]
[1,] -0.8736497 -0.6281497 0.7114102 2.010611 -1.406226 -0.7742232 -0.5592963
[2,] -0.8736497 -0.6281497 0.7114102 2.010611 -1.406226 -0.7742232 -0.5592963
       [,43]      [,44]      [,45]     [,46]     [,47]      [,48]      [,49]
[1,] 1.63944 -0.9245941 -0.6453911 0.4867343 0.3219822 -0.6890001 -0.5948805
[2,] 1.63944 -0.9245941 -0.6453911 0.4867343 0.3219822 -0.6890001 -0.5948805
         [,50]     [,51]      [,52]     [,53]    [,54]    [,55]      [,56]
[1,] 0.5868374 0.1150373 -0.2604627 -1.851839 1.315437 1.585612 -0.5567268
[2,] 0.5868374 0.1150373 -0.2604627 -1.851839 1.315437 1.585612 -0.5567268
          [,57]     [,58]     [,59]     [,60]     [,61]     [,62]     [,63]
[1,] -0.5954314 0.8394832 0.4159924 0.9968163 -1.338394 0.0937752 -1.052277
[2,] -0.5954314 0.8394832 0.4159924 0.9968163 -1.338394 0.0937752 -1.052277
          [,64]     [,65]      [,66]     [,67]     [,68]     [,69]     [,70]
[1,] -0.1447898 0.1282141 -0.8863282 0.6366588 -1.422072 -2.222244 0.5199903
[2,] -0.1447898 0.1282141 -0.8863282 0.6366588 -1.422072 -2.222244 0.5199903
          [,71]     [,72]     [,73]    [,74]    [,75]     [,76]      [,77]
[1,] 0.09675613 0.2277404 0.8796608 1.993406 0.365117 -2.323733 -0.5578102
[2,] 0.09675613 0.2277404 0.8796608 1.993406 0.365117 -2.323733 -0.5578102
         [,78]      [,79]     [,80]     [,81]        [,82]    [,83]    [,84]
[1,] -0.583841 -0.6041147 0.2604911 0.5724434 -0.004973134 1.249962 0.842653
[2,] -0.583841 -0.6041147 0.2604911 0.5724434 -0.004973134 1.249962 0.842653
          [,85]     [,86]     [,87]      [,88]    [,89]      [,90]     [,91]
[1,] -0.2443916 -0.140434 -1.338838 -0.5919645 2.039394 -0.8300798 -2.068808
[2,] -0.2443916 -0.140434 -1.338838 -0.5919645 2.039394 -0.8300798 -2.068808
         [,92]     [,93]     [,94]      [,95]      [,96]    [,97]      [,98]
[1,] -1.502463 0.2207123 -1.293625 -0.4355386 -0.6759995 1.037047 -0.5122053
[2,] -1.502463 0.2207123 -1.293625 -0.4355386 -0.6759995 1.037047 -0.5122053
          [,99]     [,100]
[1,] -0.5933229 -0.7791151
[2,] -0.5933229 -0.7791151
> 
> 
> Max(tmp2)
[1] 2.188264
> Min(tmp2)
[1] -2.663283
> mean(tmp2)
[1] -0.08995752
> Sum(tmp2)
[1] -8.995752
> Var(tmp2)
[1] 0.8951449
> 
> rowMeans(tmp2)
  [1] -0.365983533  0.544000775 -0.100943487 -0.159552894 -2.663283116
  [6]  0.225792124  1.439804731 -0.941106657 -1.845894235 -0.501233028
 [11] -0.008881142 -0.673976583  0.706468610 -1.494865386 -0.502032986
 [16]  1.261675448 -0.072813909  0.230446132  1.144625932 -0.762472026
 [21] -1.646913011  0.184620844  0.310573115  0.648001440  0.631408716
 [26] -1.155631268  1.659011653 -0.637423993 -1.752669179 -0.387101892
 [31]  1.572537652 -1.858789963 -1.137326421 -0.109540830  1.068505865
 [36]  0.201149028  0.827144858 -0.573829115 -0.865848587  0.497129324
 [41]  0.758657250 -0.554058961  0.200195712  0.054936951 -0.866338464
 [46] -0.239842088 -0.669350278 -0.966561483 -0.427108978 -0.808237506
 [51] -0.674271742 -1.900523586  0.061063979 -0.365134406 -0.949707612
 [56] -1.185383407 -0.329145627 -0.853938479 -0.392630807  0.952288556
 [61] -0.944259159 -0.764391202  0.447920419  0.454891784  0.459792165
 [66] -0.008429853 -0.031248618  0.905054082 -0.018633534 -0.732406925
 [71]  0.861363298  0.651196890 -0.757093843 -1.231026096  0.287175524
 [76] -0.342128565 -1.089765982  0.677866520  0.068356363  0.405277789
 [81]  1.577346839 -0.774934639  0.713924482  1.657431672 -1.042704725
 [86]  1.393595715  0.583163379  2.188264472  0.887203039 -0.375333387
 [91]  1.098718474 -1.228979428  0.448472651 -0.024290752 -1.042193013
 [96] -1.236387442  0.465920978  0.093546051  0.596251994  1.946028866
> rowSums(tmp2)
  [1] -0.365983533  0.544000775 -0.100943487 -0.159552894 -2.663283116
  [6]  0.225792124  1.439804731 -0.941106657 -1.845894235 -0.501233028
 [11] -0.008881142 -0.673976583  0.706468610 -1.494865386 -0.502032986
 [16]  1.261675448 -0.072813909  0.230446132  1.144625932 -0.762472026
 [21] -1.646913011  0.184620844  0.310573115  0.648001440  0.631408716
 [26] -1.155631268  1.659011653 -0.637423993 -1.752669179 -0.387101892
 [31]  1.572537652 -1.858789963 -1.137326421 -0.109540830  1.068505865
 [36]  0.201149028  0.827144858 -0.573829115 -0.865848587  0.497129324
 [41]  0.758657250 -0.554058961  0.200195712  0.054936951 -0.866338464
 [46] -0.239842088 -0.669350278 -0.966561483 -0.427108978 -0.808237506
 [51] -0.674271742 -1.900523586  0.061063979 -0.365134406 -0.949707612
 [56] -1.185383407 -0.329145627 -0.853938479 -0.392630807  0.952288556
 [61] -0.944259159 -0.764391202  0.447920419  0.454891784  0.459792165
 [66] -0.008429853 -0.031248618  0.905054082 -0.018633534 -0.732406925
 [71]  0.861363298  0.651196890 -0.757093843 -1.231026096  0.287175524
 [76] -0.342128565 -1.089765982  0.677866520  0.068356363  0.405277789
 [81]  1.577346839 -0.774934639  0.713924482  1.657431672 -1.042704725
 [86]  1.393595715  0.583163379  2.188264472  0.887203039 -0.375333387
 [91]  1.098718474 -1.228979428  0.448472651 -0.024290752 -1.042193013
 [96] -1.236387442  0.465920978  0.093546051  0.596251994  1.946028866
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.365983533  0.544000775 -0.100943487 -0.159552894 -2.663283116
  [6]  0.225792124  1.439804731 -0.941106657 -1.845894235 -0.501233028
 [11] -0.008881142 -0.673976583  0.706468610 -1.494865386 -0.502032986
 [16]  1.261675448 -0.072813909  0.230446132  1.144625932 -0.762472026
 [21] -1.646913011  0.184620844  0.310573115  0.648001440  0.631408716
 [26] -1.155631268  1.659011653 -0.637423993 -1.752669179 -0.387101892
 [31]  1.572537652 -1.858789963 -1.137326421 -0.109540830  1.068505865
 [36]  0.201149028  0.827144858 -0.573829115 -0.865848587  0.497129324
 [41]  0.758657250 -0.554058961  0.200195712  0.054936951 -0.866338464
 [46] -0.239842088 -0.669350278 -0.966561483 -0.427108978 -0.808237506
 [51] -0.674271742 -1.900523586  0.061063979 -0.365134406 -0.949707612
 [56] -1.185383407 -0.329145627 -0.853938479 -0.392630807  0.952288556
 [61] -0.944259159 -0.764391202  0.447920419  0.454891784  0.459792165
 [66] -0.008429853 -0.031248618  0.905054082 -0.018633534 -0.732406925
 [71]  0.861363298  0.651196890 -0.757093843 -1.231026096  0.287175524
 [76] -0.342128565 -1.089765982  0.677866520  0.068356363  0.405277789
 [81]  1.577346839 -0.774934639  0.713924482  1.657431672 -1.042704725
 [86]  1.393595715  0.583163379  2.188264472  0.887203039 -0.375333387
 [91]  1.098718474 -1.228979428  0.448472651 -0.024290752 -1.042193013
 [96] -1.236387442  0.465920978  0.093546051  0.596251994  1.946028866
> rowMin(tmp2)
  [1] -0.365983533  0.544000775 -0.100943487 -0.159552894 -2.663283116
  [6]  0.225792124  1.439804731 -0.941106657 -1.845894235 -0.501233028
 [11] -0.008881142 -0.673976583  0.706468610 -1.494865386 -0.502032986
 [16]  1.261675448 -0.072813909  0.230446132  1.144625932 -0.762472026
 [21] -1.646913011  0.184620844  0.310573115  0.648001440  0.631408716
 [26] -1.155631268  1.659011653 -0.637423993 -1.752669179 -0.387101892
 [31]  1.572537652 -1.858789963 -1.137326421 -0.109540830  1.068505865
 [36]  0.201149028  0.827144858 -0.573829115 -0.865848587  0.497129324
 [41]  0.758657250 -0.554058961  0.200195712  0.054936951 -0.866338464
 [46] -0.239842088 -0.669350278 -0.966561483 -0.427108978 -0.808237506
 [51] -0.674271742 -1.900523586  0.061063979 -0.365134406 -0.949707612
 [56] -1.185383407 -0.329145627 -0.853938479 -0.392630807  0.952288556
 [61] -0.944259159 -0.764391202  0.447920419  0.454891784  0.459792165
 [66] -0.008429853 -0.031248618  0.905054082 -0.018633534 -0.732406925
 [71]  0.861363298  0.651196890 -0.757093843 -1.231026096  0.287175524
 [76] -0.342128565 -1.089765982  0.677866520  0.068356363  0.405277789
 [81]  1.577346839 -0.774934639  0.713924482  1.657431672 -1.042704725
 [86]  1.393595715  0.583163379  2.188264472  0.887203039 -0.375333387
 [91]  1.098718474 -1.228979428  0.448472651 -0.024290752 -1.042193013
 [96] -1.236387442  0.465920978  0.093546051  0.596251994  1.946028866
> 
> colMeans(tmp2)
[1] -0.08995752
> colSums(tmp2)
[1] -8.995752
> colVars(tmp2)
[1] 0.8951449
> colSd(tmp2)
[1] 0.946121
> colMax(tmp2)
[1] 2.188264
> colMin(tmp2)
[1] -2.663283
> colMedians(tmp2)
[1] -0.05203126
> colRanges(tmp2)
          [,1]
[1,] -2.663283
[2,]  2.188264
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.226058  3.748955 -4.326899 -4.577070 -2.549400  1.365792 -1.315953
 [8] -3.704732 -1.523636  2.865128
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.69681266
[2,] -1.22668605
[3,] -0.07872777
[4,]  0.59244182
[5,]  1.32098473
> 
> rowApply(tmp,sum)
 [1] -5.0210944 -2.0042752 -0.2033098 -1.1907470  0.6254096 -5.4282069
 [7] -1.4411767  3.3451699 -1.7787002  0.8530593
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3    2    4    9    8    4    8    7    3     5
 [2,]    7   10    9    8    9    8    2    8    4     2
 [3,]    1    5    5    4    4    6    6    1   10     4
 [4,]    4    1    7    5    7    3    4    9    5     1
 [5,]    5    4    1    7    1    2   10   10    2     7
 [6,]    8    6   10    6    5    7    7    5    7     3
 [7,]    6    7    3    3    3    9    3    3    8     8
 [8,]    9    3    6    1    6    1    9    4    1    10
 [9,]   10    9    2    2    2    5    1    6    9     6
[10,]    2    8    8   10   10   10    5    2    6     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.4325690 -0.2787208  2.5708123 -1.2990317 -0.2396956 -2.0042275
 [7] -3.4496649  0.9995493  2.1851079  1.5906259  1.3792614  2.1967883
[13]  0.2983261  1.2940205 -2.4906245  1.8200166  0.1118684  1.9835345
[19]  0.8073111  0.2836058
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.7301718
[2,] -0.6610485
[3,]  0.3355271
[4,]  1.1333984
[5,]  2.3548638
> 
> rowApply(tmp,sum)
[1]  3.690572  1.236781  3.240909  1.217509 -1.194339
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20    1   13    4   17
[2,]   15    6   14    1   16
[3,]   11   11    7    3   20
[4,]    4   19    3    5   12
[5,]   17    9   11   11    1
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
[1,]  2.3548638  0.8307413  0.4541072 -1.3845694  1.10074719 -1.6700614
[2,] -2.7301718 -0.5672120  0.2171623  1.5654101  0.18328990  0.6687790
[3,]  0.3355271  0.4777063 -0.1432792 -1.0967603  0.26022994 -0.1125068
[4,] -0.6610485 -1.5206168 -0.7682159 -0.5888876 -0.03871952 -0.1437475
[5,]  1.1333984  0.5006604  2.8110378  0.2057755 -1.74524312 -0.7466907
           [,7]       [,8]       [,9]      [,10]       [,11]       [,12]
[1,]  0.5725721  0.6471953  2.2468322 -1.6783157 -0.01321228 -0.06643231
[2,] -1.1427923  0.4847640  0.5450222  0.1908001 -0.83363901 -0.72185587
[3,] -1.6423126 -0.2287797 -0.8042298  2.0429145  2.13035308  1.32815402
[4,] -0.2955391 -0.2371283  0.6170926  0.5797356  0.66962126 -0.31005064
[5,] -0.9415931  0.3334980 -0.4196093  0.4554914 -0.57386164  1.96697306
          [,13]       [,14]      [,15]      [,16]      [,17]      [,18]
[1,] -0.4638008  1.60889965 -1.9266361  0.9729091 -0.4957925 0.32903477
[2,]  1.1603687 -0.27714908 -0.2451390  2.0647439  0.4620832 0.53278971
[3,]  0.9206480 -0.08827506  0.2685893  1.0192821  0.6390698 0.02956921
[4,]  0.1830462 -0.09717954  0.3782107 -0.9384875  0.7006581 0.75187284
[5,] -1.5019360  0.14772456 -0.9656494 -1.2984310 -1.1941501 0.34026794
          [,19]      [,20]
[1,] -0.5233846  0.7948744
[2,] -1.0517040  0.7312311
[3,] -1.2058478 -0.8891431
[4,]  2.3801143  0.5567784
[5,]  1.2081333 -0.9101350
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1      col2        col3       col4      col5    col6     col7
row1 0.3714974 -1.538403 0.001296519 -0.7762137 0.5766963 0.75942 1.487437
          col8       col9     col10    col11     col12    col13    col14
row1 0.2241055 -0.2760419 0.8217185 1.423517 0.3766912 1.803283 1.848628
           col15      col16     col17     col18      col19     col20
row1 -0.01859528 -0.6665473 0.7545961 0.2315692 0.08733021 0.6047146
> tmp[,"col10"]
          col10
row1  0.8217185
row2 -0.5578860
row3  0.2760957
row4 -1.8718288
row5  1.7587829
> tmp[c("row1","row5"),]
           col1      col2         col3       col4       col5     col6     col7
row1  0.3714974 -1.538403  0.001296519 -0.7762137  0.5766963 0.759420 1.487437
row5 -0.5280606 -0.472257 -1.192747034 -1.4089409 -0.2187792 1.762344 2.483715
          col8       col9     col10     col11     col12    col13     col14
row1 0.2241055 -0.2760419 0.8217185 1.4235173 0.3766912 1.803283 1.8486280
row5 0.3349393 -0.4198395 1.7587829 0.1604735 1.4855985 1.006002 0.0186166
           col15      col16     col17      col18       col19      col20
row1 -0.01859528 -0.6665473 0.7545961  0.2315692  0.08733021  0.6047146
row5  2.31007325  1.2849738 0.2217623 -0.7127674 -0.33167141 -0.5450588
> tmp[,c("col6","col20")]
           col6      col20
row1  0.7594200  0.6047146
row2  0.1313886 -1.3949566
row3  1.1922650  0.4582971
row4 -0.2580233 -0.3666059
row5  1.7623444 -0.5450588
> tmp[c("row1","row5"),c("col6","col20")]
         col6      col20
row1 0.759420  0.6047146
row5 1.762344 -0.5450588
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.05291 49.44413 47.68159 51.62793 49.23959 106.5632 50.50388 48.66528
         col9    col10    col11    col12   col13    col14   col15    col16
row1 51.63795 49.98166 50.12966 51.32547 48.2577 51.01758 50.3477 50.35821
        col17    col18    col19    col20
row1 50.48132 50.50014 47.79129 106.5303
> tmp[,"col10"]
        col10
row1 49.98166
row2 28.62269
row3 31.55631
row4 30.14299
row5 49.98676
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.05291 49.44413 47.68159 51.62793 49.23959 106.5632 50.50388 48.66528
row5 50.08695 50.32855 48.77503 49.02289 48.57294 106.3467 50.58960 50.69637
         col9    col10    col11    col12    col13    col14    col15    col16
row1 51.63795 49.98166 50.12966 51.32547 48.25770 51.01758 50.34770 50.35821
row5 50.39636 49.98676 49.66380 50.56105 49.95073 52.21423 52.22451 49.12455
        col17    col18    col19    col20
row1 50.48132 50.50014 47.79129 106.5303
row5 50.56543 50.78578 49.36226 104.9597
> tmp[,c("col6","col20")]
          col6     col20
row1 106.56318 106.53025
row2  74.33799  75.13634
row3  74.14662  74.07542
row4  73.84500  74.38686
row5 106.34674 104.95975
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.5632 106.5303
row5 106.3467 104.9597
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.5632 106.5303
row5 106.3467 104.9597
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.2667782
[2,]  0.5113045
[3,] -1.0298155
[4,] -0.1473915
[5,]  2.1186199
> tmp[,c("col17","col7")]
           col17        col7
[1,]  0.74352756 -0.68667832
[2,] -0.76202314  0.03022178
[3,] -0.02423162 -0.31303998
[4,] -0.46975916 -2.25143702
[5,] -0.87528378 -0.97773311
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6      col20
[1,] -0.58799291 -1.3639496
[2,] -0.05153751  0.8464610
[3,]  2.34848593 -0.9758374
[4,]  0.03173402 -0.5809308
[5,]  0.34051613 -1.1733064
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.5879929
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
            col6
[1,] -0.58799291
[2,] -0.05153751
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
         [,1]       [,2]       [,3]        [,4]     [,5]       [,6]        [,7]
row3 1.363096  0.6480276  1.2230197 -0.24407554 1.063914 0.02962988 -0.06881790
row1 1.230029 -0.2476715 -0.4786362 -0.06012371 2.012316 1.48172788 -0.02475956
            [,8]        [,9]     [,10]      [,11]      [,12]      [,13]
row3  2.04635198  0.09993672 0.4451755 -0.2367405 -0.5051946  0.5689572
row1 -0.07606058 -1.28754966 1.5370563  0.2918308 -0.7194403 -0.8399142
         [,14]      [,15]     [,16]       [,17]      [,18]      [,19]
row3 0.3513967 -0.2313235 -1.416918  0.01463043  1.9205007 -0.9326170
row1 0.4594455 -0.9251448 -1.854505 -0.28408712 -0.2642984  0.7484451
          [,20]
row3  0.2971422
row1 -1.3442802
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
row2 0.4991018 0.03458185 0.7424984 0.2844701 0.9088421 -2.081238 -1.027301
          [,8]     [,9]     [,10]
row2 -0.666204 -1.36125 0.1322825
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]      [,3]      [,4]     [,5]      [,6]       [,7]
row5 1.101761 0.4531887 0.6478315 0.4696141 -1.42763 0.5989167 -0.9643655
          [,8]       [,9]     [,10]    [,11]     [,12]    [,13]      [,14]
row5 -1.004857 -0.5134288 0.1577627 1.059483 0.1224469 1.746944 -0.9094766
        [,15]       [,16]    [,17]     [,18]     [,19]      [,20]
row5 1.980731 -0.08825218 1.250115 -1.421595 0.3339854 -0.9061336
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x1bdf0820>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f4568410fc" 
 [2] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f451d219623"
 [3] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f4540e55dc0"
 [4] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f4512daf3b5"
 [5] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f4577e02a44"
 [6] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f45608f3cc6"
 [7] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f454aad1e6b"
 [8] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f452996a90c"
 [9] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f457b79413b"
[10] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f451ce94e5e"
[11] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f45291e7eb" 
[12] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f452f148ef5"
[13] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f452b6b60a8"
[14] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f4552607dd2"
[15] "/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM185f45f254cb1" 
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x1ba41280>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x1ba41280>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x1ba41280>
> rowMedians(tmp)
  [1]  0.263393928 -0.399468907  0.135573047 -0.036906141  0.403441855
  [6]  0.406218918  0.017242621  0.684758256 -0.211912070  0.408070611
 [11] -0.083471716 -0.706298130  0.541441213  0.058724879 -0.163920382
 [16] -0.008384880  0.066183823 -0.183865566 -0.067412777  0.410620964
 [21]  0.282660750 -0.114588187 -0.131998320 -0.337920876 -0.032271447
 [26] -0.888244877  0.432079119 -0.431596184 -0.322230531  0.205151818
 [31] -0.168014258  0.539027534 -0.338866107  0.012038339 -0.367165809
 [36] -0.054148419  0.140955933  0.016889418 -0.007286896 -0.200673173
 [41]  0.624015796  0.209212201 -0.246203136  0.027524269 -0.167209577
 [46] -0.010519117 -0.064792825  0.626191613  0.248732332 -0.480282013
 [51] -0.135945489 -0.374349771  0.081730077  0.160836720  0.189973347
 [56]  0.271819838 -0.459107991  0.051942871 -0.088579082  0.033432743
 [61]  0.314590923  0.387328016  0.379100314 -0.708685475 -0.175700018
 [66]  0.194537238  0.012000893 -0.249560288  0.197656742  0.394987318
 [71]  0.389723171  0.068337462  0.222723777  0.392314117 -0.242464926
 [76] -0.202335374 -0.077989660  0.212903169  0.062384699  0.029353517
 [81]  0.142272549  0.251320853 -0.077768547  0.434860952 -0.273746940
 [86] -0.231046520 -0.047249818  0.043439144  0.057369448  0.108141376
 [91] -0.317934398  0.281296748  0.105352328 -0.389838393  0.348130688
 [96]  0.463462146 -0.465297159  0.070490694 -0.109749899  0.462101966
[101]  0.158227251 -0.191557392 -0.398797804  0.067929113  0.438825512
[106] -0.330936946  0.172873889  0.032297451 -0.184234431  0.312614652
[111] -0.007805747 -0.012774403  0.908721321  0.124385866 -0.747791133
[116]  0.140398951  0.047879372 -0.413906487 -0.409462545  0.294560617
[121]  0.018032520  0.808430797  0.193624215 -0.030363310 -0.054773065
[126] -0.002302370 -0.318778255 -0.252987803 -0.029862195 -0.566432558
[131] -0.148267093  0.055434609  0.163805381 -0.267762727  0.341190021
[136]  0.117200411  0.195164047 -0.056204173  0.324920564 -0.356967662
[141] -0.004148999  0.245791602  0.018780521 -0.404200872 -0.639714747
[146] -0.050332552 -0.306388650  0.326995404 -0.026873674  0.392875236
[151] -0.161872477 -0.104040115 -0.190038097  0.278435006  0.207502018
[156] -0.156147859  0.606244307 -0.310838240 -0.234959121  0.418957351
[161] -0.327365635 -0.770360680 -0.379113014 -0.181183065 -0.053501237
[166] -0.245530453 -0.053448059  0.454146832 -0.333271518 -0.020430453
[171] -0.066974872  0.093694362 -0.380033516 -0.463356507 -0.711722035
[176] -0.238940896 -0.410299800  0.264695899  0.012936454  0.062403281
[181]  0.064625770 -0.276884900  0.289017277 -0.251476614 -0.141099142
[186]  0.017216037 -0.240843331 -0.038422960 -0.170029861 -0.207843675
[191] -0.025640078 -0.293660559 -0.004847099 -0.123081114 -0.154190470
[196]  0.046641444  0.005339716 -0.060075125  0.097733196 -0.267488351
[201] -0.181634076 -0.162715583  0.156019614 -0.392599859 -0.090799368
[206]  0.205633043 -0.148540153 -0.022506036  0.154025053  0.008680672
[211] -0.077978456  0.105352757 -0.368087989  0.030691996 -0.257429284
[216] -0.050581922 -0.069468834  0.139844721 -0.260338045 -0.383034436
[221] -0.367042113 -0.156227411  0.362230664 -0.228165411  0.083348932
[226] -0.211061423  0.223701021  0.066292195 -0.334827361 -0.401055726
> 
> proc.time()
   user  system elapsed 
  1.798   0.865   2.692 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x283713c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x283713c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x283713c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x283713c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x27e53d60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x27e53d60>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x27e53d60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x27e53d60>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x27e53d60>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x284857e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x284857e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x284857e0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x284857e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x284857e0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x284857e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x284857e0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x284857e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x284857e0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x28d7afd0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x28d7afd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x28d7afd0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x28d7afd0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile185f9c3d0e5b0"  "BufferedMatrixFile185f9c79e7b7fc"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile185f9c3d0e5b0"  "BufferedMatrixFile185f9c79e7b7fc"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x285f7da0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x285f7da0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x285f7da0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x285f7da0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x285f7da0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x285f7da0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x2a666990>
> .Call("R_bm_AddColumn",P)
<pointer: 0x2a666990>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x2a666990>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x2a666990>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2a6b3cc0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x2a6b3cc0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.334   0.029   0.349 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.304   0.044   0.337 

Example timings