Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-03-27 12:08 -0400 (Thu, 27 Mar 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.3 (2025-02-28) -- "Trophy Case" 4764
palomino8Windows Server 2022 Datacenterx644.4.3 (2025-02-28 ucrt) -- "Trophy Case" 4495
merida1macOS 12.7.5 Montereyx86_644.4.3 (2025-02-28) -- "Trophy Case" 4522
kjohnson1macOS 13.6.6 Venturaarm644.4.3 (2025-02-28) -- "Trophy Case" 4449
taishanLinux (openEuler 24.03 LTS)aarch644.4.3 (2025-02-28) -- "Trophy Case" 4420
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 251/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.70.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-03-24 13:00 -0400 (Mon, 24 Mar 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_20
git_last_commit: 32b6f6a
git_last_commit_date: 2024-10-29 09:27:20 -0400 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on merida1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.70.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
StartedAt: 2025-03-25 00:15:58 -0400 (Tue, 25 Mar 2025)
EndedAt: 2025-03-25 00:17:13 -0400 (Tue, 25 Mar 2025)
EllapsedTime: 75.0 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.70.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.4.3 (2025-02-28)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.70.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation
installing to /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.581   0.212   1.019 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 473668 25.3    1034025 55.3         NA   638622 34.2
Vcells 877290  6.7    8388608 64.0      65536  2072022 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Mar 25 00:16:33 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Mar 25 00:16:34 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000010b02a0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Mar 25 00:16:40 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Mar 25 00:16:43 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000010b02a0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]        [,3]       [,4]
[1,] 99.6853517  0.8102115  0.38982101 -0.4584924
[2,]  0.9451770 -0.1455817 -1.42008494 -0.8487021
[3,]  0.7748063 -2.1686984  0.05457393 -0.5232495
[4,] -1.2442535  0.9898259  1.32025252 -0.6325364
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]      [,4]
[1,] 99.6853517 0.8102115 0.38982101 0.4584924
[2,]  0.9451770 0.1455817 1.42008494 0.8487021
[3,]  0.7748063 2.1686984 0.05457393 0.5232495
[4,]  1.2442535 0.9898259 1.32025252 0.6325364
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9842552 0.9001175 0.6243565 0.6771206
[2,] 0.9722021 0.3815517 1.1916732 0.9212503
[3,] 0.8802308 1.4726501 0.2336106 0.7233599
[4,] 1.1154611 0.9948999 1.1490224 0.7953215
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.52790 34.81139 31.63339 32.22970
[2,]  35.66720 28.96110 38.33682 35.06120
[3,]  34.57711 41.89520 27.39068 32.75685
[4,]  37.39886 35.93883 37.81048 33.58575
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x60000108c000>
> exp(tmp5)
<pointer: 0x60000108c000>
> log(tmp5,2)
<pointer: 0x60000108c000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 467.3254
> Min(tmp5)
[1] 56.04589
> mean(tmp5)
[1] 72.30749
> Sum(tmp5)
[1] 14461.5
> Var(tmp5)
[1] 855.8266
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.08615 70.59478 70.20420 72.83445 69.98654 69.27870 73.93418 67.91374
 [9] 69.67207 68.57004
> rowSums(tmp5)
 [1] 1801.723 1411.896 1404.084 1456.689 1399.731 1385.574 1478.684 1358.275
 [9] 1393.441 1371.401
> rowVars(tmp5)
 [1] 7939.63747   58.53600   77.99185   51.25130   69.65498   81.54168
 [7]  117.29286   54.09534   75.56985   36.88460
> rowSd(tmp5)
 [1] 89.104643  7.650882  8.831300  7.159001  8.345956  9.030043 10.830183
 [8]  7.354953  8.693092  6.073270
> rowMax(tmp5)
 [1] 467.32541  84.98967  87.19937  86.30323  83.04567  92.07606  93.90156
 [8]  87.89886  84.62115  81.17764
> rowMin(tmp5)
 [1] 58.03053 57.46819 56.36492 56.04589 58.08831 58.34710 59.17308 59.69826
 [9] 57.09530 58.98796
> 
> colMeans(tmp5)
 [1] 112.57622  71.54133  72.57061  68.04007  69.53363  67.79846  70.57897
 [8]  67.18239  68.92251  73.83933  68.47661  69.03511  71.28204  74.59992
[15]  70.21529  69.99367  69.27742  69.59152  69.85868  71.23594
> colSums(tmp5)
 [1] 1125.7622  715.4133  725.7061  680.4007  695.3363  677.9846  705.7897
 [8]  671.8239  689.2251  738.3933  684.7661  690.3511  712.8204  745.9992
[15]  702.1529  699.9367  692.7742  695.9152  698.5868  712.3594
> colVars(tmp5)
 [1] 15570.36750   110.22369    96.28799    72.00578   104.10556    59.19094
 [7]    96.34575   106.64434    86.01040    84.10705    50.18357    32.55243
[13]    56.59748    60.87875    13.61978    89.13404    54.25636    71.99197
[19]    50.62419    84.09614
> colSd(tmp5)
 [1] 124.781279  10.498747   9.812644   8.485622  10.203213   7.693565
 [7]   9.815587  10.326875   9.274179   9.170989   7.084036   5.705474
[13]   7.523130   7.802483   3.690498   9.441082   7.365892   8.484808
[19]   7.115068   9.170395
> colMax(tmp5)
 [1] 467.32541  87.19937  84.62115  87.89886  92.07606  83.48962  86.30323
 [8]  93.90156  87.10504  87.24576  78.20182  76.71323  86.20523  84.77288
[15]  74.94037  88.44318  79.14302  82.94421  79.41742  87.16866
> colMin(tmp5)
 [1] 63.49694 57.85428 57.01011 58.25529 58.03053 59.15147 57.22532 56.04589
 [9] 58.08831 59.69826 58.34710 60.19302 61.20482 63.03586 65.93082 56.36492
[17] 59.17308 57.46819 58.98796 57.09530
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.08615 70.59478 70.20420 72.83445 69.98654       NA 73.93418 67.91374
 [9] 69.67207 68.57004
> rowSums(tmp5)
 [1] 1801.723 1411.896 1404.084 1456.689 1399.731       NA 1478.684 1358.275
 [9] 1393.441 1371.401
> rowVars(tmp5)
 [1] 7939.63747   58.53600   77.99185   51.25130   69.65498   81.76134
 [7]  117.29286   54.09534   75.56985   36.88460
> rowSd(tmp5)
 [1] 89.104643  7.650882  8.831300  7.159001  8.345956  9.042198 10.830183
 [8]  7.354953  8.693092  6.073270
> rowMax(tmp5)
 [1] 467.32541  84.98967  87.19937  86.30323  83.04567        NA  93.90156
 [8]  87.89886  84.62115  81.17764
> rowMin(tmp5)
 [1] 58.03053 57.46819 56.36492 56.04589 58.08831       NA 59.17308 59.69826
 [9] 57.09530 58.98796
> 
> colMeans(tmp5)
 [1] 112.57622  71.54133  72.57061        NA  69.53363  67.79846  70.57897
 [8]  67.18239  68.92251  73.83933  68.47661  69.03511  71.28204  74.59992
[15]  70.21529  69.99367  69.27742  69.59152  69.85868  71.23594
> colSums(tmp5)
 [1] 1125.7622  715.4133  725.7061        NA  695.3363  677.9846  705.7897
 [8]  671.8239  689.2251  738.3933  684.7661  690.3511  712.8204  745.9992
[15]  702.1529  699.9367  692.7742  695.9152  698.5868  712.3594
> colVars(tmp5)
 [1] 15570.36750   110.22369    96.28799          NA   104.10556    59.19094
 [7]    96.34575   106.64434    86.01040    84.10705    50.18357    32.55243
[13]    56.59748    60.87875    13.61978    89.13404    54.25636    71.99197
[19]    50.62419    84.09614
> colSd(tmp5)
 [1] 124.781279  10.498747   9.812644         NA  10.203213   7.693565
 [7]   9.815587  10.326875   9.274179   9.170989   7.084036   5.705474
[13]   7.523130   7.802483   3.690498   9.441082   7.365892   8.484808
[19]   7.115068   9.170395
> colMax(tmp5)
 [1] 467.32541  87.19937  84.62115        NA  92.07606  83.48962  86.30323
 [8]  93.90156  87.10504  87.24576  78.20182  76.71323  86.20523  84.77288
[15]  74.94037  88.44318  79.14302  82.94421  79.41742  87.16866
> colMin(tmp5)
 [1] 63.49694 57.85428 57.01011       NA 58.03053 59.15147 57.22532 56.04589
 [9] 58.08831 59.69826 58.34710 60.19302 61.20482 63.03586 65.93082 56.36492
[17] 59.17308 57.46819 58.98796 57.09530
> 
> Max(tmp5,na.rm=TRUE)
[1] 467.3254
> Min(tmp5,na.rm=TRUE)
[1] 56.04589
> mean(tmp5,na.rm=TRUE)
[1] 72.36585
> Sum(tmp5,na.rm=TRUE)
[1] 14400.8
> Var(tmp5,na.rm=TRUE)
[1] 859.4642
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.08615 70.59478 70.20420 72.83445 69.98654 69.73056 73.93418 67.91374
 [9] 69.67207 68.57004
> rowSums(tmp5,na.rm=TRUE)
 [1] 1801.723 1411.896 1404.084 1456.689 1399.731 1324.881 1478.684 1358.275
 [9] 1393.441 1371.401
> rowVars(tmp5,na.rm=TRUE)
 [1] 7939.63747   58.53600   77.99185   51.25130   69.65498   81.76134
 [7]  117.29286   54.09534   75.56985   36.88460
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.104643  7.650882  8.831300  7.159001  8.345956  9.042198 10.830183
 [8]  7.354953  8.693092  6.073270
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.32541  84.98967  87.19937  86.30323  83.04567  92.07606  93.90156
 [8]  87.89886  84.62115  81.17764
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.03053 57.46819 56.36492 56.04589 58.08831 58.34710 59.17308 59.69826
 [9] 57.09530 58.98796
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.57622  71.54133  72.57061  68.85638  69.53363  67.79846  70.57897
 [8]  67.18239  68.92251  73.83933  68.47661  69.03511  71.28204  74.59992
[15]  70.21529  69.99367  69.27742  69.59152  69.85868  71.23594
> colSums(tmp5,na.rm=TRUE)
 [1] 1125.7622  715.4133  725.7061  619.7074  695.3363  677.9846  705.7897
 [8]  671.8239  689.2251  738.3933  684.7661  690.3511  712.8204  745.9992
[15]  702.1529  699.9367  692.7742  695.9152  698.5868  712.3594
> colVars(tmp5,na.rm=TRUE)
 [1] 15570.36750   110.22369    96.28799    73.51004   104.10556    59.19094
 [7]    96.34575   106.64434    86.01040    84.10705    50.18357    32.55243
[13]    56.59748    60.87875    13.61978    89.13404    54.25636    71.99197
[19]    50.62419    84.09614
> colSd(tmp5,na.rm=TRUE)
 [1] 124.781279  10.498747   9.812644   8.573800  10.203213   7.693565
 [7]   9.815587  10.326875   9.274179   9.170989   7.084036   5.705474
[13]   7.523130   7.802483   3.690498   9.441082   7.365892   8.484808
[19]   7.115068   9.170395
> colMax(tmp5,na.rm=TRUE)
 [1] 467.32541  87.19937  84.62115  87.89886  92.07606  83.48962  86.30323
 [8]  93.90156  87.10504  87.24576  78.20182  76.71323  86.20523  84.77288
[15]  74.94037  88.44318  79.14302  82.94421  79.41742  87.16866
> colMin(tmp5,na.rm=TRUE)
 [1] 63.49694 57.85428 57.01011 58.25529 58.03053 59.15147 57.22532 56.04589
 [9] 58.08831 59.69826 58.34710 60.19302 61.20482 63.03586 65.93082 56.36492
[17] 59.17308 57.46819 58.98796 57.09530
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.08615 70.59478 70.20420 72.83445 69.98654      NaN 73.93418 67.91374
 [9] 69.67207 68.57004
> rowSums(tmp5,na.rm=TRUE)
 [1] 1801.723 1411.896 1404.084 1456.689 1399.731    0.000 1478.684 1358.275
 [9] 1393.441 1371.401
> rowVars(tmp5,na.rm=TRUE)
 [1] 7939.63747   58.53600   77.99185   51.25130   69.65498         NA
 [7]  117.29286   54.09534   75.56985   36.88460
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.104643  7.650882  8.831300  7.159001  8.345956        NA 10.830183
 [8]  7.354953  8.693092  6.073270
> rowMax(tmp5,na.rm=TRUE)
 [1] 467.32541  84.98967  87.19937  86.30323  83.04567        NA  93.90156
 [8]  87.89886  84.62115  81.17764
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.03053 57.46819 56.36492 56.04589 58.08831       NA 59.17308 59.69826
 [9] 57.09530 58.98796
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 117.04471  72.50490  72.12837       NaN  67.02891  68.65523  70.88447
 [8]  67.78686  69.35502  72.85746  69.60211  68.68634  70.62660  74.44428
[15]  70.62146  70.21745  70.23385  69.94353  71.00353  70.39891
> colSums(tmp5,na.rm=TRUE)
 [1] 1053.4024  652.5441  649.1553    0.0000  603.2602  617.8971  637.9602
 [8]  610.0817  624.1952  655.7171  626.4190  618.1771  635.6394  669.9985
[15]  635.5931  631.9571  632.1047  629.4918  639.0317  633.5902
> colVars(tmp5,na.rm=TRUE)
 [1] 17292.03044   113.55648   106.12376          NA    46.54080    58.33170
 [7]   107.33898   115.86431    94.65721    83.77468    42.20554    35.25302
[13]    58.83908    68.21605    13.46626    99.71241    50.74723    79.59696
[19]    42.20718    86.72625
> colSd(tmp5,na.rm=TRUE)
 [1] 131.499165  10.656288  10.301639         NA   6.822082   7.637519
 [7]  10.360453  10.764028   9.729194   9.152851   6.496579   5.937425
[13]   7.670664   8.259301   3.669641   9.985610   7.123709   8.921713
[19]   6.496705   9.312693
> colMax(tmp5,na.rm=TRUE)
 [1] 467.32541  87.19937  84.62115      -Inf  79.55218  83.48962  86.30323
 [8]  93.90156  87.10504  87.24576  78.20182  76.71323  86.20523  84.77288
[15]  74.94037  88.44318  79.14302  82.94421  79.41742  87.16866
> colMin(tmp5,na.rm=TRUE)
 [1] 63.49694 57.85428 57.01011      Inf 58.03053 59.15147 57.22532 56.04589
 [9] 58.08831 59.69826 60.66195 60.19302 61.20482 63.03586 65.93082 56.36492
[17] 59.17308 57.46819 58.98796 57.09530
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 242.3198 266.4787 415.9017 205.5960 190.5883 155.6001 198.5698 134.6069
 [9] 210.4650 142.4409
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 242.3198 266.4787 415.9017 205.5960 190.5883 155.6001 198.5698 134.6069
 [9] 210.4650 142.4409
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -2.842171e-14  0.000000e+00 -1.136868e-13 -1.136868e-13 -1.705303e-13
 [6] -1.136868e-13  2.842171e-14  5.684342e-14  3.126388e-13 -1.136868e-13
[11]  1.421085e-14  5.684342e-14  1.136868e-13 -1.136868e-13  0.000000e+00
[16]  0.000000e+00  8.526513e-14 -1.563194e-13  2.842171e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   17 
10   8 
7   17 
6   9 
7   16 
3   10 
5   15 
5   12 
1   6 
5   16 
5   6 
8   2 
5   13 
7   14 
8   17 
7   3 
2   5 
8   8 
7   5 
9   13 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 1.942476
> Min(tmp)
[1] -2.487054
> mean(tmp)
[1] -0.03090612
> Sum(tmp)
[1] -3.090612
> Var(tmp)
[1] 0.7843551
> 
> rowMeans(tmp)
[1] -0.03090612
> rowSums(tmp)
[1] -3.090612
> rowVars(tmp)
[1] 0.7843551
> rowSd(tmp)
[1] 0.8856382
> rowMax(tmp)
[1] 1.942476
> rowMin(tmp)
[1] -2.487054
> 
> colMeans(tmp)
  [1]  0.289480674 -0.015818791  1.381898262  0.009832649 -0.355620689
  [6]  1.207360879 -0.515372916 -0.424841109 -2.487053940  0.212865857
 [11] -1.002716349 -1.202616502  1.127943045  0.231662458  0.759831105
 [16]  1.255909465  0.068784098  0.414918686 -0.698474316  0.037735656
 [21] -1.496724201 -0.106032243 -0.454332062 -0.608156187 -1.275421499
 [26] -0.936672231  0.449469295 -0.115374633 -0.557928107  1.590233952
 [31]  0.440131269 -0.142526969 -0.462694484  0.946528770  0.611301467
 [36]  0.109037557  0.226423621  0.740728774 -0.918824955 -1.760983181
 [41] -0.869952088  1.471702146  0.415482964 -0.555304626 -0.699775758
 [46]  0.156769421 -0.616728718  1.454242255  0.412470009  0.197348451
 [51]  0.528286716  0.135923507  0.376620229  0.173690598 -0.888784528
 [56] -0.914829693  0.978968880  0.097268888  0.535702708 -0.205803992
 [61] -1.839383487 -0.336841161  0.995265261  1.209199184 -1.688121496
 [66] -1.417940786  1.942476434  0.798099917 -0.164005752  0.468674020
 [71] -0.981301322 -0.327206770  0.721665476  0.474176180 -0.487291495
 [76] -0.902853853 -0.109289770  0.965532041 -0.062846344 -1.637923177
 [81]  0.126353430  0.230147586  0.728034819  1.603205488 -0.222220126
 [86]  0.811231844 -2.152209402 -0.043071357 -0.138190967  0.457226157
 [91] -0.354621133 -0.282515821  0.760367544 -0.697056572 -1.313791643
 [96] -0.016574331  0.772045674 -0.414199475 -0.537842066  1.215795897
> colSums(tmp)
  [1]  0.289480674 -0.015818791  1.381898262  0.009832649 -0.355620689
  [6]  1.207360879 -0.515372916 -0.424841109 -2.487053940  0.212865857
 [11] -1.002716349 -1.202616502  1.127943045  0.231662458  0.759831105
 [16]  1.255909465  0.068784098  0.414918686 -0.698474316  0.037735656
 [21] -1.496724201 -0.106032243 -0.454332062 -0.608156187 -1.275421499
 [26] -0.936672231  0.449469295 -0.115374633 -0.557928107  1.590233952
 [31]  0.440131269 -0.142526969 -0.462694484  0.946528770  0.611301467
 [36]  0.109037557  0.226423621  0.740728774 -0.918824955 -1.760983181
 [41] -0.869952088  1.471702146  0.415482964 -0.555304626 -0.699775758
 [46]  0.156769421 -0.616728718  1.454242255  0.412470009  0.197348451
 [51]  0.528286716  0.135923507  0.376620229  0.173690598 -0.888784528
 [56] -0.914829693  0.978968880  0.097268888  0.535702708 -0.205803992
 [61] -1.839383487 -0.336841161  0.995265261  1.209199184 -1.688121496
 [66] -1.417940786  1.942476434  0.798099917 -0.164005752  0.468674020
 [71] -0.981301322 -0.327206770  0.721665476  0.474176180 -0.487291495
 [76] -0.902853853 -0.109289770  0.965532041 -0.062846344 -1.637923177
 [81]  0.126353430  0.230147586  0.728034819  1.603205488 -0.222220126
 [86]  0.811231844 -2.152209402 -0.043071357 -0.138190967  0.457226157
 [91] -0.354621133 -0.282515821  0.760367544 -0.697056572 -1.313791643
 [96] -0.016574331  0.772045674 -0.414199475 -0.537842066  1.215795897
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.289480674 -0.015818791  1.381898262  0.009832649 -0.355620689
  [6]  1.207360879 -0.515372916 -0.424841109 -2.487053940  0.212865857
 [11] -1.002716349 -1.202616502  1.127943045  0.231662458  0.759831105
 [16]  1.255909465  0.068784098  0.414918686 -0.698474316  0.037735656
 [21] -1.496724201 -0.106032243 -0.454332062 -0.608156187 -1.275421499
 [26] -0.936672231  0.449469295 -0.115374633 -0.557928107  1.590233952
 [31]  0.440131269 -0.142526969 -0.462694484  0.946528770  0.611301467
 [36]  0.109037557  0.226423621  0.740728774 -0.918824955 -1.760983181
 [41] -0.869952088  1.471702146  0.415482964 -0.555304626 -0.699775758
 [46]  0.156769421 -0.616728718  1.454242255  0.412470009  0.197348451
 [51]  0.528286716  0.135923507  0.376620229  0.173690598 -0.888784528
 [56] -0.914829693  0.978968880  0.097268888  0.535702708 -0.205803992
 [61] -1.839383487 -0.336841161  0.995265261  1.209199184 -1.688121496
 [66] -1.417940786  1.942476434  0.798099917 -0.164005752  0.468674020
 [71] -0.981301322 -0.327206770  0.721665476  0.474176180 -0.487291495
 [76] -0.902853853 -0.109289770  0.965532041 -0.062846344 -1.637923177
 [81]  0.126353430  0.230147586  0.728034819  1.603205488 -0.222220126
 [86]  0.811231844 -2.152209402 -0.043071357 -0.138190967  0.457226157
 [91] -0.354621133 -0.282515821  0.760367544 -0.697056572 -1.313791643
 [96] -0.016574331  0.772045674 -0.414199475 -0.537842066  1.215795897
> colMin(tmp)
  [1]  0.289480674 -0.015818791  1.381898262  0.009832649 -0.355620689
  [6]  1.207360879 -0.515372916 -0.424841109 -2.487053940  0.212865857
 [11] -1.002716349 -1.202616502  1.127943045  0.231662458  0.759831105
 [16]  1.255909465  0.068784098  0.414918686 -0.698474316  0.037735656
 [21] -1.496724201 -0.106032243 -0.454332062 -0.608156187 -1.275421499
 [26] -0.936672231  0.449469295 -0.115374633 -0.557928107  1.590233952
 [31]  0.440131269 -0.142526969 -0.462694484  0.946528770  0.611301467
 [36]  0.109037557  0.226423621  0.740728774 -0.918824955 -1.760983181
 [41] -0.869952088  1.471702146  0.415482964 -0.555304626 -0.699775758
 [46]  0.156769421 -0.616728718  1.454242255  0.412470009  0.197348451
 [51]  0.528286716  0.135923507  0.376620229  0.173690598 -0.888784528
 [56] -0.914829693  0.978968880  0.097268888  0.535702708 -0.205803992
 [61] -1.839383487 -0.336841161  0.995265261  1.209199184 -1.688121496
 [66] -1.417940786  1.942476434  0.798099917 -0.164005752  0.468674020
 [71] -0.981301322 -0.327206770  0.721665476  0.474176180 -0.487291495
 [76] -0.902853853 -0.109289770  0.965532041 -0.062846344 -1.637923177
 [81]  0.126353430  0.230147586  0.728034819  1.603205488 -0.222220126
 [86]  0.811231844 -2.152209402 -0.043071357 -0.138190967  0.457226157
 [91] -0.354621133 -0.282515821  0.760367544 -0.697056572 -1.313791643
 [96] -0.016574331  0.772045674 -0.414199475 -0.537842066  1.215795897
> colMedians(tmp)
  [1]  0.289480674 -0.015818791  1.381898262  0.009832649 -0.355620689
  [6]  1.207360879 -0.515372916 -0.424841109 -2.487053940  0.212865857
 [11] -1.002716349 -1.202616502  1.127943045  0.231662458  0.759831105
 [16]  1.255909465  0.068784098  0.414918686 -0.698474316  0.037735656
 [21] -1.496724201 -0.106032243 -0.454332062 -0.608156187 -1.275421499
 [26] -0.936672231  0.449469295 -0.115374633 -0.557928107  1.590233952
 [31]  0.440131269 -0.142526969 -0.462694484  0.946528770  0.611301467
 [36]  0.109037557  0.226423621  0.740728774 -0.918824955 -1.760983181
 [41] -0.869952088  1.471702146  0.415482964 -0.555304626 -0.699775758
 [46]  0.156769421 -0.616728718  1.454242255  0.412470009  0.197348451
 [51]  0.528286716  0.135923507  0.376620229  0.173690598 -0.888784528
 [56] -0.914829693  0.978968880  0.097268888  0.535702708 -0.205803992
 [61] -1.839383487 -0.336841161  0.995265261  1.209199184 -1.688121496
 [66] -1.417940786  1.942476434  0.798099917 -0.164005752  0.468674020
 [71] -0.981301322 -0.327206770  0.721665476  0.474176180 -0.487291495
 [76] -0.902853853 -0.109289770  0.965532041 -0.062846344 -1.637923177
 [81]  0.126353430  0.230147586  0.728034819  1.603205488 -0.222220126
 [86]  0.811231844 -2.152209402 -0.043071357 -0.138190967  0.457226157
 [91] -0.354621133 -0.282515821  0.760367544 -0.697056572 -1.313791643
 [96] -0.016574331  0.772045674 -0.414199475 -0.537842066  1.215795897
> colRanges(tmp)
          [,1]        [,2]     [,3]        [,4]       [,5]     [,6]       [,7]
[1,] 0.2894807 -0.01581879 1.381898 0.009832649 -0.3556207 1.207361 -0.5153729
[2,] 0.2894807 -0.01581879 1.381898 0.009832649 -0.3556207 1.207361 -0.5153729
           [,8]      [,9]     [,10]     [,11]     [,12]    [,13]     [,14]
[1,] -0.4248411 -2.487054 0.2128659 -1.002716 -1.202617 1.127943 0.2316625
[2,] -0.4248411 -2.487054 0.2128659 -1.002716 -1.202617 1.127943 0.2316625
         [,15]    [,16]     [,17]     [,18]      [,19]      [,20]     [,21]
[1,] 0.7598311 1.255909 0.0687841 0.4149187 -0.6984743 0.03773566 -1.496724
[2,] 0.7598311 1.255909 0.0687841 0.4149187 -0.6984743 0.03773566 -1.496724
          [,22]      [,23]      [,24]     [,25]      [,26]     [,27]      [,28]
[1,] -0.1060322 -0.4543321 -0.6081562 -1.275421 -0.9366722 0.4494693 -0.1153746
[2,] -0.1060322 -0.4543321 -0.6081562 -1.275421 -0.9366722 0.4494693 -0.1153746
          [,29]    [,30]     [,31]     [,32]      [,33]     [,34]     [,35]
[1,] -0.5579281 1.590234 0.4401313 -0.142527 -0.4626945 0.9465288 0.6113015
[2,] -0.5579281 1.590234 0.4401313 -0.142527 -0.4626945 0.9465288 0.6113015
         [,36]     [,37]     [,38]     [,39]     [,40]      [,41]    [,42]
[1,] 0.1090376 0.2264236 0.7407288 -0.918825 -1.760983 -0.8699521 1.471702
[2,] 0.1090376 0.2264236 0.7407288 -0.918825 -1.760983 -0.8699521 1.471702
        [,43]      [,44]      [,45]     [,46]      [,47]    [,48]   [,49]
[1,] 0.415483 -0.5553046 -0.6997758 0.1567694 -0.6167287 1.454242 0.41247
[2,] 0.415483 -0.5553046 -0.6997758 0.1567694 -0.6167287 1.454242 0.41247
         [,50]     [,51]     [,52]     [,53]     [,54]      [,55]      [,56]
[1,] 0.1973485 0.5282867 0.1359235 0.3766202 0.1736906 -0.8887845 -0.9148297
[2,] 0.1973485 0.5282867 0.1359235 0.3766202 0.1736906 -0.8887845 -0.9148297
         [,57]      [,58]     [,59]     [,60]     [,61]      [,62]     [,63]
[1,] 0.9789689 0.09726889 0.5357027 -0.205804 -1.839383 -0.3368412 0.9952653
[2,] 0.9789689 0.09726889 0.5357027 -0.205804 -1.839383 -0.3368412 0.9952653
        [,64]     [,65]     [,66]    [,67]     [,68]      [,69]    [,70]
[1,] 1.209199 -1.688121 -1.417941 1.942476 0.7980999 -0.1640058 0.468674
[2,] 1.209199 -1.688121 -1.417941 1.942476 0.7980999 -0.1640058 0.468674
          [,71]      [,72]     [,73]     [,74]      [,75]      [,76]      [,77]
[1,] -0.9813013 -0.3272068 0.7216655 0.4741762 -0.4872915 -0.9028539 -0.1092898
[2,] -0.9813013 -0.3272068 0.7216655 0.4741762 -0.4872915 -0.9028539 -0.1092898
        [,78]       [,79]     [,80]     [,81]     [,82]     [,83]    [,84]
[1,] 0.965532 -0.06284634 -1.637923 0.1263534 0.2301476 0.7280348 1.603205
[2,] 0.965532 -0.06284634 -1.637923 0.1263534 0.2301476 0.7280348 1.603205
          [,85]     [,86]     [,87]       [,88]     [,89]     [,90]      [,91]
[1,] -0.2222201 0.8112318 -2.152209 -0.04307136 -0.138191 0.4572262 -0.3546211
[2,] -0.2222201 0.8112318 -2.152209 -0.04307136 -0.138191 0.4572262 -0.3546211
          [,92]     [,93]      [,94]     [,95]       [,96]     [,97]      [,98]
[1,] -0.2825158 0.7603675 -0.6970566 -1.313792 -0.01657433 0.7720457 -0.4141995
[2,] -0.2825158 0.7603675 -0.6970566 -1.313792 -0.01657433 0.7720457 -0.4141995
          [,99]   [,100]
[1,] -0.5378421 1.215796
[2,] -0.5378421 1.215796
> 
> 
> Max(tmp2)
[1] 2.114958
> Min(tmp2)
[1] -2.039824
> mean(tmp2)
[1] -0.02232557
> Sum(tmp2)
[1] -2.232557
> Var(tmp2)
[1] 0.9052129
> 
> rowMeans(tmp2)
  [1]  1.14439346 -0.34753124 -0.86926550  2.01934345 -1.17772333  0.58938197
  [7]  0.29836136 -0.35567163 -0.18672678  0.84134308 -0.06120163  0.01360234
 [13] -0.74304366 -1.07274155 -0.86223592  0.13131575 -0.35921428 -0.82139528
 [19]  0.68092380 -0.19601762  0.55621064 -1.44697488 -1.14558076  0.39385224
 [25] -1.52380086  1.45127688 -0.83975044  1.11915147 -0.71380000 -0.71511298
 [31] -0.18997482  0.06734930  0.30182404 -0.25940193 -1.95286580  0.59731147
 [37] -1.28152569  1.37863067 -1.03120830 -0.88393239 -0.28721123 -1.62435091
 [43]  0.19268490 -0.54861173 -0.77019619 -0.79739307  1.34662457 -1.77522825
 [49]  1.57218050 -0.13315745  0.44513521  0.51143091 -1.15255879  0.22004849
 [55]  0.78230177  0.14559260  0.29967226 -0.16574055 -0.39313722  1.65293005
 [61]  1.62920148 -0.94656995 -0.52544411  1.77592363  0.99640685 -0.49476805
 [67]  0.71143224 -0.58489044 -0.64753807 -1.58305918  0.98862690 -0.70019459
 [73]  0.72958193 -0.70525016  1.40636904  0.30389336  0.88191961  1.02014290
 [79] -0.85136561  0.26560411  0.05348229 -0.50380859  0.05583270  0.08677778
 [85]  1.49309401 -0.26477366 -1.29168288 -0.80050091 -0.28150006  0.10238143
 [91]  0.82911051 -0.23596264  1.42495783  0.49386692  0.20357013 -1.11862461
 [97]  2.11495771 -2.03982418  0.58455254  1.12292395
> rowSums(tmp2)
  [1]  1.14439346 -0.34753124 -0.86926550  2.01934345 -1.17772333  0.58938197
  [7]  0.29836136 -0.35567163 -0.18672678  0.84134308 -0.06120163  0.01360234
 [13] -0.74304366 -1.07274155 -0.86223592  0.13131575 -0.35921428 -0.82139528
 [19]  0.68092380 -0.19601762  0.55621064 -1.44697488 -1.14558076  0.39385224
 [25] -1.52380086  1.45127688 -0.83975044  1.11915147 -0.71380000 -0.71511298
 [31] -0.18997482  0.06734930  0.30182404 -0.25940193 -1.95286580  0.59731147
 [37] -1.28152569  1.37863067 -1.03120830 -0.88393239 -0.28721123 -1.62435091
 [43]  0.19268490 -0.54861173 -0.77019619 -0.79739307  1.34662457 -1.77522825
 [49]  1.57218050 -0.13315745  0.44513521  0.51143091 -1.15255879  0.22004849
 [55]  0.78230177  0.14559260  0.29967226 -0.16574055 -0.39313722  1.65293005
 [61]  1.62920148 -0.94656995 -0.52544411  1.77592363  0.99640685 -0.49476805
 [67]  0.71143224 -0.58489044 -0.64753807 -1.58305918  0.98862690 -0.70019459
 [73]  0.72958193 -0.70525016  1.40636904  0.30389336  0.88191961  1.02014290
 [79] -0.85136561  0.26560411  0.05348229 -0.50380859  0.05583270  0.08677778
 [85]  1.49309401 -0.26477366 -1.29168288 -0.80050091 -0.28150006  0.10238143
 [91]  0.82911051 -0.23596264  1.42495783  0.49386692  0.20357013 -1.11862461
 [97]  2.11495771 -2.03982418  0.58455254  1.12292395
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.14439346 -0.34753124 -0.86926550  2.01934345 -1.17772333  0.58938197
  [7]  0.29836136 -0.35567163 -0.18672678  0.84134308 -0.06120163  0.01360234
 [13] -0.74304366 -1.07274155 -0.86223592  0.13131575 -0.35921428 -0.82139528
 [19]  0.68092380 -0.19601762  0.55621064 -1.44697488 -1.14558076  0.39385224
 [25] -1.52380086  1.45127688 -0.83975044  1.11915147 -0.71380000 -0.71511298
 [31] -0.18997482  0.06734930  0.30182404 -0.25940193 -1.95286580  0.59731147
 [37] -1.28152569  1.37863067 -1.03120830 -0.88393239 -0.28721123 -1.62435091
 [43]  0.19268490 -0.54861173 -0.77019619 -0.79739307  1.34662457 -1.77522825
 [49]  1.57218050 -0.13315745  0.44513521  0.51143091 -1.15255879  0.22004849
 [55]  0.78230177  0.14559260  0.29967226 -0.16574055 -0.39313722  1.65293005
 [61]  1.62920148 -0.94656995 -0.52544411  1.77592363  0.99640685 -0.49476805
 [67]  0.71143224 -0.58489044 -0.64753807 -1.58305918  0.98862690 -0.70019459
 [73]  0.72958193 -0.70525016  1.40636904  0.30389336  0.88191961  1.02014290
 [79] -0.85136561  0.26560411  0.05348229 -0.50380859  0.05583270  0.08677778
 [85]  1.49309401 -0.26477366 -1.29168288 -0.80050091 -0.28150006  0.10238143
 [91]  0.82911051 -0.23596264  1.42495783  0.49386692  0.20357013 -1.11862461
 [97]  2.11495771 -2.03982418  0.58455254  1.12292395
> rowMin(tmp2)
  [1]  1.14439346 -0.34753124 -0.86926550  2.01934345 -1.17772333  0.58938197
  [7]  0.29836136 -0.35567163 -0.18672678  0.84134308 -0.06120163  0.01360234
 [13] -0.74304366 -1.07274155 -0.86223592  0.13131575 -0.35921428 -0.82139528
 [19]  0.68092380 -0.19601762  0.55621064 -1.44697488 -1.14558076  0.39385224
 [25] -1.52380086  1.45127688 -0.83975044  1.11915147 -0.71380000 -0.71511298
 [31] -0.18997482  0.06734930  0.30182404 -0.25940193 -1.95286580  0.59731147
 [37] -1.28152569  1.37863067 -1.03120830 -0.88393239 -0.28721123 -1.62435091
 [43]  0.19268490 -0.54861173 -0.77019619 -0.79739307  1.34662457 -1.77522825
 [49]  1.57218050 -0.13315745  0.44513521  0.51143091 -1.15255879  0.22004849
 [55]  0.78230177  0.14559260  0.29967226 -0.16574055 -0.39313722  1.65293005
 [61]  1.62920148 -0.94656995 -0.52544411  1.77592363  0.99640685 -0.49476805
 [67]  0.71143224 -0.58489044 -0.64753807 -1.58305918  0.98862690 -0.70019459
 [73]  0.72958193 -0.70525016  1.40636904  0.30389336  0.88191961  1.02014290
 [79] -0.85136561  0.26560411  0.05348229 -0.50380859  0.05583270  0.08677778
 [85]  1.49309401 -0.26477366 -1.29168288 -0.80050091 -0.28150006  0.10238143
 [91]  0.82911051 -0.23596264  1.42495783  0.49386692  0.20357013 -1.11862461
 [97]  2.11495771 -2.03982418  0.58455254  1.12292395
> 
> colMeans(tmp2)
[1] -0.02232557
> colSums(tmp2)
[1] -2.232557
> colVars(tmp2)
[1] 0.9052129
> colSd(tmp2)
[1] 0.9514268
> colMax(tmp2)
[1] 2.114958
> colMin(tmp2)
[1] -2.039824
> colMedians(tmp2)
[1] -0.09717954
> colRanges(tmp2)
          [,1]
[1,] -2.039824
[2,]  2.114958
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -7.63119406  4.21109057 -0.34191244  0.09715365 -0.21675930  1.31269101
 [7]  0.62149341  1.24523866 -1.29765149 -2.05334409
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -2.40714280
[2,] -1.77875154
[3,] -0.21566031
[4,]  0.03941054
[5,]  0.76726329
> 
> rowApply(tmp,sum)
 [1]  6.86298816  0.08332564 -0.54224047 -0.54800912 -2.78160704 -6.06104550
 [7] -0.22886006  2.15661463  0.96795315 -3.96231344
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    2    1    4    2    9    2    6    5    5     1
 [2,]    9   10    9    1    4    7    9    3    7    10
 [3,]    1    9    7   10    7    1    7    7    6     2
 [4,]    6    5    2    4    6   10   10    9    3     4
 [5,]    7    6    8    5    3    6    3    4   10     5
 [6,]   10    2    3    8    5    4    5    8    9     6
 [7,]    8    7    6    3    1    9    1   10    8     3
 [8,]    5    4    5    6    8    3    8    6    1     8
 [9,]    3    8   10    9    2    5    2    2    2     7
[10,]    4    3    1    7   10    8    4    1    4     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.7407507  1.4645694  2.1114584 -2.0746104 -2.6442849  1.4205629
 [7]  0.7492806 -0.7426170 -2.2684323  0.4888554 -1.2378954  0.8632343
[13]  4.5684826 -3.9265738  1.6360366 -2.4725270  2.4331982  2.2024203
[19]  2.1030942 -4.3449344
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.5610753
[2,]  0.3453347
[3,]  0.8127597
[4,]  0.8900229
[5,]  1.2537086
> 
> rowApply(tmp,sum)
[1]   7.2886280  -0.5227451   0.5685844 -12.9716352   7.7072362
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   16   14   18    5   13
[2,]   18    7   10   10   15
[3,]    7   17   19   14    9
[4,]   12   16    1    6   11
[5,]   11    9    8    2    4
> 
> 
> as.matrix(tmp)
           [,1]       [,2]        [,3]       [,4]        [,5]       [,6]
[1,]  1.2537086  1.4824234 -0.19204430  0.6163292  0.58800624 -0.6961183
[2,]  0.3453347 -0.6075784  0.84495776  0.5813009 -0.02282795 -1.2676186
[3,]  0.8127597 -0.1198927  1.08422566 -2.2927843 -0.24047320  1.7932156
[4,] -1.5610753 -0.5725605 -0.03164607 -1.5379043 -2.30529992  0.2699174
[5,]  0.8900229  1.2821777  0.40596534  0.5584481 -0.66369004  1.3211668
           [,7]       [,8]       [,9]       [,10]      [,11]      [,12]
[1,]  0.2061286  0.2157689 -0.2995293  1.48714916  0.1412365  0.6500945
[2,]  1.5097602 -0.1017671 -1.8560461  0.18637045 -0.7606780  1.1649870
[3,] -0.9561862  0.4076140 -0.3297913  0.08298216 -0.1682425 -0.2926557
[4,]  0.1739136  0.2703396 -0.5642755 -1.05182995 -0.9340411  0.2936871
[5,] -0.1843356 -1.5345725  0.7812098 -0.21581637  0.4838297 -0.9528787
         [,13]       [,14]      [,15]         [,16]      [,17]      [,18]
[1,] 0.7611528 -0.93447177  1.4591279 -1.2503731073  0.7520012 -0.2248589
[2,] 0.4502977 -0.01008679  0.1267316  0.0006034284  1.7430710 -1.0400147
[3,] 0.5193230 -0.94979893  0.6198000  0.4272394264 -0.3937003  0.5822326
[4,] 0.9795714 -0.03579139 -1.6715043 -1.7582628928 -1.2658448  1.3868553
[5,] 1.8581378 -1.99642487  1.1018814  0.1082661480  1.5976711  1.4982060
          [,19]        [,20]
[1,]  1.5197027 -0.246806093
[2,] -0.6793458 -1.130196387
[3,]  0.2625488 -0.279831421
[4,] -0.3649308 -2.690952835
[5,]  1.3651194  0.002852296
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  655  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  567  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2      col3       col4       col5        col6
row1 -0.2971448 0.7927339 0.6220227 0.04573352 -0.5206411 -0.03973746
           col7      col8       col9      col10     col11     col12      col13
row1 -0.1475596 -0.607878 -0.5025449 -0.6092001 0.7527261 0.3581084 -0.7293213
         col14     col15      col16    col17     col18      col19     col20
row1 -1.065541 0.5199002 -0.2764144 1.711329 -1.067741 -0.1727069 -1.122852
> tmp[,"col10"]
             col10
row1 -0.6092001487
row2  0.0803354268
row3 -0.1291447516
row4 -0.6114077703
row5 -0.0002227203
> tmp[c("row1","row5"),]
           col1      col2       col3        col4       col5        col6
row1 -0.2971448 0.7927339  0.6220227  0.04573352 -0.5206411 -0.03973746
row5 -0.2342331 0.4080078 -0.4423024 -0.37043678  1.0265083  0.47672506
           col7      col8       col9         col10      col11     col12
row1 -0.1475596 -0.607878 -0.5025449 -0.6092001487  0.7527261 0.3581084
row5  0.2364145  3.492252 -0.4939801 -0.0002227203 -0.4052939 0.3128912
          col13      col14     col15      col16       col17      col18
row1 -0.7293213 -1.0655415 0.5199002 -0.2764144  1.71132879 -1.0677414
row5  1.5869615 -0.9929636 0.3263905 -0.3989561 -0.02742356  0.8801372
          col19      col20
row1 -0.1727069 -1.1228518
row5 -0.5407226  0.5036982
> tmp[,c("col6","col20")]
            col6      col20
row1 -0.03973746 -1.1228518
row2  0.80851533  0.2559621
row3  1.08613419 -0.5028642
row4 -2.56829631 -0.9362879
row5  0.47672506  0.5036982
> tmp[c("row1","row5"),c("col6","col20")]
            col6      col20
row1 -0.03973746 -1.1228518
row5  0.47672506  0.5036982
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2   col3     col4     col5     col6     col7     col8
row1 48.22544 51.05263 49.271 51.12127 50.13727 104.9184 50.67067 50.49794
         col9   col10    col11    col12    col13    col14    col15    col16
row1 50.11387 48.6928 51.01463 49.67394 50.42175 48.01325 50.29155 49.08366
        col17    col18    col19    col20
row1 49.15234 51.81003 50.56721 104.6142
> tmp[,"col10"]
        col10
row1 48.69280
row2 32.74312
row3 29.59189
row4 31.28329
row5 49.76748
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.22544 51.05263 49.27100 51.12127 50.13727 104.9184 50.67067 50.49794
row5 50.80263 50.44548 49.87798 48.94858 50.89861 102.0951 50.14901 49.55088
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.11387 48.69280 51.01463 49.67394 50.42175 48.01325 50.29155 49.08366
row5 49.13078 49.76748 50.39046 49.84496 47.91438 49.24207 49.11151 49.72239
        col17    col18    col19    col20
row1 49.15234 51.81003 50.56721 104.6142
row5 49.96990 49.43422 50.35190 107.3084
> tmp[,c("col6","col20")]
          col6     col20
row1 104.91842 104.61417
row2  75.33720  74.41370
row3  74.30298  74.45137
row4  75.02873  74.55471
row5 102.09506 107.30845
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.9184 104.6142
row5 102.0951 107.3084
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.9184 104.6142
row5 102.0951 107.3084
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  0.40734100
[2,] -0.02009686
[3,] -1.14644223
[4,]  1.82912692
[5,]  2.27315334
> tmp[,c("col17","col7")]
          col17      col7
[1,] -1.6522358 0.1233001
[2,]  0.6749134 0.2108796
[3,]  0.7127271 0.3417093
[4,]  0.9077749 1.5234247
[5,]  0.4023326 1.2043740
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -1.4163337  0.9797859
[2,]  0.2399109  0.7809660
[3,]  0.2357581 -0.0674569
[4,]  0.3202197 -0.3092259
[5,]  0.7766583  1.3873005
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.416334
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -1.4163337
[2,]  0.2399109
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]      [,3]       [,4]       [,5]        [,6]
row3 0.0233985 -0.2090971 1.1509014 -0.1626919  0.9447507  0.03343253
row1 2.0945886 -0.3055133 0.0903637 -0.8436806 -1.5603865 -0.26286936
            [,7]       [,8]        [,9]     [,10]     [,11]     [,12]     [,13]
row3 -1.06714662  0.5708229  1.77421123 1.7696162 0.6255232 0.9298999 0.1804827
row1  0.02789609 -1.6535688 -0.07817349 0.3000507 0.1940926 0.3352339 2.0510986
             [,14]     [,15]      [,16]     [,17]     [,18]      [,19]
row3 -0.0006782262 0.4165375 -0.6389131 0.3548056 0.1204956  0.2007152
row1 -0.4313353427 0.2405868 -0.1621080 0.5802517 0.8129023 -0.2364144
          [,20]
row3  0.7905958
row1 -0.2271709
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]     [,3]     [,4]      [,5]     [,6]       [,7]
row2 -0.7078256 0.6345224 1.200821 1.256706 0.6853212 1.382032 -0.4245774
          [,8]        [,9]   [,10]
row2 -2.248356 -0.09015774 -0.1073
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]     [,3]      [,4]     [,5]       [,6]     [,7]
row5 -0.3391425 -2.168009 -1.41068 0.7586158 1.078896 -0.6588832 1.673256
         [,8]      [,9]       [,10]     [,11]    [,12]      [,13]       [,14]
row5 -2.37238 -2.082922 -0.08722129 0.8337607 2.273533 0.04516565 -0.04622658
         [,15]    [,16]      [,17]     [,18]    [,19]     [,20]
row5 0.5300953 1.815975 -0.6615014 0.4095333 2.007366 0.3916987
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6000010f8000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d687d47"  
 [2] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d4bf8c086"
 [3] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d3827c461"
 [4] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d3acdd914"
 [5] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d2066ce35"
 [6] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d3d6c0a31"
 [7] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d113678"  
 [8] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d6a0f0050"
 [9] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d7eddba95"
[10] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679df04cd45" 
[11] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d44074b7" 
[12] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d23ae9c8f"
[13] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d1ca88296"
[14] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d7b15548c"
[15] "/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests/BM1679d3561f275"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x60000108c1e0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x60000108c1e0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x60000108c1e0>
> rowMedians(tmp)
  [1] -0.0752087395 -0.2431237131  0.2575398350 -0.3260941127  0.2366584900
  [6]  0.6010412204 -0.6046313806  0.1567276757  0.0345951178 -0.1166277621
 [11]  0.3107999572  0.2205032177 -0.3754001044 -0.3387629512  0.0844193658
 [16]  0.5727233522 -0.0261164183 -0.3243365705  0.3201823565 -0.1820443603
 [21] -0.7067610593  0.2467935547 -0.6209879453 -0.0478070154 -0.4056187478
 [26]  0.1919693193  0.1731290661 -0.1082970709  0.3634445093 -0.1630425409
 [31]  0.1307582064 -0.0170993496  0.2716593322 -0.2532971255 -0.2928986553
 [36]  0.3495422404 -0.6623976693 -0.2050510690  0.3253263275 -0.2851636051
 [41]  0.7206440205  0.2004540714 -0.3277296346  0.1424020257 -0.5216464266
 [46] -0.2713286823 -0.1112276427 -0.1720302284  0.1028046147  0.5337243366
 [51]  0.1607285279 -0.3917132354  0.0573866363  0.0089011910  0.0101475697
 [56]  0.3646538340  0.0106401899  0.1268590250  0.6095570984  0.1657266743
 [61] -0.2789738149 -0.1610646933  0.3073100561  0.6099221169  0.3747725691
 [66] -0.5393820040  0.6331804382 -0.0855631781  0.1172795883  0.4231066742
 [71] -0.1439889160 -0.3804358222  0.0623014548  0.1631483797 -0.0754873654
 [76] -0.5358838650  0.3599573999 -0.0394288684 -0.1369681860  0.1819051484
 [81]  0.3956443748  0.1408378860 -0.2358218173  0.2068075852  0.0377510431
 [86]  0.1277122382 -0.3055144955 -0.1082271779 -0.5278224265 -0.1013123592
 [91] -0.4013807219 -0.4390805754  0.0358933824  0.2546593002  0.1805877265
 [96]  0.3030664679  0.1528635907  0.1065873379  0.0448773718  0.5333731760
[101] -0.3912737322 -0.1042882690 -0.1898082858  0.5045224488  0.6792428795
[106]  0.1036597000  0.2058474313  0.2485685643  0.2515609208  0.3277481260
[111]  0.1959669239  0.4392280550  0.0035544173  0.3972821845  0.0978288188
[116] -0.5794749955 -0.2666170693 -0.1819208302  0.2125590828  0.3198798536
[121] -0.0026246242  0.0251055237 -0.3825778176 -0.3457083168  0.4691083756
[126]  0.4606911981 -0.1103543145 -0.1115840940  0.1552748148 -0.0596861192
[131] -0.2313009127 -0.2977222427  0.1671374711  0.0460383041 -0.6524728594
[136]  0.8213586018  0.2167434362 -0.0077486886 -0.2318196087 -0.2379358888
[141]  0.4913128058  0.3828811953  0.2541156457 -0.6431328725  0.4794146435
[146] -0.1366304100 -0.4878383089 -0.2179036335  0.3013581960 -0.6590026051
[151]  0.0488595877 -0.0225455836  0.2199630844  0.5446156088 -0.0046050368
[156]  0.2640918068 -0.1686972454 -0.0978323050  0.5903528826  0.1485697546
[161] -0.2831558213 -0.0730143236 -0.0449134117  0.1703846150 -0.4385129713
[166]  0.1287359629  0.2574556923 -0.4264653673 -0.0153271265  0.5175962690
[171]  0.0943904182 -0.4921150852 -0.1375074994  0.1147180272 -0.1978662341
[176]  0.2287001033 -0.0369009266  0.2026048830 -0.2417314261 -0.0800011184
[181] -0.3635286556  0.4432568682 -0.3180263882  0.2377839905  0.1211934732
[186] -0.3814225935 -0.0579615716 -0.2029915089 -0.7637992302  0.0008590416
[191]  0.3055831657  0.0510712804  0.0242558844  0.0370752478  0.0013689643
[196] -0.4319010352  0.7161008538 -0.2820793472  0.1740938898 -0.0645294821
[201] -0.2875752999  0.3270819436 -0.1643714060 -0.2401394788  0.3853228365
[206] -0.2111385808  0.3594833105  0.2808825795  0.1723034409 -0.0659924083
[211] -0.2608905312 -0.0263290762 -0.1459974073 -0.3518497218  0.0036285815
[216]  0.0161758571  0.2187205203 -0.0756664970  0.1283833325  0.1132581961
[221] -0.2560701064 -0.2097747701  0.3234315163 -0.2610968313  0.2250425197
[226] -0.4912838657 -0.1255309132  0.1581255654  0.0068620648 -0.2573831980
> 
> proc.time()
   user  system elapsed 
  5.083  18.815  26.290 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001dfc3c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001dfc3c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001dfc3c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600001dfc3c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600001de4060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001de4060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600001de4060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001de4060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001de4060>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001dd4060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001dd4060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001dd4060>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001dd4060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001dd4060>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600001dd4060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001dd4060>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600001dd4060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001dd4060>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001da8000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600001da8000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001da8000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001da8000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile16ee9124b560c" "BufferedMatrixFile16ee946537976"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile16ee9124b560c" "BufferedMatrixFile16ee946537976"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001dec000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001dec000>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001dec000>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001dec000>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600001dec000>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600001dec000>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001dec180>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001dec180>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001dec180>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600001dec180>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001dec360>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001dec360>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.574   0.217   0.824 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.3 (2025-02-28) -- "Trophy Case"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.575   0.135   0.695 

Example timings