Back to Multiple platform build/check report for BioC 3.20:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2024-06-11 15:40 -0400 (Tue, 11 Jun 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 22.04.3 LTS)x86_644.4.0 RC (2024-04-16 r86468) -- "Puppy Cup" 4679
palomino4Windows Server 2022 Datacenterx644.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup" 4414
merida1macOS 12.7.4 Montereyx86_644.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" 4441
kjohnson1macOS 13.6.6 Venturaarm644.4.0 Patched (2024-04-24 r86482) -- "Puppy Cup" 4394
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 245/2239HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.69.0  (landing page)
Ben Bolstad
Snapshot Date: 2024-06-09 14:00 -0400 (Sun, 09 Jun 2024)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: d422a05
git_last_commit_date: 2024-04-30 10:16:21 -0400 (Tue, 30 Apr 2024)
nebbiolo2Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino4Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.4 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on palomino4

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.69.0
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:BufferedMatrix.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings BufferedMatrix_1.69.0.tar.gz
StartedAt: 2024-06-10 00:31:08 -0400 (Mon, 10 Jun 2024)
EndedAt: 2024-06-10 00:32:42 -0400 (Mon, 10 Jun 2024)
EllapsedTime: 94.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:BufferedMatrix.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings BufferedMatrix_1.69.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck'
* using R version 4.4.0 RC (2024-04-16 r86468 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.2.0
    GNU Fortran (GCC) 13.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'BufferedMatrix/DESCRIPTION' ... OK
* this is package 'BufferedMatrix' version '1.69.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'BufferedMatrix' can be installed ... OK
* used C compiler: 'gcc.exe (GCC) 13.2.0'
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files for x64 is not available
File 'F:/biocbuild/bbs-3.20-bioc/R/library/BufferedMatrix/libs/x64/BufferedMatrix.dll':
  Found '_exit', possibly from '_exit' (C)
  Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran)

Compiled code should not call entry points which might terminate R nor
write to stdout/stderr instead of to the console, nor use Fortran I/O
nor system RNGs nor [v]sprintf. The detected symbols are linked into
the code but might come from libraries and not actually be called.

See 'Writing portable packages' in the 'Writing R Extensions' manual.
* checking sizes of PDF files under 'inst/doc' ... OK
* checking files in 'vignettes' ... OK
* checking examples ... NONE
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'Rcodetesting.R'
  Running 'c_code_level_tests.R'
  Running 'objectTesting.R'
  Running 'rawCalltesting.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/00check.log'
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'BufferedMatrix' ...
** using staged installation
** libs
using C compiler: 'gcc.exe (GCC) 13.2.0'
gcc  -I"F:/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG     -I"C:/rtools44/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc  -I"F:/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG     -I"C:/rtools44/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode':
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc  -I"F:/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG     -I"C:/rtools44/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc  -I"F:/biocbuild/bbs-3.20-bioc/R/include" -DNDEBUG     -I"C:/rtools44/x86_64-w64-mingw32.static.posix/include"     -O2 -Wall  -mfpmath=sse -msse2 -mstackrealign  -c init_package.c -o init_package.o
gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/rtools44/x86_64-w64-mingw32.static.posix/lib/x64 -LC:/rtools44/x86_64-w64-mingw32.static.posix/lib -LF:/biocbuild/bbs-3.20-bioc/R/bin/x64 -lR
installing to F:/biocbuild/bbs-3.20-bioc/R/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs/x64
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for 'rowMeans' in package 'BufferedMatrix'
Creating a new generic function for 'rowSums' in package 'BufferedMatrix'
Creating a new generic function for 'colMeans' in package 'BufferedMatrix'
Creating a new generic function for 'colSums' in package 'BufferedMatrix'
Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix'
Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix'
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
   0.26    0.31    0.70 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 468464 25.1    1021761 54.6   633414 33.9
Vcells 853870  6.6    8388608 64.0  2003120 15.3
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Jun 10 00:31:43 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Jun 10 00:31:44 2024"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x0000021aaacfaa70>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Mon Jun 10 00:31:55 2024"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Mon Jun 10 00:31:59 2024"
> 
> ColMode(tmp2)
<pointer: 0x0000021aaacfaa70>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 100.4747889  0.5174965 -1.6504765 -0.1620194
[2,]   0.5260570 -1.0233505  0.7675330  0.4646630
[3,]  -0.9966778  1.3639993 -2.3194772 -2.5940864
[4,]  -0.3530156 -0.4945604  0.0920837 -1.0252564
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.4747889 0.5174965 1.6504765 0.1620194
[2,]   0.5260570 1.0233505 0.7675330 0.4646630
[3,]   0.9966778 1.3639993 2.3194772 2.5940864
[4,]   0.3530156 0.4945604 0.0920837 1.0252564
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0237113 0.7193723 1.2847087 0.4025164
[2,]  0.7252978 1.0116079 0.8760896 0.6816619
[3,]  0.9983375 1.1679038 1.5229830 1.6106168
[4,]  0.5941511 0.7032499 0.3034530 1.0125495
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.71190 32.71122 39.49756 29.18718
[2,]  32.77904 36.13943 34.52843 32.28128
[3,]  35.98005 38.04304 42.54931 43.70025
[4,]  31.29453 32.52706 28.12661 36.15075
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x0000021aaacfab30>
> exp(tmp5)
<pointer: 0x0000021aaacfab30>
> log(tmp5,2)
<pointer: 0x0000021aaacfab30>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.7898
> Min(tmp5)
[1] 53.6092
> mean(tmp5)
[1] 73.41395
> Sum(tmp5)
[1] 14682.79
> Var(tmp5)
[1] 877.6586
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.70984 75.45830 72.63112 70.79666 68.76589 75.14889 68.23831 69.77068
 [9] 72.24916 70.37060
> rowSums(tmp5)
 [1] 1814.197 1509.166 1452.622 1415.933 1375.318 1502.978 1364.766 1395.414
 [9] 1444.983 1407.412
> rowVars(tmp5)
 [1] 8064.03895   63.07128  104.39078   51.41221   68.55816   80.53352
 [7]   44.18319   65.16276  139.36518  105.19916
> rowSd(tmp5)
 [1] 89.799994  7.941743 10.217180  7.170231  8.279985  8.974047  6.647044
 [8]  8.072345 11.805303 10.256664
> rowMax(tmp5)
 [1] 469.78975  92.26895  90.95635  85.12655  83.23208  90.10254  78.75684
 [8]  83.33762  94.89222  90.92910
> rowMin(tmp5)
 [1] 55.63239 62.77771 58.86227 58.54186 54.70545 56.49165 55.85604 55.13045
 [9] 56.86045 53.60920
> 
> colMeans(tmp5)
 [1] 113.59396  69.27874  73.89211  72.17318  66.34987  68.81596  70.62843
 [8]  65.58215  68.87080  74.15197  73.03731  74.54756  72.81263  72.98626
[15]  72.95647  70.44073  71.63197  75.69035  70.29450  70.54396
> colSums(tmp5)
 [1] 1135.9396  692.7874  738.9211  721.7318  663.4987  688.1596  706.2843
 [8]  655.8215  688.7080  741.5197  730.3731  745.4756  728.1263  729.8626
[15]  729.5647  704.4073  716.3197  756.9035  702.9450  705.4396
> colVars(tmp5)
 [1] 15730.73016    56.72237    95.77405    70.42017    67.62661    68.91766
 [7]   142.56223    40.91958    93.31459    83.74764    92.84635   155.21916
[13]    88.69389    94.41949   120.50763    99.42267    44.57312    83.74182
[19]    55.13791    85.18676
> colSd(tmp5)
 [1] 125.422208   7.531426   9.786421   8.391672   8.223540   8.301666
 [7]  11.939943   6.396841   9.659948   9.151374   9.635681  12.458698
[13]   9.417744   9.716969  10.977597   9.971092   6.676310   9.151056
[19]   7.425490   9.229667
> colMax(tmp5)
 [1] 469.78975  79.18160  88.56081  90.95635  80.63204  85.12655  89.84028
 [8]  77.68512  81.09047  90.80227  92.26895  90.71329  86.55534  87.32907
[15]  94.89222  90.10254  85.13867  90.92910  83.09272  84.50712
> colMin(tmp5)
 [1] 62.55166 56.78278 58.54186 60.74930 56.58667 56.86045 54.70545 57.26747
 [9] 53.60920 60.06975 59.93649 56.49165 55.85604 58.86227 55.13045 56.74934
[17] 59.68359 62.45420 59.27849 61.86875
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.70984 75.45830       NA 70.79666 68.76589 75.14889 68.23831 69.77068
 [9] 72.24916 70.37060
> rowSums(tmp5)
 [1] 1814.197 1509.166       NA 1415.933 1375.318 1502.978 1364.766 1395.414
 [9] 1444.983 1407.412
> rowVars(tmp5)
 [1] 8064.03895   63.07128   95.35079   51.41221   68.55816   80.53352
 [7]   44.18319   65.16276  139.36518  105.19916
> rowSd(tmp5)
 [1] 89.799994  7.941743  9.764773  7.170231  8.279985  8.974047  6.647044
 [8]  8.072345 11.805303 10.256664
> rowMax(tmp5)
 [1] 469.78975  92.26895        NA  85.12655  83.23208  90.10254  78.75684
 [8]  83.33762  94.89222  90.92910
> rowMin(tmp5)
 [1] 55.63239 62.77771       NA 58.54186 54.70545 56.49165 55.85604 55.13045
 [9] 56.86045 53.60920
> 
> colMeans(tmp5)
 [1] 113.59396  69.27874        NA  72.17318  66.34987  68.81596  70.62843
 [8]  65.58215  68.87080  74.15197  73.03731  74.54756  72.81263  72.98626
[15]  72.95647  70.44073  71.63197  75.69035  70.29450  70.54396
> colSums(tmp5)
 [1] 1135.9396  692.7874        NA  721.7318  663.4987  688.1596  706.2843
 [8]  655.8215  688.7080  741.5197  730.3731  745.4756  728.1263  729.8626
[15]  729.5647  704.4073  716.3197  756.9035  702.9450  705.4396
> colVars(tmp5)
 [1] 15730.73016    56.72237          NA    70.42017    67.62661    68.91766
 [7]   142.56223    40.91958    93.31459    83.74764    92.84635   155.21916
[13]    88.69389    94.41949   120.50763    99.42267    44.57312    83.74182
[19]    55.13791    85.18676
> colSd(tmp5)
 [1] 125.422208   7.531426         NA   8.391672   8.223540   8.301666
 [7]  11.939943   6.396841   9.659948   9.151374   9.635681  12.458698
[13]   9.417744   9.716969  10.977597   9.971092   6.676310   9.151056
[19]   7.425490   9.229667
> colMax(tmp5)
 [1] 469.78975  79.18160        NA  90.95635  80.63204  85.12655  89.84028
 [8]  77.68512  81.09047  90.80227  92.26895  90.71329  86.55534  87.32907
[15]  94.89222  90.10254  85.13867  90.92910  83.09272  84.50712
> colMin(tmp5)
 [1] 62.55166 56.78278       NA 60.74930 56.58667 56.86045 54.70545 57.26747
 [9] 53.60920 60.06975 59.93649 56.49165 55.85604 58.86227 55.13045 56.74934
[17] 59.68359 62.45420 59.27849 61.86875
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.7898
> Min(tmp5,na.rm=TRUE)
[1] 53.6092
> mean(tmp5,na.rm=TRUE)
[1] 73.33783
> Sum(tmp5,na.rm=TRUE)
[1] 14594.23
> Var(tmp5,na.rm=TRUE)
[1] 880.9267
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.70984 75.45830 71.79271 70.79666 68.76589 75.14889 68.23831 69.77068
 [9] 72.24916 70.37060
> rowSums(tmp5,na.rm=TRUE)
 [1] 1814.197 1509.166 1364.062 1415.933 1375.318 1502.978 1364.766 1395.414
 [9] 1444.983 1407.412
> rowVars(tmp5,na.rm=TRUE)
 [1] 8064.03895   63.07128   95.35079   51.41221   68.55816   80.53352
 [7]   44.18319   65.16276  139.36518  105.19916
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.799994  7.941743  9.764773  7.170231  8.279985  8.974047  6.647044
 [8]  8.072345 11.805303 10.256664
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.78975  92.26895  90.95635  85.12655  83.23208  90.10254  78.75684
 [8]  83.33762  94.89222  90.92910
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.63239 62.77771 58.86227 58.54186 54.70545 56.49165 55.85604 55.13045
 [9] 56.86045 53.60920
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.59396  69.27874  72.26225  72.17318  66.34987  68.81596  70.62843
 [8]  65.58215  68.87080  74.15197  73.03731  74.54756  72.81263  72.98626
[15]  72.95647  70.44073  71.63197  75.69035  70.29450  70.54396
> colSums(tmp5,na.rm=TRUE)
 [1] 1135.9396  692.7874  650.3603  721.7318  663.4987  688.1596  706.2843
 [8]  655.8215  688.7080  741.5197  730.3731  745.4756  728.1263  729.8626
[15]  729.5647  704.4073  716.3197  756.9035  702.9450  705.4396
> colVars(tmp5,na.rm=TRUE)
 [1] 15730.73016    56.72237    77.86097    70.42017    67.62661    68.91766
 [7]   142.56223    40.91958    93.31459    83.74764    92.84635   155.21916
[13]    88.69389    94.41949   120.50763    99.42267    44.57312    83.74182
[19]    55.13791    85.18676
> colSd(tmp5,na.rm=TRUE)
 [1] 125.422208   7.531426   8.823886   8.391672   8.223540   8.301666
 [7]  11.939943   6.396841   9.659948   9.151374   9.635681  12.458698
[13]   9.417744   9.716969  10.977597   9.971092   6.676310   9.151056
[19]   7.425490   9.229667
> colMax(tmp5,na.rm=TRUE)
 [1] 469.78975  79.18160  83.01402  90.95635  80.63204  85.12655  89.84028
 [8]  77.68512  81.09047  90.80227  92.26895  90.71329  86.55534  87.32907
[15]  94.89222  90.10254  85.13867  90.92910  83.09272  84.50712
> colMin(tmp5,na.rm=TRUE)
 [1] 62.55166 56.78278 58.54186 60.74930 56.58667 56.86045 54.70545 57.26747
 [9] 53.60920 60.06975 59.93649 56.49165 55.85604 58.86227 55.13045 56.74934
[17] 59.68359 62.45420 59.27849 61.86875
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.70984 75.45830      NaN 70.79666 68.76589 75.14889 68.23831 69.77068
 [9] 72.24916 70.37060
> rowSums(tmp5,na.rm=TRUE)
 [1] 1814.197 1509.166    0.000 1415.933 1375.318 1502.978 1364.766 1395.414
 [9] 1444.983 1407.412
> rowVars(tmp5,na.rm=TRUE)
 [1] 8064.03895   63.07128         NA   51.41221   68.55816   80.53352
 [7]   44.18319   65.16276  139.36518  105.19916
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.799994  7.941743        NA  7.170231  8.279985  8.974047  6.647044
 [8]  8.072345 11.805303 10.256664
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.78975  92.26895        NA  85.12655  83.23208  90.10254  78.75684
 [8]  83.33762  94.89222  90.92910
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.63239 62.77771       NA 58.54186 54.70545 56.49165 55.85604 55.13045
 [9] 56.86045 53.60920
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 117.89465  68.17842       NaN  70.08616  67.05254  68.52700  70.51732
 [8]  66.05083  69.48526  74.17877  72.44128  72.78961  72.80418  74.55559
[15]  72.18858  71.64955  72.95957  75.96122  69.57948  70.85629
> colSums(tmp5,na.rm=TRUE)
 [1] 1061.0518  613.6058    0.0000  630.7754  603.4728  616.7430  634.6559
 [8]  594.4575  625.3674  667.6089  651.9715  655.1065  655.2376  671.0003
[15]  649.6972  644.8460  656.6362  683.6510  626.2153  637.7066
> colVars(tmp5,na.rm=TRUE)
 [1] 17488.99234    50.19230          NA    30.22161    70.52534    76.59304
 [7]   160.24362    43.56335   100.73137    94.20802   100.45548   139.85451
[13]    99.77983    78.51541   128.93733    95.41137    30.31643    93.38414
[19]    56.27861    94.73769
> colSd(tmp5,na.rm=TRUE)
 [1] 132.245954   7.084652         NA   5.497418   8.397937   8.751745
 [7]  12.658737   6.600253  10.036502   9.706082  10.022748  11.826010
[13]   9.988985   8.860892  11.355058   9.767874   5.506036   9.663547
[19]   7.501907   9.733329
> colMax(tmp5,na.rm=TRUE)
 [1] 469.78975  77.35624      -Inf  77.22736  80.63204  85.12655  89.84028
 [8]  77.68512  81.09047  90.80227  92.26895  90.71329  86.55534  87.32907
[15]  94.89222  90.10254  85.13867  90.92910  83.09272  84.50712
> colMin(tmp5,na.rm=TRUE)
 [1] 62.55166 56.78278      Inf 60.74930 56.58667 56.86045 54.70545 57.26747
 [9] 53.60920 60.06975 59.93649 56.49165 55.85604 61.52779 55.13045 56.74934
[17] 65.66539 62.45420 59.27849 61.86875
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 224.35582 261.16749 233.96553 179.57852 142.10232 148.26353 269.88067
 [8] 132.75799  94.49486 242.22631
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 224.35582 261.16749 233.96553 179.57852 142.10232 148.26353 269.88067
 [8] 132.75799  94.49486 242.22631
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  5.684342e-14  0.000000e+00 -1.136868e-13 -5.684342e-14  8.526513e-14
 [6]  5.684342e-14  1.705303e-13 -3.694822e-13 -8.526513e-14  0.000000e+00
[11]  0.000000e+00 -1.705303e-13 -5.684342e-14  2.842171e-13 -2.842171e-14
[16]  9.947598e-14  2.842171e-14  2.842171e-14 -2.842171e-14  8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
8   7 
10   14 
5   8 
9   1 
9   19 
9   5 
5   1 
2   4 
8   15 
5   2 
5   2 
4   18 
2   15 
8   1 
5   4 
6   17 
8   14 
1   17 
8   10 
4   16 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.131422
> Min(tmp)
[1] -2.132202
> mean(tmp)
[1] 0.03215054
> Sum(tmp)
[1] 3.215054
> Var(tmp)
[1] 0.9546888
> 
> rowMeans(tmp)
[1] 0.03215054
> rowSums(tmp)
[1] 3.215054
> rowVars(tmp)
[1] 0.9546888
> rowSd(tmp)
[1] 0.9770818
> rowMax(tmp)
[1] 2.131422
> rowMin(tmp)
[1] -2.132202
> 
> colMeans(tmp)
  [1] -0.190200938 -0.389049448 -0.740835421  0.049624170 -0.219421165
  [6]  0.388164461  0.050117934  1.352700370  2.131422475  0.440974276
 [11] -1.565630502  0.764577575 -0.609255972 -0.670076832 -0.575814680
 [16] -0.472267974  1.960390993  0.347322875  1.460160890 -0.168661619
 [21]  1.098264875  1.051562242 -0.545098916  1.907286418 -0.988814438
 [26] -0.593011338  0.526633153  0.560970777  0.173900375 -0.876845296
 [31] -0.169945187  0.581211730  0.719547072 -0.324812342  0.295113770
 [36] -1.656020813  1.449755422 -0.806305515  1.661948534 -0.947692442
 [41] -0.706819521  1.414578779  0.660660677  0.432008682 -0.296924084
 [46]  1.229122167  0.688590696  0.005045701  0.398186903 -1.411567796
 [51]  0.126155811  0.631652768 -1.955575206 -2.132201780 -1.025226027
 [56]  0.291836050  0.007812224 -1.055933499  0.563334800 -0.700361264
 [61]  1.345371852  1.896727069 -0.016275424  0.096005557  0.005072537
 [66]  1.541882828 -0.233683648 -0.342017252  0.083576744 -1.076401384
 [71]  1.073121854 -1.265964628  0.471850608 -1.035705968 -0.377882487
 [76] -0.156639019 -1.782263774  1.544574272  0.088333697 -1.110697295
 [81]  0.582917302 -0.470436015 -0.453509814 -0.929282378  1.249927591
 [86]  0.861449958  1.255820834 -1.784828273 -0.925409319  0.312236855
 [91]  0.756703187  0.042344436 -1.173088593 -0.786234880 -0.932937781
 [96] -0.877150641  1.326800691 -0.593463633 -0.055961585  1.433904700
> colSums(tmp)
  [1] -0.190200938 -0.389049448 -0.740835421  0.049624170 -0.219421165
  [6]  0.388164461  0.050117934  1.352700370  2.131422475  0.440974276
 [11] -1.565630502  0.764577575 -0.609255972 -0.670076832 -0.575814680
 [16] -0.472267974  1.960390993  0.347322875  1.460160890 -0.168661619
 [21]  1.098264875  1.051562242 -0.545098916  1.907286418 -0.988814438
 [26] -0.593011338  0.526633153  0.560970777  0.173900375 -0.876845296
 [31] -0.169945187  0.581211730  0.719547072 -0.324812342  0.295113770
 [36] -1.656020813  1.449755422 -0.806305515  1.661948534 -0.947692442
 [41] -0.706819521  1.414578779  0.660660677  0.432008682 -0.296924084
 [46]  1.229122167  0.688590696  0.005045701  0.398186903 -1.411567796
 [51]  0.126155811  0.631652768 -1.955575206 -2.132201780 -1.025226027
 [56]  0.291836050  0.007812224 -1.055933499  0.563334800 -0.700361264
 [61]  1.345371852  1.896727069 -0.016275424  0.096005557  0.005072537
 [66]  1.541882828 -0.233683648 -0.342017252  0.083576744 -1.076401384
 [71]  1.073121854 -1.265964628  0.471850608 -1.035705968 -0.377882487
 [76] -0.156639019 -1.782263774  1.544574272  0.088333697 -1.110697295
 [81]  0.582917302 -0.470436015 -0.453509814 -0.929282378  1.249927591
 [86]  0.861449958  1.255820834 -1.784828273 -0.925409319  0.312236855
 [91]  0.756703187  0.042344436 -1.173088593 -0.786234880 -0.932937781
 [96] -0.877150641  1.326800691 -0.593463633 -0.055961585  1.433904700
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.190200938 -0.389049448 -0.740835421  0.049624170 -0.219421165
  [6]  0.388164461  0.050117934  1.352700370  2.131422475  0.440974276
 [11] -1.565630502  0.764577575 -0.609255972 -0.670076832 -0.575814680
 [16] -0.472267974  1.960390993  0.347322875  1.460160890 -0.168661619
 [21]  1.098264875  1.051562242 -0.545098916  1.907286418 -0.988814438
 [26] -0.593011338  0.526633153  0.560970777  0.173900375 -0.876845296
 [31] -0.169945187  0.581211730  0.719547072 -0.324812342  0.295113770
 [36] -1.656020813  1.449755422 -0.806305515  1.661948534 -0.947692442
 [41] -0.706819521  1.414578779  0.660660677  0.432008682 -0.296924084
 [46]  1.229122167  0.688590696  0.005045701  0.398186903 -1.411567796
 [51]  0.126155811  0.631652768 -1.955575206 -2.132201780 -1.025226027
 [56]  0.291836050  0.007812224 -1.055933499  0.563334800 -0.700361264
 [61]  1.345371852  1.896727069 -0.016275424  0.096005557  0.005072537
 [66]  1.541882828 -0.233683648 -0.342017252  0.083576744 -1.076401384
 [71]  1.073121854 -1.265964628  0.471850608 -1.035705968 -0.377882487
 [76] -0.156639019 -1.782263774  1.544574272  0.088333697 -1.110697295
 [81]  0.582917302 -0.470436015 -0.453509814 -0.929282378  1.249927591
 [86]  0.861449958  1.255820834 -1.784828273 -0.925409319  0.312236855
 [91]  0.756703187  0.042344436 -1.173088593 -0.786234880 -0.932937781
 [96] -0.877150641  1.326800691 -0.593463633 -0.055961585  1.433904700
> colMin(tmp)
  [1] -0.190200938 -0.389049448 -0.740835421  0.049624170 -0.219421165
  [6]  0.388164461  0.050117934  1.352700370  2.131422475  0.440974276
 [11] -1.565630502  0.764577575 -0.609255972 -0.670076832 -0.575814680
 [16] -0.472267974  1.960390993  0.347322875  1.460160890 -0.168661619
 [21]  1.098264875  1.051562242 -0.545098916  1.907286418 -0.988814438
 [26] -0.593011338  0.526633153  0.560970777  0.173900375 -0.876845296
 [31] -0.169945187  0.581211730  0.719547072 -0.324812342  0.295113770
 [36] -1.656020813  1.449755422 -0.806305515  1.661948534 -0.947692442
 [41] -0.706819521  1.414578779  0.660660677  0.432008682 -0.296924084
 [46]  1.229122167  0.688590696  0.005045701  0.398186903 -1.411567796
 [51]  0.126155811  0.631652768 -1.955575206 -2.132201780 -1.025226027
 [56]  0.291836050  0.007812224 -1.055933499  0.563334800 -0.700361264
 [61]  1.345371852  1.896727069 -0.016275424  0.096005557  0.005072537
 [66]  1.541882828 -0.233683648 -0.342017252  0.083576744 -1.076401384
 [71]  1.073121854 -1.265964628  0.471850608 -1.035705968 -0.377882487
 [76] -0.156639019 -1.782263774  1.544574272  0.088333697 -1.110697295
 [81]  0.582917302 -0.470436015 -0.453509814 -0.929282378  1.249927591
 [86]  0.861449958  1.255820834 -1.784828273 -0.925409319  0.312236855
 [91]  0.756703187  0.042344436 -1.173088593 -0.786234880 -0.932937781
 [96] -0.877150641  1.326800691 -0.593463633 -0.055961585  1.433904700
> colMedians(tmp)
  [1] -0.190200938 -0.389049448 -0.740835421  0.049624170 -0.219421165
  [6]  0.388164461  0.050117934  1.352700370  2.131422475  0.440974276
 [11] -1.565630502  0.764577575 -0.609255972 -0.670076832 -0.575814680
 [16] -0.472267974  1.960390993  0.347322875  1.460160890 -0.168661619
 [21]  1.098264875  1.051562242 -0.545098916  1.907286418 -0.988814438
 [26] -0.593011338  0.526633153  0.560970777  0.173900375 -0.876845296
 [31] -0.169945187  0.581211730  0.719547072 -0.324812342  0.295113770
 [36] -1.656020813  1.449755422 -0.806305515  1.661948534 -0.947692442
 [41] -0.706819521  1.414578779  0.660660677  0.432008682 -0.296924084
 [46]  1.229122167  0.688590696  0.005045701  0.398186903 -1.411567796
 [51]  0.126155811  0.631652768 -1.955575206 -2.132201780 -1.025226027
 [56]  0.291836050  0.007812224 -1.055933499  0.563334800 -0.700361264
 [61]  1.345371852  1.896727069 -0.016275424  0.096005557  0.005072537
 [66]  1.541882828 -0.233683648 -0.342017252  0.083576744 -1.076401384
 [71]  1.073121854 -1.265964628  0.471850608 -1.035705968 -0.377882487
 [76] -0.156639019 -1.782263774  1.544574272  0.088333697 -1.110697295
 [81]  0.582917302 -0.470436015 -0.453509814 -0.929282378  1.249927591
 [86]  0.861449958  1.255820834 -1.784828273 -0.925409319  0.312236855
 [91]  0.756703187  0.042344436 -1.173088593 -0.786234880 -0.932937781
 [96] -0.877150641  1.326800691 -0.593463633 -0.055961585  1.433904700
> colRanges(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]      [,6]
[1,] -0.1902009 -0.3890494 -0.7408354 0.04962417 -0.2194212 0.3881645
[2,] -0.1902009 -0.3890494 -0.7408354 0.04962417 -0.2194212 0.3881645
           [,7]   [,8]     [,9]     [,10]     [,11]     [,12]     [,13]
[1,] 0.05011793 1.3527 2.131422 0.4409743 -1.565631 0.7645776 -0.609256
[2,] 0.05011793 1.3527 2.131422 0.4409743 -1.565631 0.7645776 -0.609256
          [,14]      [,15]     [,16]    [,17]     [,18]    [,19]      [,20]
[1,] -0.6700768 -0.5758147 -0.472268 1.960391 0.3473229 1.460161 -0.1686616
[2,] -0.6700768 -0.5758147 -0.472268 1.960391 0.3473229 1.460161 -0.1686616
        [,21]    [,22]      [,23]    [,24]      [,25]      [,26]     [,27]
[1,] 1.098265 1.051562 -0.5450989 1.907286 -0.9888144 -0.5930113 0.5266332
[2,] 1.098265 1.051562 -0.5450989 1.907286 -0.9888144 -0.5930113 0.5266332
         [,28]     [,29]      [,30]      [,31]     [,32]     [,33]      [,34]
[1,] 0.5609708 0.1739004 -0.8768453 -0.1699452 0.5812117 0.7195471 -0.3248123
[2,] 0.5609708 0.1739004 -0.8768453 -0.1699452 0.5812117 0.7195471 -0.3248123
         [,35]     [,36]    [,37]      [,38]    [,39]      [,40]      [,41]
[1,] 0.2951138 -1.656021 1.449755 -0.8063055 1.661949 -0.9476924 -0.7068195
[2,] 0.2951138 -1.656021 1.449755 -0.8063055 1.661949 -0.9476924 -0.7068195
        [,42]     [,43]     [,44]      [,45]    [,46]     [,47]       [,48]
[1,] 1.414579 0.6606607 0.4320087 -0.2969241 1.229122 0.6885907 0.005045701
[2,] 1.414579 0.6606607 0.4320087 -0.2969241 1.229122 0.6885907 0.005045701
         [,49]     [,50]     [,51]     [,52]     [,53]     [,54]     [,55]
[1,] 0.3981869 -1.411568 0.1261558 0.6316528 -1.955575 -2.132202 -1.025226
[2,] 0.3981869 -1.411568 0.1261558 0.6316528 -1.955575 -2.132202 -1.025226
        [,56]       [,57]     [,58]     [,59]      [,60]    [,61]    [,62]
[1,] 0.291836 0.007812224 -1.055933 0.5633348 -0.7003613 1.345372 1.896727
[2,] 0.291836 0.007812224 -1.055933 0.5633348 -0.7003613 1.345372 1.896727
           [,63]      [,64]       [,65]    [,66]      [,67]      [,68]
[1,] -0.01627542 0.09600556 0.005072537 1.541883 -0.2336836 -0.3420173
[2,] -0.01627542 0.09600556 0.005072537 1.541883 -0.2336836 -0.3420173
          [,69]     [,70]    [,71]     [,72]     [,73]     [,74]      [,75]
[1,] 0.08357674 -1.076401 1.073122 -1.265965 0.4718506 -1.035706 -0.3778825
[2,] 0.08357674 -1.076401 1.073122 -1.265965 0.4718506 -1.035706 -0.3778825
         [,76]     [,77]    [,78]     [,79]     [,80]     [,81]     [,82]
[1,] -0.156639 -1.782264 1.544574 0.0883337 -1.110697 0.5829173 -0.470436
[2,] -0.156639 -1.782264 1.544574 0.0883337 -1.110697 0.5829173 -0.470436
          [,83]      [,84]    [,85]   [,86]    [,87]     [,88]      [,89]
[1,] -0.4535098 -0.9292824 1.249928 0.86145 1.255821 -1.784828 -0.9254093
[2,] -0.4535098 -0.9292824 1.249928 0.86145 1.255821 -1.784828 -0.9254093
         [,90]     [,91]      [,92]     [,93]      [,94]      [,95]      [,96]
[1,] 0.3122369 0.7567032 0.04234444 -1.173089 -0.7862349 -0.9329378 -0.8771506
[2,] 0.3122369 0.7567032 0.04234444 -1.173089 -0.7862349 -0.9329378 -0.8771506
        [,97]      [,98]       [,99]   [,100]
[1,] 1.326801 -0.5934636 -0.05596159 1.433905
[2,] 1.326801 -0.5934636 -0.05596159 1.433905
> 
> 
> Max(tmp2)
[1] 2.441078
> Min(tmp2)
[1] -2.817703
> mean(tmp2)
[1] -0.04195861
> Sum(tmp2)
[1] -4.195861
> Var(tmp2)
[1] 0.7668008
> 
> rowMeans(tmp2)
  [1]  1.2429347711 -0.7302361617  0.2855994600 -0.9148112147 -0.8111407835
  [6] -0.7980073687 -1.5685108162 -0.3410067069  0.1861213336 -0.2518254416
 [11]  0.2423256198 -0.1592813875  0.1979156076 -0.7126969317 -0.4621010049
 [16]  0.0629328285 -0.6859422496  0.2377501629  0.3372402687 -0.4091428181
 [21] -0.3394698967 -0.8544512207  0.3837618772 -0.0192885519 -0.2269253223
 [26] -0.1399835505 -0.2353043044  0.5119008233 -0.2053138912  0.3930390440
 [31] -1.0443660240  0.3648387429 -0.5302608832  0.3644993341  0.1556717473
 [36]  1.8098055818  0.4469075476 -1.2323246384 -1.5271669811  0.3966049647
 [41]  1.3738947035 -1.3234434905  0.1176414189  1.1266867399 -0.1571512543
 [46] -1.0494012698  0.0455273275 -0.3693345493  0.7036086262  0.2196142407
 [51] -0.1323640197  1.9364875264 -2.8177033886  0.0618352272  0.4029429403
 [56]  0.9238250409 -0.4996132695 -0.9439405624  0.2123615956  0.9976987332
 [61] -0.0722028674 -0.9054106581  0.9799785249 -2.0082060411 -0.7337660976
 [66] -0.9459083443  1.0914133619 -0.8650743128 -0.1542555321 -0.1672859374
 [71] -0.4621638853 -0.3201311679  1.0027091674 -0.6072981123 -0.8679178255
 [76] -0.7790470558  1.3254985495 -0.2822534924 -1.0635417763  1.8192535807
 [81] -0.0001473298 -0.6713328903  0.9512047460  0.6691540328  2.4410781400
 [86] -0.3978753553 -0.1242334084  0.9685344333  0.3668552867  1.2847916280
 [91] -0.4370980496  0.2626353313 -1.2608681773  1.5375142509 -0.1382469376
 [96]  1.0431789728 -0.2381889673  0.1966466903 -0.6271853804 -0.2561323111
> rowSums(tmp2)
  [1]  1.2429347711 -0.7302361617  0.2855994600 -0.9148112147 -0.8111407835
  [6] -0.7980073687 -1.5685108162 -0.3410067069  0.1861213336 -0.2518254416
 [11]  0.2423256198 -0.1592813875  0.1979156076 -0.7126969317 -0.4621010049
 [16]  0.0629328285 -0.6859422496  0.2377501629  0.3372402687 -0.4091428181
 [21] -0.3394698967 -0.8544512207  0.3837618772 -0.0192885519 -0.2269253223
 [26] -0.1399835505 -0.2353043044  0.5119008233 -0.2053138912  0.3930390440
 [31] -1.0443660240  0.3648387429 -0.5302608832  0.3644993341  0.1556717473
 [36]  1.8098055818  0.4469075476 -1.2323246384 -1.5271669811  0.3966049647
 [41]  1.3738947035 -1.3234434905  0.1176414189  1.1266867399 -0.1571512543
 [46] -1.0494012698  0.0455273275 -0.3693345493  0.7036086262  0.2196142407
 [51] -0.1323640197  1.9364875264 -2.8177033886  0.0618352272  0.4029429403
 [56]  0.9238250409 -0.4996132695 -0.9439405624  0.2123615956  0.9976987332
 [61] -0.0722028674 -0.9054106581  0.9799785249 -2.0082060411 -0.7337660976
 [66] -0.9459083443  1.0914133619 -0.8650743128 -0.1542555321 -0.1672859374
 [71] -0.4621638853 -0.3201311679  1.0027091674 -0.6072981123 -0.8679178255
 [76] -0.7790470558  1.3254985495 -0.2822534924 -1.0635417763  1.8192535807
 [81] -0.0001473298 -0.6713328903  0.9512047460  0.6691540328  2.4410781400
 [86] -0.3978753553 -0.1242334084  0.9685344333  0.3668552867  1.2847916280
 [91] -0.4370980496  0.2626353313 -1.2608681773  1.5375142509 -0.1382469376
 [96]  1.0431789728 -0.2381889673  0.1966466903 -0.6271853804 -0.2561323111
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.2429347711 -0.7302361617  0.2855994600 -0.9148112147 -0.8111407835
  [6] -0.7980073687 -1.5685108162 -0.3410067069  0.1861213336 -0.2518254416
 [11]  0.2423256198 -0.1592813875  0.1979156076 -0.7126969317 -0.4621010049
 [16]  0.0629328285 -0.6859422496  0.2377501629  0.3372402687 -0.4091428181
 [21] -0.3394698967 -0.8544512207  0.3837618772 -0.0192885519 -0.2269253223
 [26] -0.1399835505 -0.2353043044  0.5119008233 -0.2053138912  0.3930390440
 [31] -1.0443660240  0.3648387429 -0.5302608832  0.3644993341  0.1556717473
 [36]  1.8098055818  0.4469075476 -1.2323246384 -1.5271669811  0.3966049647
 [41]  1.3738947035 -1.3234434905  0.1176414189  1.1266867399 -0.1571512543
 [46] -1.0494012698  0.0455273275 -0.3693345493  0.7036086262  0.2196142407
 [51] -0.1323640197  1.9364875264 -2.8177033886  0.0618352272  0.4029429403
 [56]  0.9238250409 -0.4996132695 -0.9439405624  0.2123615956  0.9976987332
 [61] -0.0722028674 -0.9054106581  0.9799785249 -2.0082060411 -0.7337660976
 [66] -0.9459083443  1.0914133619 -0.8650743128 -0.1542555321 -0.1672859374
 [71] -0.4621638853 -0.3201311679  1.0027091674 -0.6072981123 -0.8679178255
 [76] -0.7790470558  1.3254985495 -0.2822534924 -1.0635417763  1.8192535807
 [81] -0.0001473298 -0.6713328903  0.9512047460  0.6691540328  2.4410781400
 [86] -0.3978753553 -0.1242334084  0.9685344333  0.3668552867  1.2847916280
 [91] -0.4370980496  0.2626353313 -1.2608681773  1.5375142509 -0.1382469376
 [96]  1.0431789728 -0.2381889673  0.1966466903 -0.6271853804 -0.2561323111
> rowMin(tmp2)
  [1]  1.2429347711 -0.7302361617  0.2855994600 -0.9148112147 -0.8111407835
  [6] -0.7980073687 -1.5685108162 -0.3410067069  0.1861213336 -0.2518254416
 [11]  0.2423256198 -0.1592813875  0.1979156076 -0.7126969317 -0.4621010049
 [16]  0.0629328285 -0.6859422496  0.2377501629  0.3372402687 -0.4091428181
 [21] -0.3394698967 -0.8544512207  0.3837618772 -0.0192885519 -0.2269253223
 [26] -0.1399835505 -0.2353043044  0.5119008233 -0.2053138912  0.3930390440
 [31] -1.0443660240  0.3648387429 -0.5302608832  0.3644993341  0.1556717473
 [36]  1.8098055818  0.4469075476 -1.2323246384 -1.5271669811  0.3966049647
 [41]  1.3738947035 -1.3234434905  0.1176414189  1.1266867399 -0.1571512543
 [46] -1.0494012698  0.0455273275 -0.3693345493  0.7036086262  0.2196142407
 [51] -0.1323640197  1.9364875264 -2.8177033886  0.0618352272  0.4029429403
 [56]  0.9238250409 -0.4996132695 -0.9439405624  0.2123615956  0.9976987332
 [61] -0.0722028674 -0.9054106581  0.9799785249 -2.0082060411 -0.7337660976
 [66] -0.9459083443  1.0914133619 -0.8650743128 -0.1542555321 -0.1672859374
 [71] -0.4621638853 -0.3201311679  1.0027091674 -0.6072981123 -0.8679178255
 [76] -0.7790470558  1.3254985495 -0.2822534924 -1.0635417763  1.8192535807
 [81] -0.0001473298 -0.6713328903  0.9512047460  0.6691540328  2.4410781400
 [86] -0.3978753553 -0.1242334084  0.9685344333  0.3668552867  1.2847916280
 [91] -0.4370980496  0.2626353313 -1.2608681773  1.5375142509 -0.1382469376
 [96]  1.0431789728 -0.2381889673  0.1966466903 -0.6271853804 -0.2561323111
> 
> colMeans(tmp2)
[1] -0.04195861
> colSums(tmp2)
[1] -4.195861
> colVars(tmp2)
[1] 0.7668008
> colSd(tmp2)
[1] 0.8756716
> colMax(tmp2)
[1] 2.441078
> colMin(tmp2)
[1] -2.817703
> colMedians(tmp2)
[1] -0.1391152
> colRanges(tmp2)
          [,1]
[1,] -2.817703
[2,]  2.441078
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  5.7443476  0.4990458  2.2366061  1.4760780 -0.5955448  2.4694218
 [7] -2.0310494 -2.9065203 -4.7064269  0.6585423
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.6235320
[2,] -0.6784610
[3,]  0.9252759
[4,]  1.6812935
[5,]  2.2398803
> 
> rowApply(tmp,sum)
 [1]  0.29207288 -0.01267084  0.67685076  1.38347954  3.68225354 -1.18049420
 [7]  1.11423339 -5.05984244 -0.96041053  2.90902809
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10   10    5    9   10    3    5    1    2    10
 [2,]    1    8    4    5    5    9    7    4    4     9
 [3,]    6    4    6   10    2    5    4    7    7     2
 [4,]    4    9   10    8    9    8    2    2    5     6
 [5,]    5    6    2    6    3    4   10    3    9     5
 [6,]    7    7    9    7    1   10    9    9    3     3
 [7,]    2    3    7    2    8    1    8    5    8     8
 [8,]    3    2    1    1    4    6    6   10   10     4
 [9,]    9    5    3    3    6    2    1    8    1     1
[10,]    8    1    8    4    7    7    3    6    6     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.01839903 -3.43962180 -2.22040980  2.34956928  2.44990396 -2.64355401
 [7] -3.24596313 -1.67844363  2.25116710 -0.31700933  2.20639126 -1.29035049
[13] -1.15351298 -2.98193766  3.81354807 -2.15138261 -0.01319109  0.38835675
[19]  3.64490458  2.15290709
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.6835793
[2,] -0.4305214
[3,]  0.0914728
[4,]  0.4874112
[5,]  1.5536157
> 
> rowApply(tmp,sum)
[1]  0.1810177  0.9352429  1.8005647  0.1353328 -4.9123874
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   13    1   12   20
[2,]    3    7   16    4    6
[3,]   17    4    3    9    7
[4,]    5   15   14   13   19
[5,]   10   19   11   15   15
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]        [,6]
[1,] -0.4305214 -1.4243571  0.9592294 -0.5850948 -0.03918840  0.36949203
[2,]  0.4874112 -0.7162925 -0.9050118  0.6221516  1.33886198  0.08794429
[3,] -1.6835793  0.8369910 -0.8806030  0.7235651  0.02399301 -0.20622314
[4,]  0.0914728 -0.9884671 -0.2652621  0.1731900  0.51042827 -1.41022877
[5,]  1.5536157 -1.1474961 -1.1287623  1.4157574  0.61580910 -1.48453842
           [,7]       [,8]       [,9]      [,10]      [,11]      [,12]
[1,] -0.8487226  0.2177119  0.7288596  1.2788516  1.0848119 -0.1510381
[2,] -1.1209787  0.3288136 -0.7812211 -0.8897871  1.0901107  0.7315473
[3,]  1.4959644 -0.1269946 -0.2948254  0.7737253 -0.5878997 -0.6104510
[4,] -1.4970177 -0.8868147  1.5614062 -0.8685076 -0.5514257 -1.9682182
[5,] -1.2752085 -1.2111598  1.0369477 -0.6112916  1.1707940  0.7078096
          [,13]      [,14]      [,15]       [,16]      [,17]      [,18]
[1,] -0.2142505 -0.2372194  1.7114861  0.30970965 -2.7537463 -1.4425911
[2,] -0.4039045 -1.9970984  0.5694467 -0.95636709  0.3354727  0.9196445
[3,]  1.4603219  0.1672705  1.1566186 -0.59456095  1.3155106  0.4032097
[4,] -0.1510470 -0.7950447  0.9245828  0.04737433  1.1467810  0.2891821
[5,] -1.8446328 -0.1198455 -0.5485861 -0.95753855 -0.0572091  0.2189117
          [,19]      [,20]
[1,]  0.6999064  0.9476890
[2,]  1.9362268  0.2582728
[3,] -0.1356892 -1.4357790
[4,]  2.5284848  2.2444639
[5,] -1.3840243  0.1382605
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.8  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  623  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  542  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.8  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1       col2      col3        col4     col5       col6      col7
row1 1.090904 -0.7122118 -1.019478 -0.03769289 1.204996 -0.7571123 0.1264541
         col8       col9      col10      col11     col12     col13     col14
row1 1.190524 -0.6585777 -0.1464637 -0.3324308 -1.220363 0.4277189 0.4402797
         col15        col16      col17     col18    col19     col20
row1 -1.345143 0.0007246959 -0.7096265 -2.462579 0.712075 0.2922908
> tmp[,"col10"]
           col10
row1 -0.14646367
row2 -0.02305769
row3 -1.08415991
row4  0.82289194
row5  0.75985965
> tmp[c("row1","row5"),]
         col1       col2       col3        col4      col5       col6      col7
row1 1.090904 -0.7122118 -1.0194782 -0.03769289 1.2049961 -0.7571123 0.1264541
row5 1.422529 -0.4151854  0.4116566  1.95819583 0.5546128  0.3627349 0.8181667
          col8       col9      col10      col11      col12     col13     col14
row1 1.1905238 -0.6585777 -0.1464637 -0.3324308 -1.2203632 0.4277189 0.4402797
row5 0.8198911 -1.1771447  0.7598597 -0.2943938 -0.5486896 0.9987774 1.1919605
          col15        col16      col17      col18     col19      col20
row1 -1.3451435 0.0007246959 -0.7096265 -2.4625786  0.712075  0.2922908
row5  0.7279752 0.2213213865  1.7475052  0.7529173 -0.956672 -1.4128781
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.7571123  0.2922908
row2 -1.1979907  2.2761651
row3 -0.5690825 -1.1289125
row4  1.0548564  0.8615344
row5  0.3627349 -1.4128781
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.7571123  0.2922908
row5  0.3627349 -1.4128781
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
        col1     col2     col3     col4     col5     col6     col7     col8
row1 51.0656 47.97873 50.79135 48.99539 49.95725 105.1504 48.66334 51.46604
         col9    col10    col11    col12    col13    col14    col15   col16
row1 50.15712 49.92318 50.77139 48.17082 50.11313 48.52432 50.67273 50.0673
        col17   col18    col19    col20
row1 49.15851 49.9332 49.19786 105.2266
> tmp[,"col10"]
        col10
row1 49.92318
row2 30.14319
row3 30.73151
row4 29.69078
row5 51.20356
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.06560 47.97873 50.79135 48.99539 49.95725 105.1504 48.66334 51.46604
row5 49.78098 49.97241 50.19770 49.63402 49.73428 104.8989 49.72236 51.15457
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.15712 49.92318 50.77139 48.17082 50.11313 48.52432 50.67273 50.06730
row5 50.40485 51.20356 49.46205 50.06484 50.38733 48.83601 50.32784 51.02727
        col17    col18    col19    col20
row1 49.15851 49.93320 49.19786 105.2266
row5 51.46801 52.21574 51.90839 104.0310
> tmp[,c("col6","col20")]
          col6     col20
row1 105.15044 105.22663
row2  74.71906  74.36510
row3  76.30300  75.85345
row4  75.73772  74.44078
row5 104.89889 104.03104
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.1504 105.2266
row5 104.8989 104.0310
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.1504 105.2266
row5 104.8989 104.0310
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  1.20355396
[2,] -0.97876852
[3,] -1.42295376
[4,] -1.73919708
[5,] -0.01693154
> tmp[,c("col17","col7")]
          col17         col7
[1,] -0.7181234 -1.552952418
[2,]  1.0789413 -0.894618735
[3,] -0.8308209 -0.008586807
[4,] -0.8777849  0.357621634
[5,]  0.1590638  0.133987685
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.1380036 -2.5837510
[2,] -1.3035034 -2.4167785
[3,]  1.2419074  0.5482896
[4,] -0.6693120 -0.6186413
[5,]  0.6912006  0.8899204
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.1380036
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.1380036
[2,] -1.3035034
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
         [,1]      [,2]      [,3]       [,4]       [,5]      [,6]       [,7]
row3 1.046888 0.0630888 0.4403938 -0.6988365  0.2597865  1.581773  0.1899261
row1 1.376474 0.8322108 1.4794624 -2.2420950 -1.8996551 -0.283480 -0.4881154
           [,8]     [,9]      [,10]     [,11]      [,12]      [,13]      [,14]
row3 -0.7167256 1.333695 -0.5971273 1.8167848  1.3212858  0.0788603  0.3968605
row1  1.3900524 1.533554 -0.2691414 0.2056888 -0.5982675 -0.3196641 -0.5898199
          [,15]       [,16]      [,17]     [,18]      [,19]      [,20]
row3 -0.2323664 -0.29580311 -1.2982201 -2.294339 -0.4810410 -0.1667822
row1 -1.4057165 -0.01425532  0.9852048 -0.188250  0.2736555 -1.1866187
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
             [,1]      [,2]      [,3]     [,4]      [,5]       [,6]      [,7]
row2 -0.001280877 -1.437531 -1.365867 1.166761 -1.554937 -0.4830927 -1.219657
         [,8]      [,9]     [,10]
row2 -1.16103 -1.475445 0.4463286
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]     [,2]     [,3]      [,4]       [,5]        [,6]       [,7]
row5 0.08733185 1.165748 2.054643 -1.470681 -0.5574486 0.002016478 0.00839326
           [,8]     [,9]      [,10]     [,11]    [,12]    [,13]    [,14]
row5 -0.1081876 1.595109 -0.7372786 -0.071646 0.854594 0.248232 1.250124
         [,15]     [,16]    [,17]      [,18]    [,19]      [,20]
row5 -0.575083 -1.772771 1.011275 -0.8462448 2.036434 0.06260329
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x0000021aaacfad10>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d687e407223"
 [2] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d68267431c6"
 [3] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d684e6c565b"
 [4] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d6817dd2e95"
 [5] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d68631e7c21"
 [6] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d686b2c1600"
 [7] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d687b1672ce"
 [8] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d684fac237" 
 [9] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d68f94372d" 
[10] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d6855437091"
[11] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d6861611c76"
[12] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d6819d1224" 
[13] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d68570e4180"
[14] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d684086a92" 
[15] "F:/biocbuild/bbs-3.20-bioc/meat/BufferedMatrix.Rcheck/tests\\BM2d6810806632"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x0000021aacfff110>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x0000021aacfff110>
Warning message:
In dir.create(new.directory) :
  'F:\biocbuild\bbs-3.20-bioc\meat\BufferedMatrix.Rcheck\tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x0000021aacfff110>
> rowMedians(tmp)
  [1] -0.032315362 -0.279241357 -0.870503330 -0.005681274  0.524521045
  [6]  0.087141253  0.501082979  0.404395956 -0.014696944  0.252300819
 [11]  0.280361157  0.094629318 -0.562690007  0.209772755 -0.271156426
 [16] -0.144488821 -0.286046188  0.303581623  0.094552726 -0.143976800
 [21] -0.628422245 -0.224827938 -0.157203436 -0.171495456 -0.021444477
 [26]  0.304760305 -0.109512017  0.065195003 -0.353683371  0.294289630
 [31] -0.384275674  0.480538929  0.509879118 -0.275383789 -0.350839694
 [36] -0.054515747 -0.188530265 -0.329383890 -0.274032877 -0.136825077
 [41]  0.061911888  0.151872138  0.052916675  0.223708249  0.020033767
 [46] -0.336608164  0.303985136  0.106786935  0.035389226  0.228822306
 [51]  0.679175572  0.027811542 -0.301291826 -0.774154287 -0.123260229
 [56]  0.374091070 -0.067321445 -0.593319400 -0.054719629  0.112344882
 [61] -0.239433826 -0.017932129  0.151970580 -0.421296534 -0.157468820
 [66]  0.485922160  0.299438748  0.269401773  0.021734007  0.251141428
 [71] -0.576441778 -0.112132597  0.040996148  0.165568221 -0.337050728
 [76]  0.162984667 -0.304252269 -0.534686895  0.113473880 -0.321618546
 [81] -0.009222042  0.089556566  0.169800078  0.265575368 -0.157542448
 [86]  0.518258365  0.005303257  0.007858413 -0.076977007  0.234050890
 [91]  0.039688085 -0.176740958  0.625546952 -0.598434308  0.328014045
 [96]  0.255257715  0.199668882 -0.032735852  0.172594060  0.331823056
[101] -0.134328669  0.237886359  0.247811280  0.156852897  0.392829962
[106]  0.001023434 -0.405594993  0.223503134  0.049284580  0.005065119
[111] -0.286059672 -0.084367779 -0.132576548  0.007742882 -0.028978786
[116] -0.369478438 -0.111033325  0.213611585 -0.018849942 -0.209709662
[121]  0.006847541 -0.126202929 -0.089180402 -0.132420350 -0.605694707
[126]  0.499823239 -0.101161588 -0.425981193  0.967538738  0.174458792
[131] -0.445921407  0.167796608 -0.439123947 -0.464542659 -0.256923485
[136]  0.149557322 -0.144248388 -0.262135031  0.156873376  0.126911240
[141]  0.120550104  0.252351647 -0.116193244  0.101141536  0.094813118
[146] -0.410323784  0.297532955 -0.007736406  0.748400764 -0.784967041
[151] -0.107139869 -0.418383759  0.085926387  0.146995667 -0.527118627
[156] -0.009083659  0.050404529  0.116008335 -0.536793678  0.207752761
[161]  0.179338728  0.054728910  0.013431143  0.138385916  0.075551766
[166]  0.029702029  0.525445596 -0.208260184 -0.184598357  0.009573803
[171]  0.164899175 -0.009465120 -0.106577674 -0.293140484 -0.503838344
[176] -0.377825086 -0.169066319 -0.025995853 -0.027183212  0.128804824
[181] -0.470435351  0.193179834 -0.227709643  0.401420245  0.144935722
[186] -0.855481635  0.006186385  0.074026829 -0.289391151  0.115119415
[191] -0.079320124 -0.159971857 -0.068784691 -0.402247757 -0.643777616
[196] -0.797297955  0.330386170  0.151699523  0.417901084 -0.459143445
[201]  0.218106429 -0.038804178 -0.065243186  0.638083256  0.165672121
[206] -0.511605550 -0.161486788 -0.349850645  0.093659245  0.650188309
[211] -0.417563725  0.413329650 -0.259231092 -0.282360806 -0.081362281
[216]  0.249404808  0.181635087  0.434334908  0.578084393  0.014530177
[221]  0.566169226 -0.212972408 -0.363392009  0.692461744 -0.605009563
[226] -0.001947344 -0.054817728  0.406858255  0.495713241  0.138115916
> 
> proc.time()
   user  system elapsed 
   4.73   26.10   48.46 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x000001f6280fd1d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x000001f6280fd1d0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x000001f6280fd1d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x000001f6280fd1d0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x000001f6280fd6b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd6b0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x000001f6280fd6b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd6b0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x000001f6280fd6b0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd7d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd7d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x000001f6280fd7d0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x000001f6280fd7d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x000001f6280fd7d0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x000001f6280fd7d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x000001f6280fd7d0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x000001f6280fd7d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x000001f6280fd7d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd9b0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x000001f6280fd9b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd9b0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd9b0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2eec172520f7" "BufferedMatrixFile2eec4f836fc5"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2eec172520f7" "BufferedMatrixFile2eec4f836fc5"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd530>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fd530>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x000001f6280fd530>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x000001f6280fd530>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x000001f6280fd530>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x000001f6280fd530>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fdb90>
> .Call("R_bm_AddColumn",P)
<pointer: 0x000001f6280fdb90>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x000001f6280fdb90>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x000001f6280fdb90>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x000001f62667abf0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x000001f62667abf0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
   0.23    0.54    0.65 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.4.0 RC (2024-04-16 r86468 ucrt) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
   0.29    0.21    0.40 

Example timings