Back to Multiple platform build/check report for BioC 3.11
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

CHECK report for STATegRa on tokay2

This page was generated on 2020-10-17 11:57:52 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE STATegRa PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 1744/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
STATegRa 1.24.0
David Gomez-Cabrero , NĂºria Planell
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/STATegRa
Branch: RELEASE_3_11
Last Commit: 3250fa3
Last Changed Date: 2020-04-27 14:44:41 -0400 (Mon, 27 Apr 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  OK UNNEEDED, same version exists in internal repository
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ OK ] NA 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK  OK  OK UNNEEDED, same version exists in internal repository

Summary

Package: STATegRa
Version: 1.24.0
Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings STATegRa_1.24.0.tar.gz
StartedAt: 2020-10-17 08:38:48 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 08:45:31 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 403.0 seconds
RetCode: 0
Status:  OK  
CheckDir: STATegRa.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings STATegRa_1.24.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck'
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.24.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
  variable 'components'
modelSelection,list-numeric-character: no visible binding for global
  variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comps'
selectCommonComps,list-numeric: no visible binding for global variable
  'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comp'
selectCommonComps,list-numeric: no visible binding for global variable
  'ratio'
Undefined global functions or variables:
  VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
** running examples for arch 'x64' ... OK
Examples with CPU (user + system) or elapsed time > 5s
        user system elapsed
plotRes 5.13   0.14    5.26
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
** running tests for arch 'x64' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.11-bioc/meat/STATegRa.Rcheck/00check.log'
for details.



Installation output

STATegRa.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/STATegRa_1.24.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.24.0.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.24.0.zip && rm STATegRa_1.24.0.tar.gz STATegRa_1.24.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 3176k  100 3176k    0     0  30.3M      0 --:--:-- --:--:-- --:--:-- 32.6M

install for i386

* installing *source* package 'STATegRa' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'STATegRa'
    finding HTML links ... done
    STATegRa-defunct                        html  
    STATegRa                                html  
    STATegRaUsersGuide                      html  
    STATegRa_data                           html  
    STATegRa_data_TCGA_BRCA                 html  
    bioDist                                 html  
    bioDistFeature                          html  
    bioDistFeaturePlot                      html  
    bioDistW                                html  
    bioDistWPlot                            html  
    bioDistclass                            html  
    bioMap                                  html  
    caClass-class                           html  
    combiningMappings                       html  
    createOmicsExpressionSet                html  
    getInitialData                          html  
    getLoadings                             html  
    getMethodInfo                           html  
    getPreprocessing                        html  
    getScores                               html  
    getVAF                                  html  
    holistOmics                             html  
    modelSelection                          html  
    finding level-2 HTML links ... done

    omicsCompAnalysis                       html  
    omicsNPC                                html  
    plotRes                                 html  
    plotVAF                                 html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.24.0.zip
* DONE (STATegRa)
* installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked

Tests output

STATegRa.Rcheck/tests_i386/runTests.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Sat Oct 17 08:43:02 2020 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   3.28    0.23    3.50 

STATegRa.Rcheck/tests_x64/runTests.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Sat Oct 17 08:45:22 2020 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   3.60    0.17    3.76 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
5: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
6: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
7: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  29.70    0.82   30.53 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
5: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
6: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
7: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  27.60    0.87   28.46 

STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  71.53    0.23   71.75 

STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  92.73    0.28   93.04 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1   -0.0781575585  0.0431547978
sample2    0.1192221314 -0.0294022761
sample3    0.0531408761  0.0746837622
sample4   -0.0292971851  0.0006032940
sample5   -0.0202090770 -0.0110455400
sample6   -0.1226088468 -0.1053492838
sample7   -0.1078931274  0.0322419868
sample8   -0.1782891234 -0.1449330882
sample9   -0.0468697301  0.0455171785
sample10   0.0036032643 -0.0420078241
sample11   0.0035566372  0.0566285250
sample12  -0.1006129660 -0.0641393790
sample13   0.1174412706 -0.0907475585
sample14  -0.0981203558 -0.0617763250
sample15  -0.0085337196  0.0086956936
sample16  -0.0783146864 -0.1581332985
sample17   0.1483610647 -0.0638580156
sample18   0.0963084425 -0.0556687362
sample19   0.0217243100  0.0720128044
sample20   0.0635633986  0.0779610786
sample21   0.0201843910 -0.1566382138
sample22  -0.0218273737  0.0764056399
sample23  -0.0852039100  0.0032764087
sample24   0.1287181278 -0.1924427610
sample25   0.0430575615  0.0456637722
sample26   0.1453899727 -0.0541459432
sample27   0.0197483722  0.1185593604
sample28   0.1025339359 -0.0650655690
sample29  -0.0706022369  0.0682933657
sample30   0.1295623064  0.0066678678
sample31  -0.1147449316 -0.1232726796
sample32   0.0374308260 -0.0380248765
sample33  -0.0599520677 -0.0136935365
sample34   0.0984199334 -0.0375364106
sample35   0.0543096451  0.0378035987
sample36  -0.1403628012  0.0343640255
sample37  -0.0228947580  0.0732691330
sample38   0.0222073120  0.0962567579
sample39   0.0941739207 -0.0215180742
sample40  -0.0643806976  0.0687721522
sample41   0.0327635045  0.1232187213
sample42   0.0500431640  0.0292513289
sample43   0.0184497212 -0.0233044038
sample44  -0.1487889540 -0.1171211793
sample45   0.1050778699 -0.1123141070
sample46   0.1151191684  0.1093996132
sample47   0.0962591570  0.0288418560
sample48  -0.0004832699  0.0310378295
sample49  -0.1135203963 -0.1213937062
sample50   0.0123550007  0.1740762804
sample51  -0.0550527499 -0.1258930288
sample52  -0.0499118551 -0.0728580541
sample53  -0.1119772698 -0.1588063727
sample54   0.0360055712 -0.0228585554
sample55  -0.0210418833 -0.0006750512
sample56   0.0434171445 -0.0633131213
sample57  -0.0197820780 -0.1150753492
sample58  -0.0030440694 -0.0326127253
sample59  -0.0500256682 -0.0129520537
sample60  -0.0184280071 -0.0136216592
sample61  -0.0150298940 -0.0635096145
sample62   0.0304758848  0.0201237012
sample63  -0.1102250166 -0.1285968405
sample64  -0.1552586855 -0.0971185004
sample65   0.0058503807 -0.0207102854
sample66   0.0025607427 -0.0424284999
sample67  -0.1546638612  0.0661579685
sample68  -0.0536374161  0.0923604932
sample69  -0.0640332945 -0.0082003634
sample70  -0.0163521651  0.0663227245
sample71   0.0102536157  0.1345964450
sample72   0.0654191830  0.0196037078
sample73   0.1048553298 -0.0220999367
sample74  -0.0123800488 -0.0586156437
sample75  -0.0392079701  0.0209726500
sample76  -0.0648954559  0.0524759463
sample77  -0.1172922646  0.0201200118
sample78   0.1463072531 -0.0708400362
sample79  -0.0265208867  0.1603424154
sample80  -0.0279739173  0.0214153969
sample81  -0.0079212130  0.0738495004
sample82   0.1544234632  0.0361450743
sample83   0.0494205522  0.0049940048
sample84   0.0259039711  0.0346591102
sample85  -0.1116487400  0.0031405135
sample86   0.1306479125  0.0377156587
sample87   0.0554777865  0.0459739690
sample88   0.0301626464 -0.0382206668
sample89   0.1016866191 -0.0694077772
sample90  -0.0086821609  0.0201323727
sample91  -0.1578629668  0.2097792742
sample92  -0.0170933557  0.1655934982
sample93   0.0979805136  0.0121500616
sample94  -0.0131486172  0.0114929514
sample95  -0.0315682455  0.0758916497
sample96  -0.0024125827  0.0470184625
sample97  -0.0634545794 -0.0270304008
sample98   0.0359372598  0.0135466763
sample99   0.1009167530 -0.1124713424
sample100 -0.0551754078 -0.0246501979
sample101  0.0080116069  0.1627406857
sample102  0.0046451061 -0.0095474815
sample103  0.0472520918  0.0940383648
sample104 -0.0198157490  0.0591146542
sample105  0.0400238966  0.0160948610
sample106  0.0923810103 -0.0369004036
sample107  0.1019372401 -0.0224967139
sample108  0.0877091519  0.0128849545
sample109 -0.0864820339  0.0901079355
sample110  0.1223116461  0.0096108223
sample111 -0.0257352460  0.0936279821
sample112  0.0765285929 -0.0270378977
sample113 -0.0258799910 -0.0377439108
sample114 -0.0021141044  0.0882039829
sample115 -0.0303455370  0.0723733424
sample116 -0.0780504533  0.0685161147
sample117 -0.0536894140  0.0912023885
sample118 -0.0666649916  0.0236260710
sample119 -0.1021872528  0.2325003065
sample120 -0.0750216333 -0.0243346066
sample121  0.0756937854 -0.0942970128
sample122  0.0259631987 -0.0731922039
sample123  0.1037844713  0.0369178935
sample124 -0.0611205218 -0.0421648019
sample125  0.0738472618 -0.0066944402
sample126 -0.0972919080 -0.0762698056
sample127 -0.0824699399  0.0096644599
sample128  0.1249411455 -0.0929254513
sample129  0.0734063765  0.0434314184
sample130  0.0003500287  0.0309857116
sample131 -0.0930184027 -0.0155969667
sample132 -0.0736220645 -0.0732972875
sample133  0.0498398353  0.0462455685
sample134 -0.1644872651 -0.0720046388
sample135  0.0752295084 -0.0003868926
sample136 -0.0227149888  0.0495469896
sample137 -0.0564721628  0.0288861290
sample138 -0.0255986510  0.0610929604
sample139 -0.0621218773 -0.0235857207
sample140  0.0604149016  0.0435533168
sample141 -0.0246743064 -0.0532630596
sample142  0.0409563798 -0.0316234876
sample143  0.0077356367  0.0476908658
sample144 -0.0173240998  0.0156785769
sample145 -0.0485467847 -0.1202738331
sample146 -0.0419649896  0.0811241444
sample147  0.0977304712  0.0274772117
sample148 -0.0368253347 -0.0803969670
sample149  0.0072864897  0.1533016572
sample150 -0.1020825517 -0.0624821931
sample151 -0.0305397194  0.0289336259
sample152  0.0533595212  0.0638334762
sample153  0.0891639211 -0.1799454733
sample154  0.0727554459  0.0834129823
sample155  0.0880665872  0.0220771003
sample156  0.0276558896  0.0326602162
sample157  0.1155031574 -0.0183635239
sample158  0.0281506716  0.0104912306
sample159 -0.0663233819 -0.0443810130
sample160  0.0302644001 -0.0404300869
sample161 -0.0114713004  0.0591082347
sample162  0.1337090924 -0.1398131416
sample163 -0.1330120826 -0.1688769435
sample164  0.0150338107 -0.0028375950
sample165 -0.0076518864  0.0164145589
sample166 -0.0367791552 -0.0630614865
sample167 -0.1111989799 -0.0030066318
sample168  0.0672982946 -0.0446266930
sample169  0.0413003657 -0.0224446378
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1   -0.0420464272  0.0867866022
sample2   -0.0820849011 -0.0410969039
sample3    0.0155963963 -0.0195186284
sample4   -0.1001342606 -0.0410776620
sample5   -0.0153479265 -0.0253257773
sample6    0.0340241993 -0.0408223331
sample7    0.0722601635  0.0002324115
sample8   -0.0457615493 -0.0370007106
sample9   -0.0086217739  0.0820184494
sample10  -0.0423630103 -0.0083917768
sample11   0.0022591995  0.0787764146
sample12   0.0322077237  0.1479823444
sample13  -0.0293967535 -0.0306743001
sample14   0.0337432613 -0.0367508303
sample15   0.0815559569  0.1275614050
sample16   0.0508336078  0.0540604404
sample17   0.0062556633  0.0041024854
sample18   0.0705602163 -0.0351053208
sample19  -0.0476785678 -0.0509595529
sample20   0.0523025027  0.0715514230
sample21  -0.0119246852 -0.0376087187
sample22   0.0724455811 -0.0095634703
sample23  -0.0992529623  0.0134298724
sample24  -0.1595260530  0.0728683743
sample25  -0.0920662208 -0.0749749467
sample26  -0.0595566059  0.0848973494
sample27   0.0826573968 -0.0086747308
sample28  -0.0384832073  0.0440972609
sample29   0.0777738662  0.1735298719
sample30   0.1229474195 -0.0819018188
sample31   0.0579753747 -0.0238646772
sample32   0.0970366671 -0.0111434927
sample33   0.1017580347 -0.0630452360
sample34   0.0637903371  0.0377936343
sample35   0.0790002730 -0.0229732287
sample36   0.1224933196 -0.1274968047
sample37   0.1798846456 -0.1673447592
sample38   0.0466390913  0.0888153317
sample39  -0.0168694445  0.0421535994
sample40   0.1756416985 -0.1526661930
sample41   0.0042466010  0.0004924621
sample42  -0.0447826366 -0.0651501480
sample43   0.0482292558 -0.0253533437
sample44  -0.1986815936 -0.0545754262
sample45  -0.0741915311  0.0054713999
sample46   0.0478859058 -0.0007080238
sample47   0.0608215684  0.0481615588
sample48  -0.1381465549  0.0578300718
sample49  -0.0530627254 -0.1405523756
sample50  -0.0173651657  0.1602386144
sample51   0.0462460195  0.0303473097
sample52   0.0279998384  0.0280387909
sample53   0.0667502884  0.0237700238
sample54   0.0121812411 -0.0521354886
sample55   0.0182392353  0.0221326676
sample56  -0.0001307079  0.0030909272
sample57   0.0316578228  0.0530190686
sample58   0.0393891924 -0.0297801715
sample59   0.1278272023 -0.0546540316
sample60   0.1486965368  0.1069142185
sample61   0.0793069436  0.0569790567
sample62   0.1172821162 -0.0149210912
sample63  -0.0028809647  0.1300524083
sample64   0.0237298656  0.1073288413
sample65  -0.0126543302  0.0589810323
sample66  -0.0468232576 -0.0771066727
sample67   0.1494285168 -0.0769877032
sample68   0.0978021315 -0.0577363579
sample69   0.0403090385  0.0156038334
sample70   0.0221595711  0.0315436686
sample71  -0.0546333663 -0.0272395042
sample72   0.1107500546 -0.0537331136
sample73   0.0906756878  0.0579958068
sample74   0.0586514868  0.0121417567
sample75   0.0390512004  0.0349278305
sample76  -0.0022940400 -0.1676560085
sample77  -0.0232101418 -0.2067300989
sample78  -0.0929807939 -0.0434928180
sample79  -0.1619384865 -0.0378102791
sample80   0.0680391922  0.1424656077
sample81  -0.0530727593 -0.0358347772
sample82   0.0266849427 -0.0577449034
sample83   0.1517241786 -0.0448569776
sample84  -0.0570944052 -0.0273808576
sample85   0.1086272068 -0.1228130187
sample86   0.0833890527 -0.0442924625
sample87   0.0022039938 -0.0943908487
sample88  -0.0078275105 -0.1140504566
sample89   0.0611007665 -0.0094589283
sample90   0.0022941099 -0.0936254862
sample91   0.0433767072  0.3205972305
sample92  -0.1815221834 -0.0334667036
sample93   0.0267653303  0.0614425858
sample94   0.0181900702  0.0605088204
sample95  -0.0720316434 -0.0013040708
sample96  -0.0559674136 -0.0118787254
sample97  -0.0217420287  0.0195417145
sample98   0.0379198563  0.0588352841
sample99  -0.0792505448 -0.0151262589
sample100  0.0222100887 -0.0023322893
sample101 -0.0387089102  0.1224225158
sample102 -0.2094625643 -0.0516421333
sample103  0.0138555365  0.0301047689
sample104 -0.0807949369 -0.0162712553
sample105 -0.0520491990 -0.1229660468
sample106 -0.0192641969 -0.0185235222
sample107  0.0319014498  0.0405120633
sample108 -0.0140674735  0.0163422306
sample109 -0.1831859399  0.0613023298
sample110 -0.0292782905 -0.0199846548
sample111 -0.1423176415  0.0327351791
sample112  0.0426313932 -0.0029086970
sample113 -0.0771931190  0.0268742556
sample114 -0.0241570414 -0.0184080684
sample115 -0.1958958062  0.0460148173
sample116 -0.1394438715 -0.0530793786
sample117 -0.1672313494 -0.1386522303
sample118 -0.0448332022 -0.0117618078
sample119 -0.0910198994  0.2217435628
sample120 -0.0331404543 -0.0057270414
sample121  0.0307518389  0.1392506240
sample122 -0.0839836133 -0.0291983824
sample123  0.0239674563 -0.0642167342
sample124 -0.0909175631  0.0130429911
sample125 -0.0065362124 -0.1092631038
sample126  0.0935274444  0.1368277011
sample127  0.0035405228  0.0292755017
sample128 -0.0660348680  0.1018575613
sample129  0.0693670220 -0.0695430098
sample130  0.0008516450 -0.0669705382
sample131  0.0431012275  0.0174061097
sample132 -0.0637087747  0.0029383346
sample133 -0.0289465419 -0.0390817352
sample134  0.0446143620  0.0456332385
sample135  0.0712343640  0.0521627752
sample136  0.0596317293  0.0197291828
sample137  0.0793174903 -0.0380637116
sample138 -0.0973506691 -0.0454210320
sample139  0.0539866955 -0.1534331996
sample140  0.0850871060  0.0955804627
sample141 -0.0192722868 -0.0554446529
sample142 -0.0672293640 -0.0461313229
sample143 -0.0303707738 -0.0519258592
sample144 -0.0089350902  0.0145815353
sample145 -0.0638874297  0.0122268568
sample146  0.0585920999  0.0063075041
sample147  0.0894146414 -0.1124625600
sample148 -0.0216437918 -0.0615962472
sample149 -0.0515319032 -0.0839902928
sample150  0.0568230078 -0.0124472630
sample151 -0.0789514134 -0.0261824106
sample152 -0.0330694701  0.1306444944
sample153 -0.1752062002  0.1497755086
sample154  0.0421488198 -0.0037017007
sample155  0.0680198313  0.0095703655
sample156  0.0388949357  0.1057558039
sample157  0.0314765236  0.0561364705
sample158  0.0329630045  0.0353943691
sample159 -0.0398460616 -0.1007368381
sample160  0.0424906567  0.0108493131
sample161 -0.0888341033 -0.0679692994
sample162 -0.0027568522  0.1237848245
sample163 -0.0126226450  0.0725440818
sample164 -0.0566787052 -0.0458318413
sample165 -0.0315331691 -0.0236359641
sample166 -0.0612108090 -0.0425224974
sample167  0.0142729572  0.0179307023
sample168 -0.0169542126 -0.0769614919
sample169  0.0675063799  0.0131499207
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1   -0.0012331636  1.635716e-01
sample2   -0.0724353164  6.022113e-03
sample3   -0.0188459950  1.080029e-01
sample4    0.0390143161 -3.106667e-04
sample5    0.1774810644  2.996428e-02
sample6   -0.0451446430  3.455898e-02
sample7   -0.0226463526  7.019228e-03
sample8   -0.1033684492  9.857926e-03
sample9    0.1350014180 -8.979113e-02
sample10   0.1259884461  5.097936e-02
sample11   0.0979790885 -7.086566e-02
sample12  -0.0863020959  8.620322e-02
sample13  -0.1381401819 -1.827998e-01
sample14  -0.0615074724  2.642808e-02
sample15   0.0381600561  3.101603e-02
sample16  -0.0048779354 -1.271038e-03
sample17  -0.0788483191  1.547605e-02
sample18  -0.0884189485  3.795477e-02
sample19   0.0703043532  1.084003e-01
sample20  -0.0025581415 -7.975968e-02
sample21   0.0941596711  4.126890e-02
sample22  -0.0550270900  7.806619e-02
sample23   0.0679492854  4.102076e-02
sample24  -0.1310969344 -1.649283e-01
sample25   0.0113583591  4.426899e-02
sample26  -0.1402948866 -2.016461e-02
sample27   0.0261565974 -1.589932e-03
sample28  -0.0724200754 -5.850512e-02
sample29  -0.0330054828 -2.062054e-03
sample30  -0.0228750363  2.015346e-02
sample31  -0.0635070373  6.670368e-02
sample32   0.0685099999  4.955247e-02
sample33  -0.0777764931  1.272070e-01
sample34   0.0157842090  3.024311e-02
sample35  -0.0529628001 -1.500981e-01
sample36   0.0070907876 -2.025320e-01
sample37  -0.0442411928 -1.802109e-01
sample38  -0.0781508420  3.676301e-02
sample39   0.0120330094  3.388883e-02
sample40  -0.0473283956 -1.471581e-01
sample41   0.0228192151  2.673460e-02
sample42  -0.0245361835  7.960877e-02
sample43   0.1036362025  8.229577e-02
sample44  -0.1012234693 -7.049245e-02
sample45   0.0013726773  2.451066e-02
sample46  -0.0558506503 -2.948560e-03
sample47  -0.0380478751 -4.554235e-02
sample48   0.0784340486 -4.888893e-02
sample49  -0.0605168011  1.162469e-02
sample50   0.0530082861  2.737816e-02
sample51   0.1514645369 -5.678262e-02
sample52   0.1860935999 -1.246711e-01
sample53  -0.0064179669  2.701059e-02
sample54   0.0697037575  2.308412e-02
sample55   0.1633577695 -1.366433e-02
sample56   0.1011484014 -4.682135e-02
sample57   0.1730374402 -1.609594e-01
sample58  -0.0071384886  1.666951e-02
sample59  -0.0030458521 -3.005374e-02
sample60   0.0215842087 -2.665887e-01
sample61   0.1510585308 -1.002384e-01
sample62  -0.0925531619  4.845730e-02
sample63  -0.0596315388  4.137107e-02
sample64  -0.0449227263  2.600953e-03
sample65   0.0939382270  4.406949e-02
sample66   0.1063397782  5.710076e-02
sample67  -0.0201580948 -2.361746e-01
sample68   0.0037208314 -2.418539e-02
sample69  -0.0645161986  1.155618e-01
sample70  -0.1013439752  1.351780e-01
sample71  -0.0016466129  2.976775e-02
sample72   0.0328895373  2.835773e-02
sample73   0.0275080384  5.148153e-02
sample74   0.1341718387  7.895302e-02
sample75   0.0951576629  3.943149e-02
sample76  -0.0864719974 -3.035052e-02
sample77  -0.1035749503  2.545326e-02
sample78  -0.1575647813 -4.939477e-02
sample79   0.0189138358 -4.874690e-02
sample80   0.1384142737 -4.313979e-05
sample81  -0.0118846661  6.357908e-02
sample82  -0.1675306659 -3.533968e-02
sample83  -0.0065671187  7.812500e-02
sample84   0.1486890674  3.109095e-02
sample85  -0.0532720404 -7.417986e-02
sample86  -0.1138474950  1.822163e-05
sample87   0.0432865922 -6.080499e-02
sample88   0.0433451186 -1.402486e-01
sample89   0.0331204817  1.395428e-02
sample90  -0.0607413466  8.610386e-02
sample91  -0.0566263889 -1.303769e-01
sample92  -0.0359580723 -1.061605e-01
sample93  -0.0433646455  4.443610e-02
sample94  -0.0477292117  1.059571e-01
sample95  -0.0249595921  3.980510e-02
sample96   0.0035217603  9.293931e-02
sample97  -0.0066051954  1.527234e-01
sample98   0.0020367060  5.579516e-02
sample99  -0.0886621642  3.728371e-02
sample100 -0.1091259596  3.560401e-02
sample101 -0.0739723875  4.317887e-02
sample102  0.0574455795  2.784082e-02
sample103  0.0142733708 -9.706335e-03
sample104  0.0710395577 -4.068331e-02
sample105  0.0980829966  3.452996e-02
sample106 -0.0254260474 -3.628934e-02
sample107 -0.0160655015  9.173398e-02
sample108 -0.0200988301  2.379699e-02
sample109 -0.0389781922 -1.692313e-02
sample110 -0.0326305243 -2.988087e-02
sample111  0.0676935963  6.038248e-02
sample112  0.0167883510 -5.336924e-03
sample113  0.0969214003  2.757701e-02
sample114 -0.0026397981  9.209103e-02
sample115 -0.0308049530 -1.603746e-02
sample116 -0.1240306405 -1.272998e-01
sample117  0.0334728661 -5.392663e-02
sample118 -0.1037152169 -6.252439e-02
sample119 -0.1064170684 -1.196217e-01
sample120 -0.0771357668  1.004935e-01
sample121 -0.0129352292 -3.181916e-02
sample122  0.0847487635  5.568461e-02
sample123 -0.0041335536 -7.693544e-03
sample124 -0.0583462138  8.396474e-02
sample125  0.0634843276  5.232567e-02
sample126 -0.0662582083  1.091730e-01
sample127 -0.0865025601  1.094173e-01
sample128 -0.0627821957  1.471090e-02
sample129 -0.0336274617  4.007777e-02
sample130 -0.0293518107  8.046087e-02
sample131 -0.0469196808  2.209393e-03
sample132 -0.0241745555  1.248608e-01
sample133  0.0907303792 -1.466698e-02
sample134 -0.0350841248 -7.539660e-02
sample135  0.0001334857 -9.185808e-03
sample136 -0.0335874826  9.860184e-02
sample137 -0.0640147297  7.554374e-02
sample138  0.0060964062  1.742782e-02
sample139 -0.0592082788 -5.615005e-02
sample140  0.0427988560  1.099468e-02
sample141  0.0618793323  9.301100e-02
sample142  0.0898552542 -3.573326e-02
sample143  0.0817391036 -8.880528e-02
sample144  0.0787754480  3.821395e-02
sample145  0.1085819544 -1.569461e-01
sample146 -0.0589555050  4.373240e-02
sample147 -0.0495327950 -7.278040e-03
sample148  0.1161590525 -9.078158e-03
sample149 -0.0121575566 -7.788460e-02
sample150 -0.0314511988 -3.520220e-02
sample151  0.0575380967  1.945392e-02
sample152 -0.0494540388 -7.025565e-02
sample153 -0.0941338444 -2.153270e-01
sample154 -0.0335928881 -2.078823e-02
sample155  0.0690459022  2.780362e-02
sample156  0.1039902291  6.292489e-02
sample157 -0.0408645841 -8.065530e-03
sample158  0.1018106325 -7.817018e-03
sample159 -0.0281732494  1.207259e-02
sample160  0.1643052866 -2.977817e-03
sample161  0.0374330071 -8.524589e-02
sample162 -0.0804538219 -8.349638e-02
sample163 -0.0743232324  1.406344e-02
sample164  0.1208804311  2.139522e-02
sample165  0.1608115954 -2.025160e-02
sample166 -0.0425947877  2.660799e-02
sample167 -0.0226849507  4.464258e-02
sample168 -0.0180737336  7.471420e-04
sample169  0.0190780188 -2.645426e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  13.37    0.42   13.78 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout


R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1   -0.0781578770  0.0431511332
sample2    0.1192218245 -0.0294086490
sample3    0.0531409398  0.0746847904
sample4   -0.0292975406  0.0005962626
sample5   -0.0202092646 -0.0110458734
sample6   -0.1226089392 -0.1053464507
sample7   -0.1078928111  0.0322475000
sample8   -0.1782895133 -0.1449363250
sample9   -0.0468696400  0.0455166815
sample10   0.0036029118 -0.0420105287
sample11   0.0035567786  0.0566286157
sample12  -0.1006131018 -0.0641380750
sample13   0.1174413176 -0.0907501404
sample14  -0.0981203497 -0.0617736370
sample15  -0.0085335176  0.0087011319
sample16  -0.0783148202 -0.1581297011
sample17   0.1483609791 -0.0638581524
sample18   0.0963085858 -0.0556637824
sample19   0.0217241152  0.0720096811
sample20   0.0635638168  0.0779644815
sample21   0.0201839665 -0.1566386034
sample22  -0.0218270523  0.0764108890
sample23  -0.0852043450  0.0032692851
sample24   0.1287174615 -0.1924557112
sample25   0.0430572826  0.0456572784
sample26   0.1453897228 -0.0541516818
sample27   0.0197488811  0.1185656475
sample28   0.1025337750 -0.0650691239
sample29  -0.0706018736  0.0682981248
sample30   0.1295627627  0.0066772122
sample31  -0.1147450148 -0.1232682688
sample32   0.0374310015 -0.0380174209
sample33  -0.0599518524 -0.0136858189
sample34   0.0984200263 -0.0375320305
sample35   0.0543102318  0.0378094693
sample36  -0.1403619882  0.0343744165
sample37  -0.0228936631  0.0732836300
sample38   0.0222076139  0.0962593408
sample39   0.0941737548 -0.0215197556
sample40  -0.0643796748  0.0687862824
sample41   0.0327637055  0.1232190343
sample42   0.0500429854  0.0292481352
sample43   0.0184496965 -0.0233003706
sample44  -0.1487897159 -0.1171357155
sample45   0.1050773600 -0.1123198968
sample46   0.1151195736  0.1094027770
sample47   0.0962594894  0.0288458210
sample48  -0.0004836863  0.0310274781
sample49  -0.1135207547 -0.1213968206
sample50   0.0123551539  0.1740741442
sample51  -0.0550528257 -0.1258890603
sample52  -0.0499118171 -0.0728552636
sample53  -0.1119773766 -0.1588013649
sample54   0.0360055253 -0.0228571588
sample55  -0.0210418827 -0.0006731812
sample56   0.0434170417 -0.0633128271
sample57  -0.0197820598 -0.1150725136
sample58  -0.0030440017 -0.0326096331
sample59  -0.0500251812 -0.0129420598
sample60  -0.0184271897 -0.0136108772
sample61  -0.0150296846 -0.0635033817
sample62   0.0304763170  0.0201321223
sample63  -0.1102253429 -0.1285978962
sample64  -0.1552588045 -0.0971172584
sample65   0.0058501747 -0.0207112995
sample66   0.0025603971 -0.0424311896
sample67  -0.1546628517  0.0661700169
sample68  -0.0536368459  0.0923682893
sample69  -0.0640333018 -0.0081976547
sample70  -0.0163521110  0.0663237394
sample71   0.0102536467  0.1345924808
sample72   0.0654195750  0.0196122847
sample73   0.1048555057 -0.0220936591
sample74  -0.0123801253 -0.0586108905
sample75  -0.0392079012  0.0209757400
sample76  -0.0648952284  0.0524766390
sample77  -0.1172922275  0.0201193738
sample78   0.1463069443 -0.0708475232
sample79  -0.0265210840  0.1603307073
sample80  -0.0279737467  0.0214201594
sample81  -0.0079213301  0.0738456755
sample82   0.1544237688  0.0361465519
sample83   0.0494210079  0.0050054350
sample84   0.0259037348  0.0346554779
sample85  -0.1116481846  0.0031494622
sample86   0.1306483440  0.0377215009
sample87   0.0554779762  0.0459748153
sample88   0.0301627566 -0.0382203362
sample89   0.1016866725 -0.0694032376
sample90  -0.0086821737  0.0201328456
sample91  -0.1578623204  0.2097807430
sample92  -0.0170935104  0.1655801302
sample93   0.0979805693  0.0121513048
sample94  -0.0131486747  0.0114937040
sample95  -0.0315683987  0.0758862128
sample96  -0.0024128158  0.0470142958
sample97  -0.0634549193 -0.0270321734
sample98   0.0359373224  0.0135490416
sample99   0.1009162550 -0.1124777126
sample100 -0.0551753747 -0.0246488446
sample101  0.0080117116  0.1627367222
sample102  0.0046443026 -0.0095626361
sample103  0.0472523153  0.0940391849
sample104 -0.0198158932  0.0591090461
sample105  0.0400236931  0.0160919801
sample106  0.0923809398 -0.0369019662
sample107  0.1019371785 -0.0224949052
sample108  0.0877090978  0.0128835449
sample109 -0.0864824893  0.0900939086
sample110  0.1223116232  0.0096084324
sample111 -0.0257356948  0.0936173932
sample112  0.0765286928 -0.0270347742
sample113 -0.0258804249 -0.0377494650
sample114 -0.0021141413  0.0882022105
sample115 -0.0303460705  0.0723583826
sample116 -0.0780505680  0.0685058242
sample117 -0.0536897265  0.0911910134
sample118 -0.0666649689  0.0236225945
sample119 -0.1021869967  0.2324920474
sample120 -0.0750218967 -0.0243372669
sample121  0.0756937184 -0.0942957351
sample122  0.0259626596 -0.0731980857
sample123  0.1037846594  0.0369198737
sample124 -0.0611210149 -0.0421718387
sample125  0.0738471624 -0.0066942088
sample126 -0.0972918872 -0.0762638041
sample127 -0.0824700293  0.0096642976
sample128  0.1249407111 -0.0929314865
sample129  0.0734066868  0.0434367347
sample130  0.0003500159  0.0309860142
sample131 -0.0930182678 -0.0155938496
sample132 -0.0736225884 -0.0733021151
sample133  0.0498398128  0.0462438927
sample134 -0.1644871403 -0.0720013408
sample135  0.0752297540 -0.0003820256
sample136 -0.0227148110  0.0495511642
sample137 -0.0564718901  0.0288921019
sample138 -0.0255988902  0.0610860226
sample139 -0.0621215769 -0.0235807957
sample140  0.0604152178  0.0435591181
sample141 -0.0246746115 -0.0532639631
sample142  0.0409561066 -0.0316279492
sample143  0.0077357215  0.0476892699
sample144 -0.0173241943  0.0156781070
sample145 -0.0485470761 -0.1202780677
sample146 -0.0419646648  0.0811283127
sample147  0.0977309082  0.0274842245
sample148 -0.0368255825 -0.0803977069
sample149  0.0072867377  0.1532983286
sample150 -0.1020824030 -0.0624777636
sample151 -0.0305399869  0.0289281389
sample152  0.0533596000  0.0638299793
sample153  0.0891632496 -0.1799598179
sample154  0.0727557970  0.0834159113
sample155  0.0880667965  0.0220821845
sample156  0.0276559204  0.0326627456
sample157  0.1155032445 -0.0183618773
sample158  0.0281507606  0.0104937980
sample159 -0.0663235765 -0.0443833571
sample160  0.0302643999 -0.0404264379
sample161 -0.0114713797  0.0591022423
sample162  0.1337089275 -0.1398145847
sample163 -0.1330124563 -0.1688783614
sample164  0.0150335370 -0.0028411551
sample165 -0.0076520036  0.0164129625
sample166 -0.0367794932 -0.0630659046
sample167 -0.1111989920 -0.0030055840
sample168  0.0672981833 -0.0446276799
sample169  0.0413005845 -0.0224396625
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1    0.0420512181  0.0867864545
sample2    0.0820827815 -0.0410981470
sample3   -0.0155904094 -0.0195178158
sample4    0.1001335392 -0.0410790337
sample5    0.0153463373 -0.0253260441
sample6   -0.0340327987 -0.0408225153
sample7   -0.0722580436  0.0002335663
sample8    0.0457499023 -0.0370022617
sample9    0.0086254057  0.0820184816
sample10   0.0423596429 -0.0083925644
sample11  -0.0022544297  0.0787767049
sample12  -0.0322102827  0.1479824604
sample13   0.0293895990 -0.0306754114
sample14  -0.0337484532 -0.0367507479
sample15  -0.0815535786  0.1275625958
sample16  -0.0508449552  0.0540601327
sample17  -0.0062595844  0.0041022527
sample18  -0.0705641261 -0.0351046199
sample19   0.0476835826 -0.0509596357
sample20  -0.0522957957  0.0715525446
sample21   0.0119124601 -0.0376097993
sample22  -0.0724396196 -0.0095619294
sample23   0.0992530747  0.0134285543
sample24   0.1595128014  0.0728648919
sample25   0.0920689129 -0.0749758547
sample26   0.0595545169  0.0848962463
sample27  -0.0826486628 -0.0086728761
sample28   0.0384792629  0.0440963130
sample29  -0.0777665745  0.1735313265
sample30  -0.1229474360 -0.0819000379
sample31  -0.0579848767 -0.0238646031
sample32  -0.0970395085 -0.0111423452
sample33  -0.1017594078 -0.0630438051
sample34  -0.0637922001  0.0377943364
sample35  -0.0789980343 -0.0229720685
sample36  -0.1224938155 -0.1274952043
sample37  -0.1798821366 -0.1673420700
sample38  -0.0466302592  0.0888166140
sample39   0.0168688469  0.0421533062
sample40  -0.1756393309 -0.1526635653
sample41  -0.0042372256  0.0004933159
sample42   0.0447844982 -0.0651504682
sample43  -0.0482312186 -0.0253527421
sample44   0.1986715595 -0.0545789668
sample45   0.0741836799  0.0054697635
sample46  -0.0478772004 -0.0007066599
sample47  -0.0608185021  0.0481625474
sample48   0.1381492536  0.0578283210
sample49   0.0530515513 -0.1405538619
sample50   0.0173803634  0.1602394780
sample51  -0.0462558355  0.0303470675
sample52  -0.0280060706  0.0280385482
sample53  -0.0667620985  0.0237699493
sample54  -0.0121836219 -0.0521354322
sample55  -0.0182395457  0.0221328730
sample56   0.0001257169  0.0030904880
sample57  -0.0316668750  0.0530185864
sample58  -0.0393919584 -0.0297798178
sample59  -0.1278292022 -0.0546524234
sample60  -0.1486972969  0.1069158472
sample61  -0.0793117697  0.0569796117
sample62  -0.1172802680 -0.0149192989
sample63   0.0028730611  0.1300515947
sample64  -0.0237360803  0.1073285226
sample65   0.0126535348  0.0589807755
sample66   0.0468189974 -0.0771075152
sample67  -0.1494260646 -0.0769855813
sample68  -0.0977963124 -0.0577345061
sample69  -0.0403090285  0.0156044466
sample70  -0.0221534321  0.0315445347
sample71   0.0546432120 -0.0272393827
sample72  -0.1107490622 -0.0537314366
sample73  -0.0906760455  0.0579969944
sample74  -0.0586557807  0.0121422659
sample75  -0.0390493893  0.0349285125
sample76   0.0022955583 -0.1676557647
sample77   0.0232087967 -0.2067302910
sample78   0.0929756431 -0.0434945092
sample79   0.1619496112 -0.0378115614
sample80  -0.0680361196  0.1424666416
sample81   0.0530780489 -0.0358349746
sample82  -0.0266821825 -0.0577442905
sample83  -0.1517239085 -0.0448547785
sample84   0.0570964459 -0.0273813917
sample85  -0.1086291936 -0.1228116382
sample86  -0.0833860752 -0.0442910422
sample87  -0.0022020063 -0.0943905906
sample88   0.0078225308 -0.1140509505
sample89  -0.0611057531 -0.0094584776
sample90  -0.0022934018 -0.0936252310
sample91  -0.0433576080  0.3205989150
sample92   0.1815337062 -0.0334682762
sample93  -0.0267629479  0.0614431116
sample94  -0.0181878820  0.0605092584
sample95   0.0720374104 -0.0013045469
sample96   0.0559711215 -0.0118790935
sample97   0.0217406841  0.0195414048
sample98  -0.0379176979  0.0588359577
sample99   0.0792426767 -0.0151279432
sample100 -0.0222117247 -0.0023321063
sample101  0.0387231308  0.1224230482
sample102  0.2094611251 -0.0516450127
sample103 -0.0138480117  0.0301055386
sample104  0.0807987103 -0.0162720501
sample105  0.0520487505 -0.1229666128
sample106  0.0192614348 -0.0185240186
sample107 -0.0319018080  0.0405124980
sample108  0.0140691167  0.0163421766
sample109  0.1831932346  0.0613003486
sample110  0.0292791339 -0.0199849837
sample111  0.1423250548  0.0327338724
sample112 -0.0426332486 -0.0029082657
sample113  0.0771904281  0.0268729871
sample114  0.0241637515 -0.0184077512
sample115  0.1959017481  0.0460125733
sample116  0.1394478076 -0.0530810112
sample117  0.1672357823 -0.1386540258
sample118  0.0448345943 -0.0117623549
sample119  0.0910397229  0.2217435951
sample120  0.0331389026 -0.0057275455
sample121 -0.0307568175  0.1392504532
sample122  0.0839778399 -0.0291999108
sample123 -0.0239652253 -0.0642161551
sample124  0.0909148671  0.0130415759
sample125  0.0065345302 -0.1092631562
sample126 -0.0935310098  0.1368286015
sample127 -0.0035390239  0.0292757138
sample128  0.0660299760  0.1018561568
sample129 -0.0693642134 -0.0695417266
sample130 -0.0008498375 -0.0669702423
sample131 -0.0431023511  0.0174065760
sample132  0.0637036459  0.0029371367
sample133  0.0289493424 -0.0390818534
sample134 -0.0446199122  0.0456332661
sample135 -0.0712334556  0.0521637561
sample136 -0.0596273531  0.0197304052
sample137 -0.0793155750 -0.0380623828
sample138  0.0973545794 -0.0454219697
sample139 -0.0539908325 -0.1534326888
sample140 -0.0850824080  0.0955819157
sample141  0.0192676780 -0.0554451514
sample142  0.0672261370 -0.0461324669
sample143  0.0303730840 -0.0519260848
sample144  0.0089363446  0.0145815399
sample145  0.0638775193  0.0122250448
sample146 -0.0585857691  0.0063088405
sample147 -0.0894136712 -0.1124611461
sample148  0.0216364743 -0.0615970695
sample149  0.0515419582 -0.0839901357
sample150 -0.0568282637 -0.0124469451
sample151  0.0789530375 -0.0261833001
sample152  0.0330760511  0.1306443803
sample153  0.1751944876  0.1497718161
sample154 -0.0421423767 -0.0037006110
sample155 -0.0680178114  0.0095714801
sample156 -0.0388909813  0.1057566036
sample157 -0.0314766494  0.0561368190
sample158 -0.0329619407  0.0353948724
sample159  0.0398412653 -0.1007376584
sample160 -0.0424938691  0.0108496330
sample161  0.0888371119 -0.0679702478
sample162  0.0027484373  0.1237838859
sample163  0.0126107986  0.0725428512
sample164  0.0566776897 -0.0458326120
sample165  0.0315335404 -0.0236363331
sample166  0.0612056094 -0.0425236953
sample167 -0.0142730902  0.0179308934
sample168  0.0169501202 -0.0769619716
sample169 -0.0675078891  0.0131506827
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1   -0.0012327701 -1.635713e-01
sample2   -0.0724349259 -6.022173e-03
sample3   -0.0188459776 -1.080032e-01
sample4    0.0390145604  3.111745e-04
sample5    0.1774812187 -2.996371e-02
sample6   -0.0451443118 -3.455903e-02
sample7   -0.0226466892 -7.019462e-03
sample8   -0.1033678586 -9.857717e-03
sample9    0.1350010070  8.979167e-02
sample10   0.1259888564 -5.097881e-02
sample11   0.0979786847  7.086597e-02
sample12  -0.0863017339 -8.620324e-02
sample13  -0.1381402454  1.827994e-01
sample14  -0.0615073102 -2.642825e-02
sample15   0.0381599059 -3.101610e-02
sample16  -0.0048775299  1.271116e-03
sample17  -0.0788479927 -1.547644e-02
sample18  -0.0884187850 -3.795543e-02
sample19   0.0703045314 -1.084001e-01
sample20  -0.0025587538  7.975939e-02
sample21   0.0941603937 -4.126853e-02
sample22  -0.0550273471 -7.806668e-02
sample23   0.0679496155 -4.102003e-02
sample24  -0.1310962192  1.649286e-01
sample25   0.0113585750 -4.426877e-02
sample26  -0.1402945163  2.016439e-02
sample27   0.0261559525  1.589540e-03
sample28  -0.0724198537  5.850503e-02
sample29  -0.0330059567  2.061884e-03
sample30  -0.0228752776 -2.015429e-02
sample31  -0.0635066077 -6.670387e-02
sample32   0.0685100382 -4.955270e-02
sample33  -0.0777763835 -1.272076e-01
sample34   0.0157843108 -3.024338e-02
sample35  -0.0529635510  1.500975e-01
sample36   0.0070896869  2.025316e-01
sample37  -0.0442424737  1.802098e-01
sample38  -0.0781511910 -3.676343e-02
sample39   0.0120332751 -3.388879e-02
sample40  -0.0473295721  1.471571e-01
sample41   0.0228188479 -2.673470e-02
sample42  -0.0245359284 -7.960883e-02
sample43   0.1036363997 -8.229571e-02
sample44  -0.1012227926  7.049320e-02
sample45   0.0013733984 -2.451040e-02
sample46  -0.0558511301  2.947961e-03
sample47  -0.0380482220  4.554190e-02
sample48   0.0784341674  4.888975e-02
sample49  -0.0605162525 -1.162455e-02
sample50   0.0530077999 -2.737792e-02
sample51   0.1514646877  5.678307e-02
sample52   0.1860934155  1.246717e-01
sample53  -0.0064175387 -2.701056e-02
sample54   0.0697038851 -2.308406e-02
sample55   0.1633576776  1.366477e-02
sample56   0.1011485179  4.682163e-02
sample57   0.1730373119  1.609599e-01
sample58  -0.0071384313 -1.666969e-02
sample59  -0.0030462564  3.005323e-02
sample60   0.0215831084  2.665883e-01
sample61   0.1510582650  1.002386e-01
sample62  -0.0925533946 -4.845811e-02
sample63  -0.0596309841 -4.137082e-02
sample64  -0.0449224890 -2.600764e-03
sample65   0.0939384694 -4.406910e-02
sample66   0.1063402119 -5.710033e-02
sample67  -0.0201594793  2.361740e-01
sample68   0.0037201392  2.418494e-02
sample69  -0.0645159738 -1.155620e-01
sample70  -0.1013438937 -1.351784e-01
sample71  -0.0016468700 -2.976769e-02
sample72   0.0328892785 -2.835825e-02
sample73   0.0275080784 -5.148188e-02
sample74   0.1341721166 -7.895280e-02
sample75   0.0951575816 -3.943130e-02
sample76  -0.0864723137  3.035014e-02
sample77  -0.1035749626 -2.545355e-02
sample78  -0.1575643575  4.939451e-02
sample79   0.0189135278  4.874747e-02
sample80   0.1384140174  4.344135e-05
sample81  -0.0118846197 -6.357899e-02
sample82  -0.1675309041  3.533879e-02
sample83  -0.0065672975 -7.812575e-02
sample84   0.1486891901 -3.109039e-02
sample85  -0.0532726124  7.417928e-02
sample86  -0.1138477975 -1.914105e-05
sample87   0.0432862624  6.080488e-02
sample88   0.0433448811  1.402486e-01
sample89   0.0331206566 -1.395452e-02
sample90  -0.0607411936 -8.610415e-02
sample91  -0.0566276753  1.303770e-01
sample92  -0.0359585063  1.061610e-01
sample93  -0.0433645836 -4.443641e-02
sample94  -0.0477289998 -1.059572e-01
sample95  -0.0249595781 -3.980490e-02
sample96   0.0035220000 -9.293912e-02
sample97  -0.0066046319 -1.527232e-01
sample98   0.0020367375 -5.579530e-02
sample99  -0.0886613967 -3.728370e-02
sample100 -0.1091258527 -3.560432e-02
sample101 -0.0739727369 -4.317893e-02
sample102  0.0574462440 -2.783987e-02
sample103  0.0142729898  9.706213e-03
sample104  0.0710394305  4.068380e-02
sample105  0.0980831801 -3.452967e-02
sample106 -0.0254259261  3.628923e-02
sample107 -0.0160651931 -9.173423e-02
sample108 -0.0200987307 -2.379710e-02
sample109 -0.0389781160  1.692387e-02
sample110 -0.0326305136  2.988070e-02
sample111  0.0676937963 -6.038172e-02
sample112  0.0167883555  5.336714e-03
sample113  0.0969218106 -2.757633e-02
sample114 -0.0026397947 -9.209103e-02
sample115 -0.0308047526  1.603819e-02
sample116 -0.1240309233  1.273000e-01
sample117  0.0334727860  5.392724e-02
sample118 -0.1037153934  6.252434e-02
sample119 -0.1064180360  1.196220e-01
sample120 -0.0771353393 -1.004935e-01
sample121 -0.0129350113  3.181913e-02
sample122  0.0847494182 -5.568404e-02
sample123 -0.0041337322  7.693191e-03
sample124 -0.0583456078 -8.396440e-02
sample125  0.0634845408 -5.232568e-02
sample126 -0.0662578986 -1.091732e-01
sample127 -0.0865023273 -1.094174e-01
sample128 -0.0627815760 -1.471080e-02
sample129 -0.0336276621 -4.007836e-02
sample130 -0.0293517026 -8.046106e-02
sample131 -0.0469197721 -2.209541e-03
sample132 -0.0241737988 -1.248604e-01
sample133  0.0907302648  1.466720e-02
sample134 -0.0350842659  7.539665e-02
sample135  0.0001333118  9.185478e-03
sample136 -0.0335875476 -9.860216e-02
sample137 -0.0640148582 -7.554423e-02
sample138  0.0060964756 -1.742748e-02
sample139 -0.0592085388  5.614960e-02
sample140  0.0427985411 -1.099491e-02
sample141  0.0618798247 -9.301074e-02
sample142  0.0898554588  3.573371e-02
sample143  0.0817387565  8.880552e-02
sample144  0.0787755171 -3.821366e-02
sample145  0.1085820919  1.569468e-01
sample146 -0.0589558479 -4.373280e-02
sample147 -0.0495331186  7.277256e-03
sample148  0.1161593528  9.078622e-03
sample149 -0.0121582031  7.788454e-02
sample150 -0.0314512698  3.520205e-02
sample151  0.0575382394 -1.945344e-02
sample152 -0.0494543460  7.025567e-02
sample153 -0.0941332868  2.153277e-01
sample154 -0.0335933288  2.078779e-02
sample155  0.0690457622 -2.780383e-02
sample156  0.1039902098 -6.292470e-02
sample157 -0.0408645660  8.065207e-03
sample158  0.1018105012  7.817168e-03
sample159 -0.0281729886 -1.207249e-02
sample160  0.1643053272  2.978117e-03
sample161  0.0374327730  8.524625e-02
sample162 -0.0804534728  8.349623e-02
sample163 -0.0743225995 -1.406319e-02
sample164  0.1208806543 -2.139472e-02
sample165  0.1608115558  2.025215e-02
sample166 -0.0425943423 -2.660781e-02
sample167 -0.0226848989 -4.464253e-02
sample168 -0.0180735019 -7.472677e-04
sample169  0.0190778664  2.645402e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  13.07    0.57   13.64 

Example timings

STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide0.010.000.02
STATegRa_data0.320.000.31
STATegRa_data_TCGA_BRCA000
bioDist0.530.050.57
bioDistFeature0.430.030.46
bioDistFeaturePlot0.40.00.4
bioDistW0.440.000.44
bioDistWPlot0.550.020.56
bioMap000
combiningMappings0.000.010.02
createOmicsExpressionSet0.170.000.17
getInitialData0.640.190.82
getLoadings0.910.161.07
getMethodInfo0.970.181.15
getPreprocessing1.050.211.25
getScores0.610.040.66
getVAF0.640.040.67
holistOmics000
modelSelection2.600.423.01
omicsCompAnalysis3.780.093.88
omicsNPC0.010.000.01
plotRes4.660.194.85
plotVAF4.230.194.42

STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide000
STATegRa_data0.200.050.25
STATegRa_data_TCGA_BRCA000
bioDist0.440.050.48
bioDistFeature0.370.000.38
bioDistFeaturePlot0.350.010.36
bioDistW0.310.050.36
bioDistWPlot0.340.010.36
bioMap0.020.000.01
combiningMappings000
createOmicsExpressionSet0.140.020.16
getInitialData0.530.170.70
getLoadings0.630.080.70
getMethodInfo0.750.120.88
getPreprocessing0.900.141.05
getScores0.700.150.84
getVAF0.550.100.66
holistOmics000
modelSelection1.450.411.85
omicsCompAnalysis4.000.164.16
omicsNPC0.000.010.02
plotRes5.130.145.26
plotVAF4.580.104.67