Node.js v8.0.0-rc.0 Documentation


Table of Contents

Crypto#

Stability: 2 - Stable

The crypto module provides cryptographic functionality that includes a set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.

Use require('crypto') to access this module.

const crypto = require('crypto');

const secret = 'abcdefg';
const hash = crypto.createHmac('sha256', secret)
                   .update('I love cupcakes')
                   .digest('hex');
console.log(hash);
// Prints:
//   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e

Determining if crypto support is unavailable#

It is possible for Node.js to be built without including support for the crypto module. In such cases, calling require('crypto') will result in an error being thrown.

let crypto;
try {
  crypto = require('crypto');
} catch (err) {
  console.log('crypto support is disabled!');
}

Class: Certificate#

SPKAC is a Certificate Signing Request mechanism originally implemented by Netscape and now specified formally as part of HTML5's keygen element.

The crypto module provides the Certificate class for working with SPKAC data. The most common usage is handling output generated by the HTML5 <keygen> element. Node.js uses OpenSSL's SPKAC implementation internally.

new crypto.Certificate()#

Instances of the Certificate class can be created using the new keyword or by calling crypto.Certificate() as a function:

const crypto = require('crypto');

const cert1 = new crypto.Certificate();
const cert2 = crypto.Certificate();

certificate.exportChallenge(spkac)#

const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string

certificate.exportPublicKey(spkac)#

const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>

certificate.verifySpkac(spkac)#

const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or false

Class: Cipher#

Instances of the Cipher class are used to encrypt data. The class can be used in one of two ways:

  • As a stream that is both readable and writable, where plain unencrypted data is written to produce encrypted data on the readable side, or
  • Using the cipher.update() and cipher.final() methods to produce the encrypted data.

The crypto.createCipher() or crypto.createCipheriv() methods are used to create Cipher instances. Cipher objects are not to be created directly using the new keyword.

Example: Using Cipher objects as streams:

const crypto = require('crypto');
const cipher = crypto.createCipher('aes192', 'a password');

let encrypted = '';
cipher.on('readable', () => {
  const data = cipher.read();
  if (data)
    encrypted += data.toString('hex');
});
cipher.on('end', () => {
  console.log(encrypted);
  // Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504
});

cipher.write('some clear text data');
cipher.end();

Example: Using Cipher and piped streams:

const crypto = require('crypto');
const fs = require('fs');
const cipher = crypto.createCipher('aes192', 'a password');

const input = fs.createReadStream('test.js');
const output = fs.createWriteStream('test.enc');

input.pipe(cipher).pipe(output);

Example: Using the cipher.update() and cipher.final() methods:

const crypto = require('crypto');
const cipher = crypto.createCipher('aes192', 'a password');

let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
encrypted += cipher.final('hex');
console.log(encrypted);
// Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504

cipher.final([output_encoding])#

Returns any remaining enciphered contents. If output_encoding parameter is one of 'latin1', 'base64' or 'hex', a string is returned. If an output_encoding is not provided, a Buffer is returned.

Once the cipher.final() method has been called, the Cipher object can no longer be used to encrypt data. Attempts to call cipher.final() more than once will result in an error being thrown.

cipher.setAAD(buffer)#

  • buffer <Buffer>
  • Returns the <Cipher> for method chaining.

When using an authenticated encryption mode (only GCM is currently supported), the cipher.setAAD() method sets the value used for the additional authenticated data (AAD) input parameter.

The cipher.setAAD() method must be called before cipher.update().

cipher.getAuthTag()#

When using an authenticated encryption mode (only GCM is currently supported), the cipher.getAuthTag() method returns a Buffer containing the authentication tag that has been computed from the given data.

The cipher.getAuthTag() method should only be called after encryption has been completed using the cipher.final() method.

cipher.setAutoPadding([auto_padding])#

  • auto_padding <boolean> Defaults to true.
  • Returns the <Cipher> for method chaining.

When using block encryption algorithms, the Cipher class will automatically add padding to the input data to the appropriate block size. To disable the default padding call cipher.setAutoPadding(false).

When auto_padding is false, the length of the entire input data must be a multiple of the cipher's block size or cipher.final() will throw an Error. Disabling automatic padding is useful for non-standard padding, for instance using 0x0 instead of PKCS padding.

The cipher.setAutoPadding() method must be called before cipher.final().

cipher.update(data[, input_encoding][, output_encoding])#

Updates the cipher with data. If the input_encoding argument is given, its value must be one of 'utf8', 'ascii', or 'latin1' and the data argument is a string using the specified encoding. If the input_encoding argument is not given, data must be a Buffer, TypedArray, or DataView. If data is a Buffer, TypedArray, or DataView, then input_encoding is ignored.

The output_encoding specifies the output format of the enciphered data, and can be 'latin1', 'base64' or 'hex'. If the output_encoding is specified, a string using the specified encoding is returned. If no output_encoding is provided, a Buffer is returned.

The cipher.update() method can be called multiple times with new data until cipher.final() is called. Calling cipher.update() after cipher.final() will result in an error being thrown.

Class: Decipher#

Instances of the Decipher class are used to decrypt data. The class can be used in one of two ways:

  • As a stream that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or
  • Using the decipher.update() and decipher.final() methods to produce the unencrypted data.

The crypto.createDecipher() or crypto.createDecipheriv() methods are used to create Decipher instances. Decipher objects are not to be created directly using the new keyword.

Example: Using Decipher objects as streams:

const crypto = require('crypto');
const decipher = crypto.createDecipher('aes192', 'a password');

let decrypted = '';
decipher.on('readable', () => {
  const data = decipher.read();
  if (data)
    decrypted += data.toString('utf8');
});
decipher.on('end', () => {
  console.log(decrypted);
  // Prints: some clear text data
});

const encrypted =
    'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';
decipher.write(encrypted, 'hex');
decipher.end();

Example: Using Decipher and piped streams:

const crypto = require('crypto');
const fs = require('fs');
const decipher = crypto.createDecipher('aes192', 'a password');

const input = fs.createReadStream('test.enc');
const output = fs.createWriteStream('test.js');

input.pipe(decipher).pipe(output);

Example: Using the decipher.update() and decipher.final() methods:

const crypto = require('crypto');
const decipher = crypto.createDecipher('aes192', 'a password');

const encrypted =
    'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data

decipher.final([output_encoding])#

Returns any remaining deciphered contents. If output_encoding parameter is one of 'latin1', 'ascii' or 'utf8', a string is returned. If an output_encoding is not provided, a Buffer is returned.

Once the decipher.final() method has been called, the Decipher object can no longer be used to decrypt data. Attempts to call decipher.final() more than once will result in an error being thrown.

decipher.setAAD(buffer)#

When using an authenticated encryption mode (only GCM is currently supported), the decipher.setAAD() method sets the value used for the additional authenticated data (AAD) input parameter.

The decipher.setAAD() method must be called before decipher.update().

decipher.setAuthTag(buffer)#

When using an authenticated encryption mode (only GCM is currently supported), the decipher.setAuthTag() method is used to pass in the received authentication tag. If no tag is provided, or if the cipher text has been tampered with, decipher.final() with throw, indicating that the cipher text should be discarded due to failed authentication.

The decipher.setAuthTag() method must be called before decipher.final().

decipher.setAutoPadding([auto_padding])#

  • auto_padding <boolean> Defaults to true.
  • Returns the <Cipher> for method chaining.

When data has been encrypted without standard block padding, calling decipher.setAutoPadding(false) will disable automatic padding to prevent decipher.final() from checking for and removing padding.

Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.

The decipher.setAutoPadding() method must be called before decipher.final().

decipher.update(data[, input_encoding][, output_encoding])#

Updates the decipher with data. If the input_encoding argument is given, its value must be one of 'latin1', 'base64', or 'hex' and the data argument is a string using the specified encoding. If the input_encoding argument is not given, data must be a Buffer. If data is a Buffer then input_encoding is ignored.

The output_encoding specifies the output format of the enciphered data, and can be 'latin1', 'ascii' or 'utf8'. If the output_encoding is specified, a string using the specified encoding is returned. If no output_encoding is provided, a Buffer is returned.

The decipher.update() method can be called multiple times with new data until decipher.final() is called. Calling decipher.update() after decipher.final() will result in an error being thrown.

Class: DiffieHellman#

The DiffieHellman class is a utility for creating Diffie-Hellman key exchanges.

Instances of the DiffieHellman class can be created using the crypto.createDiffieHellman() function.

const crypto = require('crypto');
const assert = require('assert');

// Generate Alice's keys...
const alice = crypto.createDiffieHellman(2048);
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

// OK
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));

diffieHellman.computeSecret(other_public_key[, input_encoding][, output_encoding])#

Computes the shared secret using other_public_key as the other party's public key and returns the computed shared secret. The supplied key is interpreted using the specified input_encoding, and secret is encoded using specified output_encoding. Encodings can be 'latin1', 'hex', or 'base64'. If the input_encoding is not provided, other_public_key is expected to be a Buffer, TypedArray, or DataView.

If output_encoding is given a string is returned; otherwise, a Buffer is returned.

diffieHellman.generateKeys([encoding])#

Generates private and public Diffie-Hellman key values, and returns the public key in the specified encoding. This key should be transferred to the other party. Encoding can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getGenerator([encoding])#

Returns the Diffie-Hellman generator in the specified encoding, which can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getPrime([encoding])#

Returns the Diffie-Hellman prime in the specified encoding, which can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getPrivateKey([encoding])#

Returns the Diffie-Hellman private key in the specified encoding, which can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getPublicKey([encoding])#

Returns the Diffie-Hellman public key in the specified encoding, which can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.setPrivateKey(private_key[, encoding])#

Sets the Diffie-Hellman private key. If the encoding argument is provided and is either 'latin1', 'hex', or 'base64', private_key is expected to be a string. If no encoding is provided, private_key is expected to be a Buffer, TypedArray, or DataView.

diffieHellman.setPublicKey(public_key[, encoding])#

Sets the Diffie-Hellman public key. If the encoding argument is provided and is either 'latin1', 'hex' or 'base64', public_key is expected to be a string. If no encoding is provided, public_key is expected to be a Buffer, TypedArray, or DataView.

diffieHellman.verifyError#

A bit field containing any warnings and/or errors resulting from a check performed during initialization of the DiffieHellman object.

The following values are valid for this property (as defined in constants module):

  • DH_CHECK_P_NOT_SAFE_PRIME
  • DH_CHECK_P_NOT_PRIME
  • DH_UNABLE_TO_CHECK_GENERATOR
  • DH_NOT_SUITABLE_GENERATOR

Class: ECDH#

The ECDH class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) key exchanges.

Instances of the ECDH class can be created using the crypto.createECDH() function.

const crypto = require('crypto');
const assert = require('assert');

// Generate Alice's keys...
const alice = crypto.createECDH('secp521r1');
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = crypto.createECDH('secp521r1');
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
  // OK

ecdh.computeSecret(other_public_key[, input_encoding][, output_encoding])#

Computes the shared secret using other_public_key as the other party's public key and returns the computed shared secret. The supplied key is interpreted using specified input_encoding, and the returned secret is encoded using the specified output_encoding. Encodings can be 'latin1', 'hex', or 'base64'. If the input_encoding is not provided, other_public_key is expected to be a Buffer, TypedArray, or DataView.

If output_encoding is given a string will be returned; otherwise a Buffer is returned.

ecdh.generateKeys([encoding[, format]])#

Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified format and encoding. This key should be transferred to the other party.

The format argument specifies point encoding and can be 'compressed' or 'uncompressed'. If format is not specified, the point will be returned in 'uncompressed' format.

The encoding argument can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

ecdh.getPrivateKey([encoding])#

Returns the EC Diffie-Hellman private key in the specified encoding, which can be 'latin1', 'hex', or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned.

ecdh.getPublicKey([encoding][, format])#

Returns the EC Diffie-Hellman public key in the specified encoding and format.

The format argument specifies point encoding and can be 'compressed' or 'uncompressed'. If format is not specified the point will be returned in 'uncompressed' format.

The encoding argument can be 'latin1', 'hex', or 'base64'. If encoding is specified, a string is returned; otherwise a Buffer is returned.

ecdh.setPrivateKey(private_key[, encoding])#

Sets the EC Diffie-Hellman private key. The encoding can be 'latin1', 'hex' or 'base64'. If encoding is provided, private_key is expected to be a string; otherwise private_key is expected to be a Buffer, TypedArray, or DataView.

If private_key is not valid for the curve specified when the ECDH object was created, an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the ECDH object.

ecdh.setPublicKey(public_key[, encoding])#

Stability: 0 - Deprecated

Sets the EC Diffie-Hellman public key. Key encoding can be 'latin1', 'hex' or 'base64'. If encoding is provided public_key is expected to be a string; otherwise a Buffer, TypedArray, or DataView is expected.

Note that there is not normally a reason to call this method because ECDH only requires a private key and the other party's public key to compute the shared secret. Typically either ecdh.generateKeys() or ecdh.setPrivateKey() will be called. The ecdh.setPrivateKey() method attempts to generate the public point/key associated with the private key being set.

Example (obtaining a shared secret):

const crypto = require('crypto');
const alice = crypto.createECDH('secp256k1');
const bob = crypto.createECDH('secp256k1');

// Note: This is a shortcut way to specify one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
  crypto.createHash('sha256').update('alice', 'utf8').digest()
);

// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);

Class: Hash#

The Hash class is a utility for creating hash digests of data. It can be used in one of two ways:

  • As a stream that is both readable and writable, where data is written to produce a computed hash digest on the readable side, or
  • Using the hash.update() and hash.digest() methods to produce the computed hash.

The crypto.createHash() method is used to create Hash instances. Hash objects are not to be created directly using the new keyword.

Example: Using Hash objects as streams:

const crypto = require('crypto');
const hash = crypto.createHash('sha256');

hash.on('readable', () => {
  const data = hash.read();
  if (data)
    console.log(data.toString('hex'));
    // Prints:
    //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
});

hash.write('some data to hash');
hash.end();

Example: Using Hash and piped streams:

const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');

const input = fs.createReadStream('test.js');
input.pipe(hash).pipe(process.stdout);

Example: Using the hash.update() and hash.digest() methods:

const crypto = require('crypto');
const hash = crypto.createHash('sha256');

hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50

hash.digest([encoding])#

Calculates the digest of all of the data passed to be hashed (using the hash.update() method). The encoding can be 'hex', 'latin1' or 'base64'. If encoding is provided a string will be returned; otherwise a Buffer is returned.

The Hash object can not be used again after hash.digest() method has been called. Multiple calls will cause an error to be thrown.

hash.update(data[, input_encoding])#

Updates the hash content with the given data, the encoding of which is given in input_encoding and can be 'utf8', 'ascii' or 'latin1'. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then input_encoding is ignored.

This can be called many times with new data as it is streamed.

Class: Hmac#

The Hmac Class is a utility for creating cryptographic HMAC digests. It can be used in one of two ways:

  • As a stream that is both readable and writable, where data is written to produce a computed HMAC digest on the readable side, or
  • Using the hmac.update() and hmac.digest() methods to produce the computed HMAC digest.

The crypto.createHmac() method is used to create Hmac instances. Hmac objects are not to be created directly using the new keyword.

Example: Using Hmac objects as streams:

const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');

hmac.on('readable', () => {
  const data = hmac.read();
  if (data)
    console.log(data.toString('hex'));
    // Prints:
    //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
});

hmac.write('some data to hash');
hmac.end();

Example: Using Hmac and piped streams:

const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', 'a secret');

const input = fs.createReadStream('test.js');
input.pipe(hmac).pipe(process.stdout);

Example: Using the hmac.update() and hmac.digest() methods:

const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');

hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e

hmac.digest([encoding])#

Calculates the HMAC digest of all of the data passed using hmac.update(). The encoding can be 'hex', 'latin1' or 'base64'. If encoding is provided a string is returned; otherwise a Buffer is returned;

The Hmac object can not be used again after hmac.digest() has been called. Multiple calls to hmac.digest() will result in an error being thrown.

hmac.update(data[, input_encoding])#

Updates the Hmac content with the given data, the encoding of which is given in input_encoding and can be 'utf8', 'ascii' or 'latin1'. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then input_encoding is ignored.

This can be called many times with new data as it is streamed.

Class: Sign#

The Sign Class is a utility for generating signatures. It can be used in one of two ways:

  • As a writable stream, where data to be signed is written and the sign.sign() method is used to generate and return the signature, or
  • Using the sign.update() and sign.sign() methods to produce the signature.

The crypto.createSign() method is used to create Sign instances. Sign objects are not to be created directly using the new keyword.

Example: Using Sign objects as streams:

const crypto = require('crypto');
const sign = crypto.createSign('RSA-SHA256');

sign.write('some data to sign');
sign.end();

const privateKey = getPrivateKeySomehow();
console.log(sign.sign(privateKey, 'hex'));
// Prints: the calculated signature

Example: Using the sign.update() and sign.sign() methods:

const crypto = require('crypto');
const sign = crypto.createSign('RSA-SHA256');

sign.update('some data to sign');

const privateKey = getPrivateKeySomehow();
console.log(sign.sign(privateKey, 'hex'));
// Prints: the calculated signature

A Sign instance can also be created by just passing in the digest algorithm name, in which case OpenSSL will infer the full signature algorithm from the type of the PEM-formatted private key, including algorithms that do not have directly exposed name constants, e.g. 'ecdsa-with-SHA256'.

Example: signing using ECDSA with SHA256

const crypto = require('crypto');
const sign = crypto.createSign('sha256');

sign.update('some data to sign');

const privateKey =
`-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIF+jnWY1D5kbVYDNvxxo/Y+ku2uJPDwS0r/VuPZQrjjVoAoGCCqGSM49
AwEHoUQDQgAEurOxfSxmqIRYzJVagdZfMMSjRNNhB8i3mXyIMq704m2m52FdfKZ2
pQhByd5eyj3lgZ7m7jbchtdgyOF8Io/1ng==
-----END EC PRIVATE KEY-----`;

console.log(sign.sign(privateKey).toString('hex'));

sign.sign(private_key[, output_format])#

Calculates the signature on all the data passed through using either sign.update() or sign.write().

The private_key argument can be an object or a string. If private_key is a string, it is treated as a raw key with no passphrase. If private_key is an object, it must contain one or more of the following properties:

  • key: <string> - PEM encoded private key (required)
  • passphrase: <string> - passphrase for the private key
  • padding: <integer> - Optional padding value for RSA, one of the following:

    • crypto.constants.RSA_PKCS1_PADDING (default)
    • crypto.constants.RSA_PKCS1_PSS_PADDING

    Note that RSA_PKCS1_PSS_PADDING will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055.

  • saltLength: <integer> - salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

The output_format can specify one of 'latin1', 'hex' or 'base64'. If output_format is provided a string is returned; otherwise a Buffer is returned.

The Sign object can not be again used after sign.sign() method has been called. Multiple calls to sign.sign() will result in an error being thrown.

sign.update(data[, input_encoding])#

Updates the Sign content with the given data, the encoding of which is given in input_encoding and can be 'utf8', 'ascii' or 'latin1'. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then input_encoding is ignored.

This can be called many times with new data as it is streamed.

Class: Verify#

The Verify class is a utility for verifying signatures. It can be used in one of two ways:

The crypto.createVerify() method is used to create Verify instances. Verify objects are not to be created directly using the new keyword.

Example: Using Verify objects as streams:

const crypto = require('crypto');
const verify = crypto.createVerify('RSA-SHA256');

verify.write('some data to sign');
verify.end();

const publicKey = getPublicKeySomehow();
const signature = getSignatureToVerify();
console.log(verify.verify(publicKey, signature));
// Prints: true or false

Example: Using the verify.update() and verify.verify() methods:

const crypto = require('crypto');
const verify = crypto.createVerify('RSA-SHA256');

verify.update('some data to sign');

const publicKey = getPublicKeySomehow();
const signature = getSignatureToVerify();
console.log(verify.verify(publicKey, signature));
// Prints: true or false

verifier.update(data[, input_encoding])#

Updates the Verify content with the given data, the encoding of which is given in input_encoding and can be 'utf8', 'ascii' or 'latin1'. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then input_encoding is ignored.

This can be called many times with new data as it is streamed.

verifier.verify(object, signature[, signature_format])#

Verifies the provided data using the given object and signature. The object argument can be either a string containing a PEM encoded object, which can be an RSA public key, a DSA public key, or an X.509 certificate, or an object with one or more of the following properties:

  • key: <string> - PEM encoded private key (required)
  • padding: <integer> - Optional padding value for RSA, one of the following:

    • crypto.constants.RSA_PKCS1_PADDING (default)
    • crypto.constants.RSA_PKCS1_PSS_PADDING

    Note that RSA_PKCS1_PSS_PADDING will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of RFC 4055.

  • saltLength: <integer> - salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_AUTO (default) causes it to be determined automatically.

The signature argument is the previously calculated signature for the data, in the signature_format which can be 'latin1', 'hex' or 'base64'. If a signature_format is specified, the signature is expected to be a string; otherwise signature is expected to be a Buffer, TypedArray, or DataView.

Returns true or false depending on the validity of the signature for the data and public key.

The verifier object can not be used again after verify.verify() has been called. Multiple calls to verify.verify() will result in an error being thrown.

crypto module methods and properties#

crypto.constants#

Returns an object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in Crypto Constants.

crypto.DEFAULT_ENCODING#

The default encoding to use for functions that can take either strings or buffers. The default value is 'buffer', which makes methods default to Buffer objects.

The crypto.DEFAULT_ENCODING mechanism is provided for backwards compatibility with legacy programs that expect 'latin1' to be the default encoding.

New applications should expect the default to be 'buffer'. This property may become deprecated in a future Node.js release.

crypto.fips#

Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js.

crypto.createCipher(algorithm, password)#

Creates and returns a Cipher object that uses the given algorithm and password.

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list-cipher-algorithms will display the available cipher algorithms.

The password is used to derive the cipher key and initialization vector (IV). The value must be either a 'latin1' encoded string, a Buffer, a TypedArray, or a DataView.

The implementation of crypto.createCipher() derives keys using the OpenSSL function EVP_BytesToKey with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly.

In line with OpenSSL's recommendation to use pbkdf2 instead of EVP_BytesToKey it is recommended that developers derive a key and IV on their own using crypto.pbkdf2() and to use crypto.createCipheriv() to create the Cipher object.

crypto.createCipheriv(algorithm, key, iv)#

Creates and returns a Cipher object, with the given algorithm, key and initialization vector (iv).

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list-cipher-algorithms will display the available cipher algorithms.

The key is the raw key used by the algorithm and iv is an initialization vector. Both arguments must be 'utf8' encoded strings, Buffers, TypedArray, or DataViews.

crypto.createCredentials(details)#

Stability: 0 - Deprecated: Use tls.createSecureContext() instead.

The crypto.createCredentials() method is a deprecated function for creating and returning a tls.SecureContext. It should not be used. Replace it with tls.createSecureContext() which has the exact same arguments and return value.

Returns a tls.SecureContext, as-if tls.createSecureContext() had been called.

crypto.createDecipher(algorithm, password)#

Creates and returns a Decipher object that uses the given algorithm and password (key).

The implementation of crypto.createDecipher() derives keys using the OpenSSL function EVP_BytesToKey with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly.

In line with OpenSSL's recommendation to use pbkdf2 instead of EVP_BytesToKey it is recommended that developers derive a key and IV on their own using crypto.pbkdf2() and to use crypto.createDecipheriv() to create the Decipher object.

crypto.createDecipheriv(algorithm, key, iv)#

Creates and returns a Decipher object that uses the given algorithm, key and initialization vector (iv).

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list-cipher-algorithms will display the available cipher algorithms.

The key is the raw key used by the algorithm and iv is an initialization vector. Both arguments must be 'utf8' encoded strings or buffers.

crypto.createDiffieHellman(prime[, prime_encoding][, generator][, generator_encoding])#

Creates a DiffieHellman key exchange object using the supplied prime and an optional specific generator.

The generator argument can be a number, string, or Buffer. If generator is not specified, the value 2 is used.

The prime_encoding and generator_encoding arguments can be 'latin1', 'hex', or 'base64'.

If prime_encoding is specified, prime is expected to be a string; otherwise a Buffer, TypedArray, or DataView is expected.

If generator_encoding is specified, generator is expected to be a string; otherwise a number, Buffer, TypedArray, or DataView is expected.

crypto.createDiffieHellman(prime_length[, generator])#

Creates a DiffieHellman key exchange object and generates a prime of prime_length bits using an optional specific numeric generator. If generator is not specified, the value 2 is used.

crypto.createECDH(curve_name)#

Creates an Elliptic Curve Diffie-Hellman (ECDH) key exchange object using a predefined curve specified by the curve_name string. Use crypto.getCurves() to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves will also display the name and description of each available elliptic curve.

crypto.createHash(algorithm)#

Creates and returns a Hash object that can be used to generate hash digests using the given algorithm.

The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list-message-digest-algorithms will display the available digest algorithms.

Example: generating the sha256 sum of a file

const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');

const hash = crypto.createHash('sha256');

const input = fs.createReadStream(filename);
input.on('readable', () => {
  const data = input.read();
  if (data)
    hash.update(data);
  else {
    console.log(`${hash.digest('hex')} ${filename}`);
  }
});

crypto.createHmac(algorithm, key)#

Creates and returns an Hmac object that uses the given algorithm and key.

The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list-message-digest-algorithms will display the available digest algorithms.

The key is the HMAC key used to generate the cryptographic HMAC hash.

Example: generating the sha256 HMAC of a file

const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');

const hmac = crypto.createHmac('sha256', 'a secret');

const input = fs.createReadStream(filename);
input.on('readable', () => {
  const data = input.read();
  if (data)
    hmac.update(data);
  else {
    console.log(`${hmac.digest('hex')} ${filename}`);
  }
});

crypto.createSign(algorithm)#

Creates and returns a Sign object that uses the given algorithm. Use crypto.getHashes() to obtain an array of names of the available signing algorithms.

crypto.createVerify(algorithm)#

Creates and returns a Verify object that uses the given algorithm. Use crypto.getHashes() to obtain an array of names of the available signing algorithms.

crypto.getCiphers()#

Returns an array with the names of the supported cipher algorithms.

Example:

const ciphers = crypto.getCiphers();
console.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...]

crypto.getCurves()#

Returns an array with the names of the supported elliptic curves.

Example:

const curves = crypto.getCurves();
console.log(curves); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]

crypto.getDiffieHellman(group_name)#

Creates a predefined DiffieHellman key exchange object. The supported groups are: 'modp1', 'modp2', 'modp5' (defined in RFC 2412, but see Caveats) and 'modp14', 'modp15', 'modp16', 'modp17', 'modp18' (defined in RFC 3526). The returned object mimics the interface of objects created by crypto.createDiffieHellman(), but will not allow changing the keys (with diffieHellman.setPublicKey() for example). The advantage of using this method is that the parties do not have to generate nor exchange a group modulus beforehand, saving both processor and communication time.

Example (obtaining a shared secret):

const crypto = require('crypto');
const alice = crypto.getDiffieHellman('modp14');
const bob = crypto.getDiffieHellman('modp14');

alice.generateKeys();
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);

crypto.getHashes()#

Returns an array of the names of the supported hash algorithms, such as RSA-SHA256.

Example:

const hashes = crypto.getHashes();
console.log(hashes); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]

crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)#

Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest is applied to derive a key of the requested byte length (keylen) from the password, salt and iterations.

The supplied callback function is called with two arguments: err and derivedKey. If an error occurs, err will be set; otherwise err will be null. The successfully generated derivedKey will be passed as a Buffer.

The iterations argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.

The salt should also be as unique as possible. It is recommended that the salts are random and their lengths are greater than 16 bytes. See NIST SP 800-132 for details.

Example:

const crypto = require('crypto');
crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...aa39b34'
});

An array of supported digest functions can be retrieved using crypto.getHashes().

crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)#

Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest is applied to derive a key of the requested byte length (keylen) from the password, salt and iterations.

If an error occurs an Error will be thrown, otherwise the derived key will be returned as a Buffer.

The iterations argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.

The salt should also be as unique as possible. It is recommended that the salts are random and their lengths are greater than 16 bytes. See NIST SP 800-132 for details.

Example:

const crypto = require('crypto');
const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
console.log(key.toString('hex'));  // '3745e48...aa39b34'

An array of supported digest functions can be retrieved using crypto.getHashes().

crypto.privateDecrypt(private_key, buffer)#

  • private_key <Object> | <string>
    • key <string> A PEM encoded private key.
    • passphrase <string> An optional passphrase for the private key.
    • padding <crypto.constants> An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING, RSA_PKCS1_PADDING, or crypto.constants.RSA_PKCS1_OAEP_PADDING.
  • buffer <Buffer> | <TypedArray> | <DataView>

Decrypts buffer with private_key.

private_key can be an object or a string. If private_key is a string, it is treated as the key with no passphrase and will use RSA_PKCS1_OAEP_PADDING.

crypto.privateEncrypt(private_key, buffer)#

  • private_key <Object> | <string>
    • key <string> A PEM encoded private key.
    • passphrase <string> An optional passphrase for the private key.
    • padding <crypto.constants> An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING or RSA_PKCS1_PADDING.
  • buffer <Buffer> | <TypedArray> | <DataView>

Encrypts buffer with private_key.

private_key can be an object or a string. If private_key is a string, it is treated as the key with no passphrase and will use RSA_PKCS1_PADDING.

crypto.publicDecrypt(public_key, buffer)#

  • private_key <Object> | <string>
    • key <string> A PEM encoded private key.
    • passphrase <string> An optional passphrase for the private key.
    • padding <crypto.constants> An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING, RSA_PKCS1_PADDING, or crypto.constants.RSA_PKCS1_OAEP_PADDING.
  • buffer <Buffer> | <TypedArray> | <DataView>

Decrypts buffer with public_key.

public_key can be an object or a string. If public_key is a string, it is treated as the key with no passphrase and will use RSA_PKCS1_PADDING.

Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.

crypto.publicEncrypt(public_key, buffer)#

  • private_key <Object> | <string>
    • key <string> A PEM encoded private key.
    • passphrase <string> An optional passphrase for the private key.
    • padding <crypto.constants> An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING, RSA_PKCS1_PADDING, or crypto.constants.RSA_PKCS1_OAEP_PADDING.
  • buffer <Buffer> | <TypedArray> | <DataView>

Encrypts buffer with public_key.

public_key can be an object or a string. If public_key is a string, it is treated as the key with no passphrase and will use RSA_PKCS1_OAEP_PADDING.

Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.

crypto.randomBytes(size[, callback])#

Generates cryptographically strong pseudo-random data. The size argument is a number indicating the number of bytes to generate.

If a callback function is provided, the bytes are generated asynchronously and the callback function is invoked with two arguments: err and buf. If an error occurs, err will be an Error object; otherwise it is null. The buf argument is a Buffer containing the generated bytes.

// Asynchronous
const crypto = require('crypto');
crypto.randomBytes(256, (err, buf) => {
  if (err) throw err;
  console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
});

If the callback function is not provided, the random bytes are generated synchronously and returned as a Buffer. An error will be thrown if there is a problem generating the bytes.

// Synchronous
const buf = crypto.randomBytes(256);
console.log(
  `${buf.length} bytes of random data: ${buf.toString('hex')}`);

The crypto.randomBytes() method will block until there is sufficient entropy. This should normally never take longer than a few milliseconds. The only time when generating the random bytes may conceivably block for a longer period of time is right after boot, when the whole system is still low on entropy.

crypto.randomFillSync(buffer[, offset][, size])#

Synchronous version of crypto.randomFill().

Returns buffer

const buf = Buffer.alloc(10);
console.log(crypto.randomFillSync(buf).toString('hex'));

crypto.randomFillSync(buf, 5);
console.log(buf.toString('hex'));

// The above is equivalent to the following:
crypto.randomFillSync(buf, 5, 5);
console.log(buf.toString('hex'));

crypto.randomFill(buffer[, offset][, size], callback)#

This function is similar to crypto.randomBytes() but requires the first argument to be a Buffer that will be filled. It also requires that a callback is passed in.

If the callback function is not provided, an error will be thrown.

const buf = Buffer.alloc(10);
crypto.randomFill(buf, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

crypto.randomFill(buf, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

// The above is equivalent to the following:
crypto.randomFill(buf, 5, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

crypto.setEngine(engine[, flags])#

  • engine <string>
  • flags <crypto.constants> Defaults to crypto.constants.ENGINE_METHOD_ALL.

Load and set the engine for some or all OpenSSL functions (selected by flags).

engine could be either an id or a path to the engine's shared library.

The optional flags argument uses ENGINE_METHOD_ALL by default. The flags is a bit field taking one of or a mix of the following flags (defined in crypto.constants):

  • crypto.constants.ENGINE_METHOD_RSA
  • crypto.constants.ENGINE_METHOD_DSA
  • crypto.constants.ENGINE_METHOD_DH
  • crypto.constants.ENGINE_METHOD_RAND
  • crypto.constants.ENGINE_METHOD_ECDH
  • crypto.constants.ENGINE_METHOD_ECDSA
  • crypto.constants.ENGINE_METHOD_CIPHERS
  • crypto.constants.ENGINE_METHOD_DIGESTS
  • crypto.constants.ENGINE_METHOD_STORE
  • crypto.constants.ENGINE_METHOD_PKEY_METHS
  • crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS
  • crypto.constants.ENGINE_METHOD_ALL
  • crypto.constants.ENGINE_METHOD_NONE

crypto.timingSafeEqual(a, b)#

Returns true if a is equal to b, without leaking timing information that would allow an attacker to guess one of the values. This is suitable for comparing HMAC digests or secret values like authentication cookies or capability urls.

a and b must both be Buffers, TypedArrays, or DataViews, and they must have the same length.

Note: Use of crypto.timingSafeEqual does not guarantee that the surrounding code is timing-safe. Care should be taken to ensure that the surrounding code does not introduce timing vulnerabilities.

Notes#

Legacy Streams API (pre Node.js v0.10)#

The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were Buffer objects for handling binary data. As such, the many of the crypto defined classes have methods not typically found on other Node.js classes that implement the streams API (e.g. update(), final(), or digest()). Also, many methods accepted and returned 'latin1' encoded strings by default rather than Buffers. This default was changed after Node.js v0.8 to use Buffer objects by default instead.

Recent ECDH Changes#

Usage of ECDH with non-dynamically generated key pairs has been simplified. Now, ecdh.setPrivateKey() can be called with a preselected private key and the associated public point (key) will be computed and stored in the object. This allows code to only store and provide the private part of the EC key pair. ecdh.setPrivateKey() now also validates that the private key is valid for the selected curve.

The ecdh.setPublicKey() method is now deprecated as its inclusion in the API is not useful. Either a previously stored private key should be set, which automatically generates the associated public key, or ecdh.generateKeys() should be called. The main drawback of using ecdh.setPublicKey() is that it can be used to put the ECDH key pair into an inconsistent state.

Support for weak or compromised algorithms#

The crypto module still supports some algorithms which are already compromised and are not currently recommended for use. The API also allows the use of ciphers and hashes with a small key size that are considered to be too weak for safe use.

Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements.

Based on the recommendations of NIST SP 800-131A:

  • MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures.
  • The key used with RSA, DSA and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years.
  • The DH groups of modp1, modp2 and modp5 have a key size smaller than 2048 bits and are not recommended.

See the reference for other recommendations and details.

Crypto Constants#

The following constants exported by crypto.constants apply to various uses of the crypto, tls, and https modules and are generally specific to OpenSSL.

OpenSSL Options#

Constant Description
SSL_OP_ALL Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail.
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CIPHER_SERVER_PREFERENCE Attempts to use the server's preferences instead of the client's when selecting a cipher. Behaviour depends on protocol version. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CISCO_ANYCONNECT Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER.
SSL_OP_COOKIE_EXCHANGE Instructs OpenSSL to turn on cookie exchange.
SSL_OP_CRYPTOPRO_TLSEXT_BUG Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft.
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d.
SSL_OP_EPHEMERAL_RSA Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations.
SSL_OP_LEGACY_SERVER_CONNECT Allows initial connection to servers that do not support RI.
SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
SSL_OP_MICROSOFT_SESS_ID_BUG
SSL_OP_MSIE_SSLV2_RSA_PADDING Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation.
SSL_OP_NETSCAPE_CA_DN_BUG
SSL_OP_NETSCAPE_CHALLENGE_BUG
SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG
SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
SSL_OP_NO_COMPRESSION Instructs OpenSSL to disable support for SSL/TLS compression.
SSL_OP_NO_QUERY_MTU
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION Instructs OpenSSL to always start a new session when performing renegotiation.
SSL_OP_NO_SSLv2 Instructs OpenSSL to turn off SSL v2
SSL_OP_NO_SSLv3 Instructs OpenSSL to turn off SSL v3
SSL_OP_NO_TICKET Instructs OpenSSL to disable use of RFC4507bis tickets.
SSL_OP_NO_TLSv1 Instructs OpenSSL to turn off TLS v1
SSL_OP_NO_TLSv1_1 Instructs OpenSSL to turn off TLS v1.1
SSL_OP_NO_TLSv1_2 Instructs OpenSSL to turn off TLS v1.2
SSL_OP_PKCS1_CHECK_1
SSL_OP_PKCS1_CHECK_2
SSL_OP_SINGLE_DH_USE Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters.
SSL_OP_SINGLE_ECDH_USE Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters.
SSL_OP_SSLEAY_080_CLIENT_DH_BUG
SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
SSL_OP_TLS_BLOCK_PADDING_BUG
SSL_OP_TLS_D5_BUG
SSL_OP_TLS_ROLLBACK_BUG Instructs OpenSSL to disable version rollback attack detection.

OpenSSL Engine Constants#

Constant Description
ENGINE_METHOD_RSA Limit engine usage to RSA
ENGINE_METHOD_DSA Limit engine usage to DSA
ENGINE_METHOD_DH Limit engine usage to DH
ENGINE_METHOD_RAND Limit engine usage to RAND
ENGINE_METHOD_ECDH Limit engine usage to ECDH
ENGINE_METHOD_ECDSA Limit engine usage to ECDSA
ENGINE_METHOD_CIPHERS Limit engine usage to CIPHERS
ENGINE_METHOD_DIGESTS Limit engine usage to DIGESTS
ENGINE_METHOD_STORE Limit engine usage to STORE
ENGINE_METHOD_PKEY_METHS Limit engine usage to PKEY_METHDS
ENGINE_METHOD_PKEY_ASN1_METHS Limit engine usage to PKEY_ASN1_METHS
ENGINE_METHOD_ALL
ENGINE_METHOD_NONE

Other OpenSSL Constants#

Constant Description
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
NPN_ENABLED
ALPN_ENABLED
RSA_PKCS1_PADDING
RSA_SSLV23_PADDING
RSA_NO_PADDING
RSA_PKCS1_OAEP_PADDING
RSA_X931_PADDING
RSA_PKCS1_PSS_PADDING
RSA_PSS_SALTLEN_DIGEST Sets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying.
RSA_PSS_SALTLEN_MAX_SIGN Sets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data.
RSA_PSS_SALTLEN_AUTO Causes the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature.
POINT_CONVERSION_COMPRESSED
POINT_CONVERSION_UNCOMPRESSED
POINT_CONVERSION_HYBRID

Node.js Crypto Constants#

Constant Description
defaultCoreCipherList Specifies the built-in default cipher list used by Node.js.
defaultCipherList Specifies the active default cipher list used by the current Node.js process.