- Assertion Testing
- Buffer
- C/C++ Addons
- Child Processes
- Cluster
- Command Line Options
- Console
- Crypto
- Debugger
- DNS
- Domain
- Errors
- Events
- File System
- Globals
- HTTP
- HTTPS
- Modules
- Net
- OS
- Path
- Process
- Punycode
- Query Strings
- Readline
- REPL
- Stream
- String Decoder
- Timers
- TLS/SSL
- TTY
- UDP/Datagram
- URL
- Utilities
- V8
- VM
- ZLIB
Node.js v6.4.0 Documentation
Table of Contents
- UDP / Datagram Sockets
- Class: dgram.Socket
- Event: 'close'
- Event: 'error'
- Event: 'listening'
- Event: 'message'
- socket.addMembership(multicastAddress[, multicastInterface])
- socket.address()
- socket.bind([port][, address][, callback])
- socket.bind(options[, callback])
- socket.close([callback])
- socket.dropMembership(multicastAddress[, multicastInterface])
- socket.send(msg, [offset, length,] port, address[, callback])
- socket.setBroadcast(flag)
- socket.setMulticastLoopback(flag)
- socket.setMulticastTTL(ttl)
- socket.setTTL(ttl)
- socket.ref()
- socket.unref()
- Change to asynchronous
socket.bind()
behavior
dgram
module functions
- Class: dgram.Socket
UDP / Datagram Sockets#
Stability: 2 - Stable
The dgram
module provides an implementation of UDP Datagram sockets.
const dgram = require('dgram');
const server = dgram.createSocket('udp4');
server.on('error', (err) => {
console.log(`server error:\n${err.stack}`);
server.close();
});
server.on('message', (msg, rinfo) => {
console.log(`server got: ${msg} from ${rinfo.address}:${rinfo.port}`);
});
server.on('listening', () => {
var address = server.address();
console.log(`server listening ${address.address}:${address.port}`);
});
server.bind(41234);
// server listening 0.0.0.0:41234
Class: dgram.Socket#
The dgram.Socket
object is an EventEmitter
that encapsulates the
datagram functionality.
New instances of dgram.Socket
are created using dgram.createSocket()
.
The new
keyword is not to be used to create dgram.Socket
instances.
Event: 'close'#
The 'close'
event is emitted after a socket is closed with close()
.
Once triggered, no new 'message'
events will be emitted on this socket.
Event: 'error'#
exception
<Error>
The 'error'
event is emitted whenever any error occurs. The event handler
function is passed a single Error object.
Event: 'listening'#
The 'listening'
event is emitted whenever a socket begins listening for
datagram messages. This occurs as soon as UDP sockets are created.
Event: 'message'#
The 'message'
event is emitted when a new datagram is available on a socket.
The event handler function is passed two arguments: msg
and rinfo
. The
msg
argument is a Buffer
and rinfo
is an object with the sender's
address information provided by the address
, family
and port
properties:
socket.on('message', (msg, rinfo) => {
console.log('Received %d bytes from %s:%d\n',
msg.length, rinfo.address, rinfo.port);
});
socket.addMembership(multicastAddress[, multicastInterface])#
Tells the kernel to join a multicast group at the given multicastAddress
and
multicastInterface
using the IP_ADD_MEMBERSHIP
socket option. If the
multicastInterface
argument is not specified, the operating system will choose
one interface and will add membership to it. To add membership to every
available interface, call addMembership
multiple times, once per interface.
socket.address()#
Returns an object containing the address information for a socket.
For UDP sockets, this object will contain address
, family
and port
properties.
socket.bind([port][, address][, callback])#
port
<Number> - Integer, Optionaladdress
<String>, Optionalcallback
<Function> with no parameters, Optional. Called when binding is complete.
For UDP sockets, causes the dgram.Socket
to listen for datagram messages on a
named port
and optional address
. If port
is not specified, the operating
system will attempt to bind to a random port. If address
is not specified,
the operating system will attempt to listen on all addresses. Once binding is
complete, a 'listening'
event is emitted and the optional callback
function
is called.
Note that specifying both a 'listening'
event listener and passing a
callback
to the socket.bind()
method is not harmful but not very
useful.
A bound datagram socket keeps the Node.js process running to receive datagram messages.
If binding fails, an 'error'
event is generated. In rare case (e.g.
attempting to bind with a closed socket), an Error
may be thrown.
Example of a UDP server listening on port 41234:
const dgram = require('dgram');
const server = dgram.createSocket('udp4');
server.on('error', (err) => {
console.log(`server error:\n${err.stack}`);
server.close();
});
server.on('message', (msg, rinfo) => {
console.log(`server got: ${msg} from ${rinfo.address}:${rinfo.port}`);
});
server.on('listening', () => {
var address = server.address();
console.log(`server listening ${address.address}:${address.port}`);
});
server.bind(41234);
// server listening 0.0.0.0:41234
socket.bind(options[, callback])#
options
<Object> - Required. Supports the following properties:callback
<Function> - Optional.
For UDP sockets, causes the dgram.Socket
to listen for datagram messages on a
named port
and optional address
that are passed as properties of an
options
object passed as the first argument. If port
is not specified, the
operating system will attempt to bind to a random port. If address
is not
specified, the operating system will attempt to listen on all addresses. Once
binding is complete, a 'listening'
event is emitted and the optional
callback
function is called.
The options
object may contain an additional exclusive
property that is
use when using dgram.Socket
objects with the [cluster
] module. When
exclusive
is set to false
(the default), cluster workers will use the same
underlying socket handle allowing connection handling duties to be shared.
When exclusive
is true
, however, the handle is not shared and attempted
port sharing results in an error.
An example socket listening on an exclusive port is shown below.
socket.bind({
address: 'localhost',
port: 8000,
exclusive: true
});
socket.close([callback])#
Close the underlying socket and stop listening for data on it. If a callback is
provided, it is added as a listener for the 'close'
event.
socket.dropMembership(multicastAddress[, multicastInterface])#
Instructs the kernel to leave a multicast group at multicastAddress
using the
IP_DROP_MEMBERSHIP
socket option. This method is automatically called by the
kernel when the socket is closed or the process terminates, so most apps will
never have reason to call this.
If multicastInterface
is not specified, the operating system will attempt to
drop membership on all valid interfaces.
socket.send(msg, [offset, length,] port, address[, callback])#
msg
<Buffer> | <String> | <Array> Message to be sentoffset
<Number> Integer. Optional. Offset in the buffer where the message starts.length
<Number> Integer. Optional. Number of bytes in the message.port
<Number> Integer. Destination port.address
<String> Destination hostname or IP address.callback
<Function> Called when the message has been sent. Optional.
Broadcasts a datagram on the socket. The destination port
and address
must
be specified.
The msg
argument contains the message to be sent.
Depending on its type, different behavior can apply. If msg
is a Buffer
,
the offset
and length
specify the offset within the Buffer
where the
message begins and the number of bytes in the message, respectively.
If msg
is a String
, then it is automatically converted to a Buffer
with 'utf8'
encoding. With messages that
contain multi-byte characters, offset
and length
will be calculated with
respect to byte length and not the character position.
If msg
is an array, offset
and length
must not be specified.
The address
argument is a string. If the value of address
is a host name,
DNS will be used to resolve the address of the host. If the address
is not
specified or is an empty string, '127.0.0.1'
or '::1'
will be used instead.
If the socket has not been previously bound with a call to bind
, the socket
is assigned a random port number and is bound to the "all interfaces" address
('0.0.0.0'
for udp4
sockets, '::0'
for udp6
sockets.)
An optional callback
function may be specified to as a way of reporting
DNS errors or for determining when it is safe to reuse the buf
object.
Note that DNS lookups delay the time to send for at least one tick of the
Node.js event loop.
The only way to know for sure that the datagram has been sent is by using a
callback
. If an error occurs and a callback
is given, the error will be
passed as the first argument to the callback
. If a callback
is not given,
the error is emitted as an 'error'
event on the socket
object.
Offset and length are optional, but if you specify one you would need to
specify the other. Also, they are supported only when the first
argument is a Buffer
.
Example of sending a UDP packet to a random port on localhost
;
const dgram = require('dgram');
const message = Buffer.from('Some bytes');
const client = dgram.createSocket('udp4');
client.send(message, 41234, 'localhost', (err) => {
client.close();
});
Example of sending a UDP packet composed of multiple buffers to a random port on localhost
;
const dgram = require('dgram');
const buf1 = Buffer.from('Some ');
const buf2 = Buffer.from('bytes');
const client = dgram.createSocket('udp4');
client.send([buf1, buf2], 41234, 'localhost', (err) => {
client.close();
});
Sending multiple buffers might be faster or slower depending on your application and operating system: benchmark it. Usually it is faster.
A Note about UDP datagram size
The maximum size of an IPv4/v6
datagram depends on the MTU
(Maximum Transmission Unit) and on the Payload Length
field size.
The
Payload Length
field is16 bits
wide, which means that a normal payload exceed 64K octets including the internet header and data (65,507 bytes = 65,535 − 8 bytes UDP header − 20 bytes IP header); this is generally true for loopback interfaces, but such long datagram messages are impractical for most hosts and networks.The
MTU
is the largest size a given link layer technology can support for datagram messages. For any link,IPv4
mandates a minimumMTU
of68
octets, while the recommendedMTU
for IPv4 is576
(typically recommended as theMTU
for dial-up type applications), whether they arrive whole or in fragments.For
IPv6
, the minimumMTU
is1280
octets, however, the mandatory minimum fragment reassembly buffer size is1500
octets. The value of68
octets is very small, since most current link layer technologies, like Ethernet, have a minimumMTU
of1500
.
It is impossible to know in advance the MTU of each link through which
a packet might travel. Sending a datagram greater than the receiver MTU
will
not work because the packet will get silently dropped without informing the
source that the data did not reach its intended recipient.
socket.setBroadcast(flag)#
flag
<Boolean>
Sets or clears the SO_BROADCAST
socket option. When set to true
, UDP
packets may be sent to a local interface's broadcast address.
socket.setMulticastLoopback(flag)#
flag
<Boolean>
Sets or clears the IP_MULTICAST_LOOP
socket option. When set to true
,
multicast packets will also be received on the local interface.
socket.setMulticastTTL(ttl)#
ttl
<Number> Integer
Sets the IP_MULTICAST_TTL
socket option. While TTL generally stands for
"Time to Live", in this context it specifies the number of IP hops that a
packet is allowed to travel through, specifically for multicast traffic. Each
router or gateway that forwards a packet decrements the TTL. If the TTL is
decremented to 0 by a router, it will not be forwarded.
The argument passed to to socket.setMulticastTTL()
is a number of hops
between 0 and 255. The default on most systems is 1
but can vary.
socket.setTTL(ttl)#
ttl
<Number> Integer
Sets the IP_TTL
socket option. While TTL generally stands for "Time to Live",
in this context it specifies the number of IP hops that a packet is allowed to
travel through. Each router or gateway that forwards a packet decrements the
TTL. If the TTL is decremented to 0 by a router, it will not be forwarded.
Changing TTL values is typically done for network probes or when multicasting.
The argument to socket.setTTL()
is a number of hops between 1 and 255.
The default on most systems is 64 but can vary.
socket.ref()#
By default, binding a socket will cause it to block the Node.js process from
exiting as long as the socket is open. The socket.unref()
method can be used
to exclude the socket from the reference counting that keeps the Node.js
process active. The socket.ref()
method adds the socket back to the reference
counting and restores the default behavior.
Calling socket.ref()
multiples times will have no additional effect.
The socket.ref()
method returns a reference to the socket so calls can be
chained.
socket.unref()#
By default, binding a socket will cause it to block the Node.js process from
exiting as long as the socket is open. The socket.unref()
method can be used
to exclude the socket from the reference counting that keeps the Node.js
process active, allowing the process to exit even if the socket is still
listening.
Calling socket.unref()
multiple times will have no addition effect.
The socket.unref()
method returns a reference to the socket so calls can be
chained.
Change to asynchronous socket.bind()
behavior#
As of Node.js v0.10, dgram.Socket#bind()
changed to an asynchronous
execution model. Legacy code that assumes synchronous behavior, as in the
following example:
const s = dgram.createSocket('udp4');
s.bind(1234);
s.addMembership('224.0.0.114');
Must be changed to pass a callback function to the dgram.Socket#bind()
function:
const s = dgram.createSocket('udp4');
s.bind(1234, () => {
s.addMembership('224.0.0.114');
});
dgram
module functions#
dgram.createSocket(options[, callback])#
options
<Object>callback
<Function> Attached as a listener to'message'
events.- Returns: <dgram.Socket>
Creates a dgram.Socket
object. The options
argument is an object that
should contain a type
field of either udp4
or udp6
and an optional
boolean reuseAddr
field.
When reuseAddr
is true
socket.bind()
will reuse the address, even if
another process has already bound a socket on it. reuseAddr
defaults to
false
. An optional callback
function can be passed specified which is added
as a listener for 'message'
events.
Once the socket is created, calling socket.bind()
will instruct the
socket to begin listening for datagram messages. When address
and port
are
not passed to socket.bind()
the method will bind the socket to the "all
interfaces" address on a random port (it does the right thing for both udp4
and udp6
sockets). The bound address and port can be retrieved using
socket.address().address
and socket.address().port
.
dgram.createSocket(type[, callback])#
type
<String> - Either 'udp4' or 'udp6'callback
<Function> - Attached as a listener to'message'
events. Optional- Returns: <dgram.Socket>
Creates a dgram.Socket
object of the specified type
. The type
argument
can be either udp4
or udp6
. An optional callback
function can be passed
which is added as a listener for 'message'
events.
Once the socket is created, calling socket.bind()
will instruct the
socket to begin listening for datagram messages. When address
and port
are
not passed to socket.bind()
the method will bind the socket to the "all
interfaces" address on a random port (it does the right thing for both udp4
and udp6
sockets). The bound address and port can be retrieved using
socket.address().address
and socket.address().port
.