Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2026-01-22 11:35 -0500 (Thu, 22 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4808
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4542
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2018/2345HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.21.1  (landing page)
Joshua David Campbell
Snapshot Date: 2026-01-21 13:40 -0500 (Wed, 21 Jan 2026)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 15d4a13
git_last_commit_date: 2026-01-11 08:42:53 -0500 (Sun, 11 Jan 2026)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'batchelor' which is only available as a source package that needs compilation


CHECK results for singleCellTK on nebbiolo1

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.21.1
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.1.tar.gz
StartedAt: 2026-01-22 04:05:27 -0500 (Thu, 22 Jan 2026)
EndedAt: 2026-01-22 04:22:25 -0500 (Thu, 22 Jan 2026)
EllapsedTime: 1018.1 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings singleCellTK_2.21.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.21.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    R       1.0Mb
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 45.468  0.723  46.193
plotDoubletFinderResults 38.037  0.359  38.395
runDoubletFinder         36.390  0.196  36.710
runSeuratSCTransform     29.287  0.224  29.516
plotScDblFinderResults   27.319  0.791  28.075
runScDblFinder           17.684  0.438  18.092
plotBatchCorrCompare     12.981  0.185  13.168
importExampleData        10.922  0.568  11.857
plotScdsHybridResults    10.143  0.102   9.683
plotDecontXResults        8.579  0.075   8.654
plotBcdsResults           8.503  0.139   8.108
runDecontX                8.299  0.053   8.355
runUMAP                   7.956  0.118   8.073
plotUMAP                  7.719  0.132   7.851
plotCxdsResults           7.530  0.080   7.610
plotEmptyDropsResults     6.665  0.008   6.673
plotEmptyDropsScatter     6.545  0.003   6.550
runEmptyDrops             6.259  0.010   6.269
detectCellOutlier         5.440  0.171   5.610
plotDEGViolin             5.257  0.045   5.295
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.21.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.148   0.039   0.174 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[04:20:08] WARNING: src/learner.cc:790: 
Parameters: { "nthreads" } are not used.

[04:20:09] WARNING: src/learner.cc:790: 
Parameters: { "nthreads" } are not used.

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 19 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 19 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
324.116   5.926 334.160 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0030.0000.004
calcEffectSizes0.1600.0100.171
combineSCE0.7110.0450.759
computeZScore0.2380.0080.246
convertSCEToSeurat4.3670.1554.521
convertSeuratToSCE0.3310.0040.335
dedupRowNames0.0540.0000.054
detectCellOutlier5.4400.1715.610
diffAbundanceFET0.0530.0000.053
discreteColorPalette0.0050.0000.006
distinctColors0.0000.0020.003
downSampleCells0.4750.0300.505
downSampleDepth0.3780.0030.380
expData-ANY-character-method0.1200.0010.120
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.1640.0010.164
expData-set0.150.010.16
expData0.1170.0020.120
expDataNames-ANY-method0.1140.0010.115
expDataNames0.1090.0060.115
expDeleteDataTag0.0340.0010.034
expSetDataTag0.0230.0000.023
expTaggedData0.0250.0000.025
exportSCE0.0210.0000.021
exportSCEtoAnnData0.0940.0050.100
exportSCEtoFlatFile0.0930.0040.097
featureIndex0.0350.0010.036
generateSimulatedData0.0450.0070.052
getBiomarker0.0520.0090.061
getDEGTopTable0.6590.1130.772
getDiffAbundanceResults0.0470.0010.048
getEnrichRResult0.5330.0323.427
getFindMarkerTopTable1.5910.0311.622
getMSigDBTable0.0030.0010.004
getPathwayResultNames0.0200.0010.021
getSampleSummaryStatsTable0.1800.0080.188
getSoupX0.0000.0010.001
getTSCANResults0.9820.0110.994
getTopHVG0.8160.0100.826
importAnnData0.0000.0010.001
importBUStools0.1440.0000.145
importCellRanger0.8130.0070.820
importCellRangerV2Sample0.1420.0000.142
importCellRangerV3Sample0.2500.0090.258
importDropEst0.1910.0030.194
importExampleData10.922 0.56811.857
importGeneSetsFromCollection1.8090.0331.842
importGeneSetsFromGMT0.0600.0010.061
importGeneSetsFromList0.1200.0010.121
importGeneSetsFromMSigDB45.468 0.72346.193
importMitoGeneSet0.0530.0030.056
importOptimus0.0010.0010.002
importSEQC0.1470.0240.172
importSTARsolo0.1420.0250.169
iterateSimulations0.1800.0210.201
listSampleSummaryStatsTables0.2410.0450.286
mergeSCEColData0.3850.0200.405
mouseBrainSubsetSCE0.0340.0020.036
msigdb_table0.0010.0010.001
plotBarcodeRankDropsResults0.8440.0130.858
plotBarcodeRankScatter0.8750.0010.876
plotBatchCorrCompare12.981 0.18513.168
plotBatchVariance0.4780.0060.484
plotBcdsResults8.5030.1398.108
plotBubble0.7530.0140.767
plotClusterAbundance1.2880.0321.320
plotCxdsResults7.530.087.61
plotDEGHeatmap2.0400.0102.049
plotDEGRegression4.3160.0264.335
plotDEGViolin5.2570.0455.295
plotDEGVolcano0.9310.0030.934
plotDecontXResults8.5790.0758.654
plotDimRed0.2740.0020.276
plotDoubletFinderResults38.037 0.35938.395
plotEmptyDropsResults6.6650.0086.673
plotEmptyDropsScatter6.5450.0036.550
plotFindMarkerHeatmap3.6990.0033.701
plotMASTThresholdGenes1.2190.0101.229
plotPCA0.3440.0020.346
plotPathway0.6410.0030.644
plotRunPerCellQCResults2.8510.0052.856
plotSCEBarAssayData0.2620.0010.263
plotSCEBarColData0.2540.0010.255
plotSCEBatchFeatureMean0.3680.0080.376
plotSCEDensity0.2890.0070.297
plotSCEDensityAssayData0.2630.0000.263
plotSCEDensityColData0.3440.0060.350
plotSCEDimReduceColData0.7230.0040.728
plotSCEDimReduceFeatures0.3790.0010.380
plotSCEHeatmap0.4720.0010.473
plotSCEScatter0.3520.0010.354
plotSCEViolin0.3690.0010.370
plotSCEViolinAssayData0.4220.0010.423
plotSCEViolinColData0.3390.0030.342
plotScDblFinderResults27.319 0.79128.075
plotScanpyDotPlot0.0230.0000.022
plotScanpyEmbedding0.0210.0010.022
plotScanpyHVG0.0200.0010.022
plotScanpyHeatmap0.0210.0000.022
plotScanpyMarkerGenes0.0210.0000.021
plotScanpyMarkerGenesDotPlot0.0210.0000.021
plotScanpyMarkerGenesHeatmap0.0210.0000.022
plotScanpyMarkerGenesMatrixPlot0.0210.0010.021
plotScanpyMarkerGenesViolin0.0220.0010.023
plotScanpyMatrixPlot0.0210.0010.022
plotScanpyPCA0.0220.0000.021
plotScanpyPCAGeneRanking0.0220.0000.022
plotScanpyPCAVariance0.0210.0010.022
plotScanpyViolin0.0190.0020.022
plotScdsHybridResults10.143 0.102 9.683
plotScrubletResults0.0200.0000.021
plotSeuratElbow0.0220.0000.021
plotSeuratHVG0.0210.0000.022
plotSeuratJackStraw0.0200.0010.021
plotSeuratReduction0.0220.0000.021
plotSoupXResults0.0010.0000.000
plotTSCANClusterDEG4.7580.0074.766
plotTSCANClusterPseudo1.3000.0031.303
plotTSCANDimReduceFeatures1.3240.0061.330
plotTSCANPseudotimeGenes1.5570.0031.561
plotTSCANPseudotimeHeatmap1.2620.0021.264
plotTSCANResults1.2030.0081.211
plotTSNE0.3600.0000.361
plotTopHVG0.6110.0020.614
plotUMAP7.7190.1327.851
readSingleCellMatrix0.0050.0000.005
reportCellQC0.0790.0010.080
reportDropletQC0.0220.0000.022
reportQCTool0.0810.0000.081
retrieveSCEIndex0.0310.0000.031
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.2200.0000.221
runBcds1.3870.0130.871
runCellQC0.0760.0010.077
runClusterSummaryMetrics0.3700.0020.372
runComBatSeq0.4110.0080.418
runCxds0.3110.0010.312
runCxdsBcdsHybrid1.4830.0420.970
runDEAnalysis0.4530.0000.453
runDecontX8.2990.0538.355
runDimReduce0.2810.0020.284
runDoubletFinder36.390 0.19636.710
runDropletQC0.0230.0000.023
runEmptyDrops6.2590.0106.269
runEnrichR0.3770.0312.481
runFastMNN1.7910.0691.861
runFeatureSelection0.2120.0000.211
runFindMarker1.4380.0111.449
runGSVA0.7960.0120.808
runHarmony0.1170.0010.119
runKMeans0.1720.0030.176
runLimmaBC0.0790.0010.080
runMNNCorrect0.4710.0000.472
runModelGeneVar0.3290.0000.329
runNormalization2.5810.0922.673
runPerCellQC0.3140.0010.315
runSCANORAMA000
runSCMerge0.0030.0010.004
runScDblFinder17.684 0.43818.092
runScanpyFindClusters0.0210.0020.022
runScanpyFindHVG0.0210.0000.022
runScanpyFindMarkers0.0210.0010.022
runScanpyNormalizeData0.0960.0000.096
runScanpyPCA0.0240.0000.023
runScanpyScaleData0.0230.0000.022
runScanpyTSNE0.0230.0000.022
runScanpyUMAP0.0220.0010.023
runScranSNN0.2760.0030.279
runScrublet0.0210.0010.022
runSeuratFindClusters0.0230.0000.022
runSeuratFindHVG0.4470.0010.448
runSeuratHeatmap0.0220.0000.021
runSeuratICA0.0210.0000.021
runSeuratJackStraw0.0200.0010.022
runSeuratNormalizeData0.0220.0000.021
runSeuratPCA0.0210.0010.021
runSeuratSCTransform29.287 0.22429.516
runSeuratScaleData0.0220.0010.024
runSeuratUMAP0.0220.0010.022
runSingleR0.0360.0020.039
runSoupX0.0000.0000.001
runTSCAN0.6340.0040.638
runTSCANClusterDEAnalysis0.7080.0090.717
runTSCANDEG0.7900.0150.805
runTSNE0.7210.0020.722
runUMAP7.9560.1188.073
runVAM0.2790.0010.280
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.1510.0000.151
scaterCPM0.1290.0060.136
scaterPCA0.4380.0020.440
scaterlogNormCounts0.2280.0220.251
sce0.0210.0010.021
sctkListGeneSetCollections0.0770.0010.077
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0000.0010.000
selectSCTKConda0.0010.0000.000
selectSCTKVirtualEnvironment0.0000.0000.001
setRowNames0.0810.0010.083
setSCTKDisplayRow0.4240.0050.429
singleCellTK000
subDiffEx0.3160.0060.322
subsetSCECols0.0790.0010.080
subsetSCERows0.2470.0110.259
summarizeSCE0.0650.0010.066
trimCounts0.2040.0040.209