Back to Build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-02-14 11:32 -0500 (Sat, 14 Feb 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4864
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 255/2352HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-02-13 13:40 -0500 (Fri, 13 Feb 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for BufferedMatrix in R Universe.


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-02-13 21:56:43 -0500 (Fri, 13 Feb 2026)
EndedAt: 2026-02-13 21:57:08 -0500 (Fri, 13 Feb 2026)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.253   0.046   0.289 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478920 25.6    1048721 56.1   639242 34.2
Vcells 885815  6.8    8388608 64.0  2083259 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Feb 13 21:56:58 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Feb 13 21:56:58 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5f141f0eac10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Feb 13 21:56:59 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Feb 13 21:56:59 2026"
> 
> ColMode(tmp2)
<pointer: 0x5f141f0eac10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]       [,4]
[1,] 99.4975243  0.5872617 0.2966560  0.3204947
[2,]  0.8312047  1.3553759 0.5665442  1.4492197
[3,]  1.1628918 -1.0465914 2.3334605 -0.4362659
[4,]  0.4930713 -0.9018246 0.6306396  0.4689416
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 99.4975243 0.5872617 0.2966560 0.3204947
[2,]  0.8312047 1.3553759 0.5665442 1.4492197
[3,]  1.1628918 1.0465914 2.3334605 0.4362659
[4,]  0.4930713 0.9018246 0.6306396 0.4689416
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9748446 0.7663300 0.5446614 0.5661226
[2,] 0.9117043 1.1642061 0.7526913 1.2038354
[3,] 1.0783746 1.0230305 1.5275669 0.6605043
[4,] 0.7021904 0.9496445 0.7941282 0.6847931
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.24597 33.25056 30.74327 30.98172
[2,]  34.94825 37.99744 33.09346 38.48757
[3,]  36.94664 36.27690 42.60913 32.04131
[4,]  32.51498 35.39827 33.57192 32.31687
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5f141ff41ff0>
> exp(tmp5)
<pointer: 0x5f141ff41ff0>
> log(tmp5,2)
<pointer: 0x5f141ff41ff0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.7386
> Min(tmp5)
[1] 52.9447
> mean(tmp5)
[1] 72.73262
> Sum(tmp5)
[1] 14546.52
> Var(tmp5)
[1] 849.8461
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.16975 69.49651 72.55499 69.78917 71.50170 72.64577 69.70647 71.10440
 [9] 70.01411 69.34332
> rowSums(tmp5)
 [1] 1823.395 1389.930 1451.100 1395.783 1430.034 1452.915 1394.129 1422.088
 [9] 1400.282 1386.866
> rowVars(tmp5)
 [1] 7887.61251   74.64087   56.64078   52.30282   37.23594   47.76413
 [7]   97.61825  100.43595   60.76466   74.10428
> rowSd(tmp5)
 [1] 88.812232  8.639495  7.526007  7.232069  6.102126  6.911160  9.880195
 [8] 10.021774  7.795169  8.608384
> rowMax(tmp5)
 [1] 466.73861  90.82516  88.68532  85.95252  81.74593  84.40141  87.95214
 [8]  88.73633  83.95347  89.69781
> rowMin(tmp5)
 [1] 58.57282 55.22643 56.84141 60.57315 57.30486 56.56864 52.94470 53.79512
 [9] 56.74400 58.66571
> 
> colMeans(tmp5)
 [1] 111.88337  71.44631  70.81221  70.81895  68.12984  75.43544  72.15003
 [8]  71.96956  72.82509  68.03891  70.43648  68.81121  67.61363  68.49700
[15]  73.55373  72.52215  65.17896  72.65206  70.58378  71.29367
> colSums(tmp5)
 [1] 1118.8337  714.4631  708.1221  708.1895  681.2984  754.3544  721.5003
 [8]  719.6956  728.2509  680.3891  704.3648  688.1121  676.1363  684.9700
[15]  735.5373  725.2215  651.7896  726.5206  705.8378  712.9367
> colVars(tmp5)
 [1] 15608.26988    48.32726    55.81832    25.27876    61.85679    79.32125
 [7]    83.80764    52.42179    94.89607    38.43420    52.68131    34.30267
[13]    29.31713    72.23087    69.04305   122.70951   114.68958   103.25776
[19]    84.49500    45.99116
> colSd(tmp5)
 [1] 124.933062   6.951781   7.471166   5.027799   7.864909   8.906248
 [7]   9.154651   7.240289   9.741461   6.199532   7.258189   5.856848
[13]   5.414530   8.498874   8.309215  11.077433  10.709322  10.161582
[19]   9.192116   6.781678
> colMax(tmp5)
 [1] 466.73861  81.74593  88.68532  80.10684  77.09794  86.78072  89.69781
 [8]  83.23857  82.57420  75.78379  80.96245  73.69004  76.30782  77.60545
[15]  84.40141  85.95252  90.82516  87.95214  88.73633  80.50225
> colMin(tmp5)
 [1] 56.56864 59.61498 63.01405 64.48439 56.74400 61.76073 58.69216 60.14300
 [9] 55.22643 57.87571 60.57315 54.16932 57.97557 53.79512 61.23784 52.94470
[17] 56.84141 60.34896 60.66815 62.19185
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.16975 69.49651 72.55499 69.78917 71.50170       NA 69.70647 71.10440
 [9] 70.01411 69.34332
> rowSums(tmp5)
 [1] 1823.395 1389.930 1451.100 1395.783 1430.034       NA 1394.129 1422.088
 [9] 1400.282 1386.866
> rowVars(tmp5)
 [1] 7887.61251   74.64087   56.64078   52.30282   37.23594   50.33885
 [7]   97.61825  100.43595   60.76466   74.10428
> rowSd(tmp5)
 [1] 88.812232  8.639495  7.526007  7.232069  6.102126  7.094988  9.880195
 [8] 10.021774  7.795169  8.608384
> rowMax(tmp5)
 [1] 466.73861  90.82516  88.68532  85.95252  81.74593        NA  87.95214
 [8]  88.73633  83.95347  89.69781
> rowMin(tmp5)
 [1] 58.57282 55.22643 56.84141 60.57315 57.30486       NA 52.94470 53.79512
 [9] 56.74400 58.66571
> 
> colMeans(tmp5)
 [1] 111.88337  71.44631  70.81221  70.81895  68.12984  75.43544  72.15003
 [8]  71.96956        NA  68.03891  70.43648  68.81121  67.61363  68.49700
[15]  73.55373  72.52215  65.17896  72.65206  70.58378  71.29367
> colSums(tmp5)
 [1] 1118.8337  714.4631  708.1221  708.1895  681.2984  754.3544  721.5003
 [8]  719.6956        NA  680.3891  704.3648  688.1121  676.1363  684.9700
[15]  735.5373  725.2215  651.7896  726.5206  705.8378  712.9367
> colVars(tmp5)
 [1] 15608.26988    48.32726    55.81832    25.27876    61.85679    79.32125
 [7]    83.80764    52.42179          NA    38.43420    52.68131    34.30267
[13]    29.31713    72.23087    69.04305   122.70951   114.68958   103.25776
[19]    84.49500    45.99116
> colSd(tmp5)
 [1] 124.933062   6.951781   7.471166   5.027799   7.864909   8.906248
 [7]   9.154651   7.240289         NA   6.199532   7.258189   5.856848
[13]   5.414530   8.498874   8.309215  11.077433  10.709322  10.161582
[19]   9.192116   6.781678
> colMax(tmp5)
 [1] 466.73861  81.74593  88.68532  80.10684  77.09794  86.78072  89.69781
 [8]  83.23857        NA  75.78379  80.96245  73.69004  76.30782  77.60545
[15]  84.40141  85.95252  90.82516  87.95214  88.73633  80.50225
> colMin(tmp5)
 [1] 56.56864 59.61498 63.01405 64.48439 56.74400 61.76073 58.69216 60.14300
 [9]       NA 57.87571 60.57315 54.16932 57.97557 53.79512 61.23784 52.94470
[17] 56.84141 60.34896 60.66815 62.19185
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.7386
> Min(tmp5,na.rm=TRUE)
[1] 52.9447
> mean(tmp5,na.rm=TRUE)
[1] 72.72722
> Sum(tmp5,na.rm=TRUE)
[1] 14472.72
> Var(tmp5,na.rm=TRUE)
[1] 854.1324
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.16975 69.49651 72.55499 69.78917 71.50170 72.58466 69.70647 71.10440
 [9] 70.01411 69.34332
> rowSums(tmp5,na.rm=TRUE)
 [1] 1823.395 1389.930 1451.100 1395.783 1430.034 1379.108 1394.129 1422.088
 [9] 1400.282 1386.866
> rowVars(tmp5,na.rm=TRUE)
 [1] 7887.61251   74.64087   56.64078   52.30282   37.23594   50.33885
 [7]   97.61825  100.43595   60.76466   74.10428
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.812232  8.639495  7.526007  7.232069  6.102126  7.094988  9.880195
 [8] 10.021774  7.795169  8.608384
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.73861  90.82516  88.68532  85.95252  81.74593  84.40141  87.95214
 [8]  88.73633  83.95347  89.69781
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.57282 55.22643 56.84141 60.57315 57.30486 56.56864 52.94470 53.79512
 [9] 56.74400 58.66571
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.88337  71.44631  70.81221  70.81895  68.12984  75.43544  72.15003
 [8]  71.96956  72.71601  68.03891  70.43648  68.81121  67.61363  68.49700
[15]  73.55373  72.52215  65.17896  72.65206  70.58378  71.29367
> colSums(tmp5,na.rm=TRUE)
 [1] 1118.8337  714.4631  708.1221  708.1895  681.2984  754.3544  721.5003
 [8]  719.6956  654.4441  680.3891  704.3648  688.1121  676.1363  684.9700
[15]  735.5373  725.2215  651.7896  726.5206  705.8378  712.9367
> colVars(tmp5,na.rm=TRUE)
 [1] 15608.26988    48.32726    55.81832    25.27876    61.85679    79.32125
 [7]    83.80764    52.42179   106.62421    38.43420    52.68131    34.30267
[13]    29.31713    72.23087    69.04305   122.70951   114.68958   103.25776
[19]    84.49500    45.99116
> colSd(tmp5,na.rm=TRUE)
 [1] 124.933062   6.951781   7.471166   5.027799   7.864909   8.906248
 [7]   9.154651   7.240289  10.325900   6.199532   7.258189   5.856848
[13]   5.414530   8.498874   8.309215  11.077433  10.709322  10.161582
[19]   9.192116   6.781678
> colMax(tmp5,na.rm=TRUE)
 [1] 466.73861  81.74593  88.68532  80.10684  77.09794  86.78072  89.69781
 [8]  83.23857  82.57420  75.78379  80.96245  73.69004  76.30782  77.60545
[15]  84.40141  85.95252  90.82516  87.95214  88.73633  80.50225
> colMin(tmp5,na.rm=TRUE)
 [1] 56.56864 59.61498 63.01405 64.48439 56.74400 61.76073 58.69216 60.14300
 [9] 55.22643 57.87571 60.57315 54.16932 57.97557 53.79512 61.23784 52.94470
[17] 56.84141 60.34896 60.66815 62.19185
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.16975 69.49651 72.55499 69.78917 71.50170      NaN 69.70647 71.10440
 [9] 70.01411 69.34332
> rowSums(tmp5,na.rm=TRUE)
 [1] 1823.395 1389.930 1451.100 1395.783 1430.034    0.000 1394.129 1422.088
 [9] 1400.282 1386.866
> rowVars(tmp5,na.rm=TRUE)
 [1] 7887.61251   74.64087   56.64078   52.30282   37.23594         NA
 [7]   97.61825  100.43595   60.76466   74.10428
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.812232  8.639495  7.526007  7.232069  6.102126        NA  9.880195
 [8] 10.021774  7.795169  8.608384
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.73861  90.82516  88.68532  85.95252  81.74593        NA  87.95214
 [8]  88.73633  83.95347  89.69781
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.57282 55.22643 56.84141 60.57315 57.30486       NA 52.94470 53.79512
 [9] 56.74400 58.66571
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 118.02945  70.95396  70.58448  70.40723  68.02348  74.48293  72.64266
 [8]  71.94916       NaN  67.49544  69.26693  68.95311  67.08698  68.47251
[15]  72.34843  72.08552  65.23369  71.57100  70.78101  71.76141
> colSums(tmp5,na.rm=TRUE)
 [1] 1062.2650  638.5856  635.2603  633.6651  612.2113  670.3464  653.7839
 [8]  647.5424    0.0000  607.4590  623.4024  620.5780  603.7828  616.2526
[15]  651.1359  648.7697  587.1032  644.1390  637.0291  645.8527
> colVars(tmp5,na.rm=TRUE)
 [1] 17134.34273    51.64103    62.21218    26.53155    69.46163    79.02963
 [7]    91.55345    58.96983          NA    39.91572    43.87814    38.36399
[13]    29.86142    81.25298    61.33009   135.90345   128.99208   103.01722
[19]    94.61924    49.27873
> colSd(tmp5,na.rm=TRUE)
 [1] 130.898215   7.186170   7.887470   5.150879   8.334365   8.889861
 [7]   9.568357   7.679181         NA   6.317889   6.624058   6.193867
[13]   5.464560   9.014044   7.831353  11.657763  11.357468  10.149740
[19]   9.727242   7.019881
> colMax(tmp5,na.rm=TRUE)
 [1] 466.73861  81.74593  88.68532  80.10684  77.09794  86.78072  89.69781
 [8]  83.23857      -Inf  75.78379  80.27118  73.69004  76.30782  77.60545
[15]  80.39428  85.95252  90.82516  87.95214  88.73633  80.50225
> colMin(tmp5,na.rm=TRUE)
 [1] 67.42822 59.61498 63.01405 64.48439 56.74400 61.76073 58.69216 60.14300
 [9]      Inf 57.87571 60.57315 54.16932 57.97557 53.79512 61.23784 52.94470
[17] 56.84141 60.34896 60.66815 62.19185
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 334.2381 286.6026 256.8964 192.3593 175.5494 115.8573 127.7025 342.6999
 [9] 121.0817 196.9939
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 334.2381 286.6026 256.8964 192.3593 175.5494 115.8573 127.7025 342.6999
 [9] 121.0817 196.9939
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  1.136868e-13  5.684342e-14  5.684342e-14  1.705303e-13  1.136868e-13
 [6] -5.684342e-14 -8.526513e-14  1.136868e-13  8.526513e-14 -1.136868e-13
[11]  0.000000e+00  1.705303e-13 -2.842171e-14  0.000000e+00  5.684342e-14
[16]  2.842171e-14  0.000000e+00  2.273737e-13 -2.842171e-14  2.273737e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   1 
1   7 
8   16 
5   3 
7   19 
7   16 
2   1 
4   4 
2   12 
5   10 
5   13 
9   7 
7   9 
10   6 
6   5 
9   10 
3   19 
4   9 
4   1 
9   5 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.290409
> Min(tmp)
[1] -2.462652
> mean(tmp)
[1] -0.04370141
> Sum(tmp)
[1] -4.370141
> Var(tmp)
[1] 1.180406
> 
> rowMeans(tmp)
[1] -0.04370141
> rowSums(tmp)
[1] -4.370141
> rowVars(tmp)
[1] 1.180406
> rowSd(tmp)
[1] 1.086465
> rowMax(tmp)
[1] 2.290409
> rowMin(tmp)
[1] -2.462652
> 
> colMeans(tmp)
  [1] -0.546719823 -1.739661803  0.453313831 -0.240562845 -2.462652296
  [6] -1.037268674  1.613467483  0.742192990  0.353748076  0.082224109
 [11] -0.071151785 -1.850807480 -2.163118280  0.832215726  0.064374258
 [16] -0.809491241 -2.027918557  0.678990660  2.067752906  0.426337188
 [21] -0.105834897  0.819540866 -0.890268907  0.426970184  0.820736074
 [26] -0.440732658  0.401974756 -1.470886336  0.707692544 -0.753930391
 [31]  2.004685308 -0.551236792  0.355103026 -0.124344173  0.671254950
 [36]  0.457226391  1.256224990 -0.714971884 -0.842040239 -1.429798491
 [41] -0.390053820  2.290409496 -0.848170247 -0.457762872 -0.819110722
 [46] -0.012215491  1.535049788 -1.217432067  1.283357277  0.033052895
 [51] -1.586095781 -1.246651084 -0.304629771 -0.167764063 -0.621365308
 [56]  1.260918397 -0.010775489  0.669004381  0.140876124  0.079953905
 [61]  0.685705149 -0.217262308 -2.191687197 -0.534546316  0.095019391
 [66]  1.822418405 -1.895868602 -0.911430763  0.044761096 -0.107773895
 [71]  0.245901090  0.243475258  0.286054585 -0.814848595 -0.721136870
 [76]  0.967474562  1.845260721 -0.762257574 -1.112343325  0.450567038
 [81] -1.760243182  0.338251223  0.352386779 -0.044460381  2.132790430
 [86] -1.557347779 -0.935502922 -1.115265796 -1.288894289  0.877209819
 [91]  0.493370805  1.109689034  0.136825361 -0.991493424  0.003376491
 [96]  1.610112462  0.647296125  2.010674350  1.972411402 -0.352033287
> colSums(tmp)
  [1] -0.546719823 -1.739661803  0.453313831 -0.240562845 -2.462652296
  [6] -1.037268674  1.613467483  0.742192990  0.353748076  0.082224109
 [11] -0.071151785 -1.850807480 -2.163118280  0.832215726  0.064374258
 [16] -0.809491241 -2.027918557  0.678990660  2.067752906  0.426337188
 [21] -0.105834897  0.819540866 -0.890268907  0.426970184  0.820736074
 [26] -0.440732658  0.401974756 -1.470886336  0.707692544 -0.753930391
 [31]  2.004685308 -0.551236792  0.355103026 -0.124344173  0.671254950
 [36]  0.457226391  1.256224990 -0.714971884 -0.842040239 -1.429798491
 [41] -0.390053820  2.290409496 -0.848170247 -0.457762872 -0.819110722
 [46] -0.012215491  1.535049788 -1.217432067  1.283357277  0.033052895
 [51] -1.586095781 -1.246651084 -0.304629771 -0.167764063 -0.621365308
 [56]  1.260918397 -0.010775489  0.669004381  0.140876124  0.079953905
 [61]  0.685705149 -0.217262308 -2.191687197 -0.534546316  0.095019391
 [66]  1.822418405 -1.895868602 -0.911430763  0.044761096 -0.107773895
 [71]  0.245901090  0.243475258  0.286054585 -0.814848595 -0.721136870
 [76]  0.967474562  1.845260721 -0.762257574 -1.112343325  0.450567038
 [81] -1.760243182  0.338251223  0.352386779 -0.044460381  2.132790430
 [86] -1.557347779 -0.935502922 -1.115265796 -1.288894289  0.877209819
 [91]  0.493370805  1.109689034  0.136825361 -0.991493424  0.003376491
 [96]  1.610112462  0.647296125  2.010674350  1.972411402 -0.352033287
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.546719823 -1.739661803  0.453313831 -0.240562845 -2.462652296
  [6] -1.037268674  1.613467483  0.742192990  0.353748076  0.082224109
 [11] -0.071151785 -1.850807480 -2.163118280  0.832215726  0.064374258
 [16] -0.809491241 -2.027918557  0.678990660  2.067752906  0.426337188
 [21] -0.105834897  0.819540866 -0.890268907  0.426970184  0.820736074
 [26] -0.440732658  0.401974756 -1.470886336  0.707692544 -0.753930391
 [31]  2.004685308 -0.551236792  0.355103026 -0.124344173  0.671254950
 [36]  0.457226391  1.256224990 -0.714971884 -0.842040239 -1.429798491
 [41] -0.390053820  2.290409496 -0.848170247 -0.457762872 -0.819110722
 [46] -0.012215491  1.535049788 -1.217432067  1.283357277  0.033052895
 [51] -1.586095781 -1.246651084 -0.304629771 -0.167764063 -0.621365308
 [56]  1.260918397 -0.010775489  0.669004381  0.140876124  0.079953905
 [61]  0.685705149 -0.217262308 -2.191687197 -0.534546316  0.095019391
 [66]  1.822418405 -1.895868602 -0.911430763  0.044761096 -0.107773895
 [71]  0.245901090  0.243475258  0.286054585 -0.814848595 -0.721136870
 [76]  0.967474562  1.845260721 -0.762257574 -1.112343325  0.450567038
 [81] -1.760243182  0.338251223  0.352386779 -0.044460381  2.132790430
 [86] -1.557347779 -0.935502922 -1.115265796 -1.288894289  0.877209819
 [91]  0.493370805  1.109689034  0.136825361 -0.991493424  0.003376491
 [96]  1.610112462  0.647296125  2.010674350  1.972411402 -0.352033287
> colMin(tmp)
  [1] -0.546719823 -1.739661803  0.453313831 -0.240562845 -2.462652296
  [6] -1.037268674  1.613467483  0.742192990  0.353748076  0.082224109
 [11] -0.071151785 -1.850807480 -2.163118280  0.832215726  0.064374258
 [16] -0.809491241 -2.027918557  0.678990660  2.067752906  0.426337188
 [21] -0.105834897  0.819540866 -0.890268907  0.426970184  0.820736074
 [26] -0.440732658  0.401974756 -1.470886336  0.707692544 -0.753930391
 [31]  2.004685308 -0.551236792  0.355103026 -0.124344173  0.671254950
 [36]  0.457226391  1.256224990 -0.714971884 -0.842040239 -1.429798491
 [41] -0.390053820  2.290409496 -0.848170247 -0.457762872 -0.819110722
 [46] -0.012215491  1.535049788 -1.217432067  1.283357277  0.033052895
 [51] -1.586095781 -1.246651084 -0.304629771 -0.167764063 -0.621365308
 [56]  1.260918397 -0.010775489  0.669004381  0.140876124  0.079953905
 [61]  0.685705149 -0.217262308 -2.191687197 -0.534546316  0.095019391
 [66]  1.822418405 -1.895868602 -0.911430763  0.044761096 -0.107773895
 [71]  0.245901090  0.243475258  0.286054585 -0.814848595 -0.721136870
 [76]  0.967474562  1.845260721 -0.762257574 -1.112343325  0.450567038
 [81] -1.760243182  0.338251223  0.352386779 -0.044460381  2.132790430
 [86] -1.557347779 -0.935502922 -1.115265796 -1.288894289  0.877209819
 [91]  0.493370805  1.109689034  0.136825361 -0.991493424  0.003376491
 [96]  1.610112462  0.647296125  2.010674350  1.972411402 -0.352033287
> colMedians(tmp)
  [1] -0.546719823 -1.739661803  0.453313831 -0.240562845 -2.462652296
  [6] -1.037268674  1.613467483  0.742192990  0.353748076  0.082224109
 [11] -0.071151785 -1.850807480 -2.163118280  0.832215726  0.064374258
 [16] -0.809491241 -2.027918557  0.678990660  2.067752906  0.426337188
 [21] -0.105834897  0.819540866 -0.890268907  0.426970184  0.820736074
 [26] -0.440732658  0.401974756 -1.470886336  0.707692544 -0.753930391
 [31]  2.004685308 -0.551236792  0.355103026 -0.124344173  0.671254950
 [36]  0.457226391  1.256224990 -0.714971884 -0.842040239 -1.429798491
 [41] -0.390053820  2.290409496 -0.848170247 -0.457762872 -0.819110722
 [46] -0.012215491  1.535049788 -1.217432067  1.283357277  0.033052895
 [51] -1.586095781 -1.246651084 -0.304629771 -0.167764063 -0.621365308
 [56]  1.260918397 -0.010775489  0.669004381  0.140876124  0.079953905
 [61]  0.685705149 -0.217262308 -2.191687197 -0.534546316  0.095019391
 [66]  1.822418405 -1.895868602 -0.911430763  0.044761096 -0.107773895
 [71]  0.245901090  0.243475258  0.286054585 -0.814848595 -0.721136870
 [76]  0.967474562  1.845260721 -0.762257574 -1.112343325  0.450567038
 [81] -1.760243182  0.338251223  0.352386779 -0.044460381  2.132790430
 [86] -1.557347779 -0.935502922 -1.115265796 -1.288894289  0.877209819
 [91]  0.493370805  1.109689034  0.136825361 -0.991493424  0.003376491
 [96]  1.610112462  0.647296125  2.010674350  1.972411402 -0.352033287
> colRanges(tmp)
           [,1]      [,2]      [,3]       [,4]      [,5]      [,6]     [,7]
[1,] -0.5467198 -1.739662 0.4533138 -0.2405628 -2.462652 -1.037269 1.613467
[2,] -0.5467198 -1.739662 0.4533138 -0.2405628 -2.462652 -1.037269 1.613467
         [,8]      [,9]      [,10]       [,11]     [,12]     [,13]     [,14]
[1,] 0.742193 0.3537481 0.08222411 -0.07115178 -1.850807 -2.163118 0.8322157
[2,] 0.742193 0.3537481 0.08222411 -0.07115178 -1.850807 -2.163118 0.8322157
          [,15]      [,16]     [,17]     [,18]    [,19]     [,20]      [,21]
[1,] 0.06437426 -0.8094912 -2.027919 0.6789907 2.067753 0.4263372 -0.1058349
[2,] 0.06437426 -0.8094912 -2.027919 0.6789907 2.067753 0.4263372 -0.1058349
         [,22]      [,23]     [,24]     [,25]      [,26]     [,27]     [,28]
[1,] 0.8195409 -0.8902689 0.4269702 0.8207361 -0.4407327 0.4019748 -1.470886
[2,] 0.8195409 -0.8902689 0.4269702 0.8207361 -0.4407327 0.4019748 -1.470886
         [,29]      [,30]    [,31]      [,32]    [,33]      [,34]    [,35]
[1,] 0.7076925 -0.7539304 2.004685 -0.5512368 0.355103 -0.1243442 0.671255
[2,] 0.7076925 -0.7539304 2.004685 -0.5512368 0.355103 -0.1243442 0.671255
         [,36]    [,37]      [,38]      [,39]     [,40]      [,41]    [,42]
[1,] 0.4572264 1.256225 -0.7149719 -0.8420402 -1.429798 -0.3900538 2.290409
[2,] 0.4572264 1.256225 -0.7149719 -0.8420402 -1.429798 -0.3900538 2.290409
          [,43]      [,44]      [,45]       [,46]   [,47]     [,48]    [,49]
[1,] -0.8481702 -0.4577629 -0.8191107 -0.01221549 1.53505 -1.217432 1.283357
[2,] -0.8481702 -0.4577629 -0.8191107 -0.01221549 1.53505 -1.217432 1.283357
          [,50]     [,51]     [,52]      [,53]      [,54]      [,55]    [,56]
[1,] 0.03305289 -1.586096 -1.246651 -0.3046298 -0.1677641 -0.6213653 1.260918
[2,] 0.03305289 -1.586096 -1.246651 -0.3046298 -0.1677641 -0.6213653 1.260918
           [,57]     [,58]     [,59]      [,60]     [,61]      [,62]     [,63]
[1,] -0.01077549 0.6690044 0.1408761 0.07995391 0.6857051 -0.2172623 -2.191687
[2,] -0.01077549 0.6690044 0.1408761 0.07995391 0.6857051 -0.2172623 -2.191687
          [,64]      [,65]    [,66]     [,67]      [,68]     [,69]      [,70]
[1,] -0.5345463 0.09501939 1.822418 -1.895869 -0.9114308 0.0447611 -0.1077739
[2,] -0.5345463 0.09501939 1.822418 -1.895869 -0.9114308 0.0447611 -0.1077739
         [,71]     [,72]     [,73]      [,74]      [,75]     [,76]    [,77]
[1,] 0.2459011 0.2434753 0.2860546 -0.8148486 -0.7211369 0.9674746 1.845261
[2,] 0.2459011 0.2434753 0.2860546 -0.8148486 -0.7211369 0.9674746 1.845261
          [,78]     [,79]    [,80]     [,81]     [,82]     [,83]       [,84]
[1,] -0.7622576 -1.112343 0.450567 -1.760243 0.3382512 0.3523868 -0.04446038
[2,] -0.7622576 -1.112343 0.450567 -1.760243 0.3382512 0.3523868 -0.04446038
       [,85]     [,86]      [,87]     [,88]     [,89]     [,90]     [,91]
[1,] 2.13279 -1.557348 -0.9355029 -1.115266 -1.288894 0.8772098 0.4933708
[2,] 2.13279 -1.557348 -0.9355029 -1.115266 -1.288894 0.8772098 0.4933708
        [,92]     [,93]      [,94]       [,95]    [,96]     [,97]    [,98]
[1,] 1.109689 0.1368254 -0.9914934 0.003376491 1.610112 0.6472961 2.010674
[2,] 1.109689 0.1368254 -0.9914934 0.003376491 1.610112 0.6472961 2.010674
        [,99]     [,100]
[1,] 1.972411 -0.3520333
[2,] 1.972411 -0.3520333
> 
> 
> Max(tmp2)
[1] 2.025282
> Min(tmp2)
[1] -1.584725
> mean(tmp2)
[1] 0.1048317
> Sum(tmp2)
[1] 10.48317
> Var(tmp2)
[1] 0.7949219
> 
> rowMeans(tmp2)
  [1]  0.7853864377  1.0070105827 -0.2646364953  1.5181316156 -0.5512349484
  [6]  1.2996139364  0.0960280103  0.7598965634 -0.6379605169  0.4939688386
 [11] -0.5695221195 -1.5222558918 -1.5847247558 -0.3281793580 -0.5236022398
 [16]  0.3810630308 -0.6088597928 -0.7609707495 -0.1742372126  1.0828963611
 [21] -1.3092999057  1.9859170835  0.3210780578  0.0059332372 -0.8712737561
 [26] -0.9859875921  1.0442231125 -0.3706143380 -0.2623011550  1.1781254128
 [31]  0.4610682990  0.9512898089  0.2888262615 -1.5448460113 -1.0852648757
 [36] -0.7099966364 -0.9307104747  0.4274520827 -0.3059769265  0.3374067142
 [41]  0.5303049013  0.4952092531  1.0573197647  1.0776350199  0.2471806163
 [46] -1.0182888893  1.4357048285  1.8034430509  1.4836787314 -0.3137806993
 [51] -0.5427259499  2.0252820638 -0.9066430941 -1.5281845268  0.2374493815
 [56]  0.7051508259 -0.7073427891  0.1024457495  0.7405048686 -0.7931279956
 [61]  0.5897716348  1.5723956590  0.1705890049 -0.4235075111 -0.3674295029
 [66]  0.4597351009 -0.3343673387 -1.1188189920  0.9675934322 -0.6418628285
 [71]  0.6465411775 -0.7991803153  0.8036642794 -0.9600256954  1.2709159675
 [76]  1.6786636848 -0.7810679458 -0.8512471290  0.2636712145 -0.3729940811
 [81] -0.6449831542  1.6591098641  0.1390586511  0.6590639078  0.1075035682
 [86]  0.2645987676  0.4063338579 -0.4129985380  0.7883257007  0.1925451598
 [91] -0.1468874209 -0.3944034365  1.2740715128 -0.2777384566 -1.2935874697
 [96]  0.7921789395 -0.0005687176 -0.9736606526  1.3833121807  0.5347843234
> rowSums(tmp2)
  [1]  0.7853864377  1.0070105827 -0.2646364953  1.5181316156 -0.5512349484
  [6]  1.2996139364  0.0960280103  0.7598965634 -0.6379605169  0.4939688386
 [11] -0.5695221195 -1.5222558918 -1.5847247558 -0.3281793580 -0.5236022398
 [16]  0.3810630308 -0.6088597928 -0.7609707495 -0.1742372126  1.0828963611
 [21] -1.3092999057  1.9859170835  0.3210780578  0.0059332372 -0.8712737561
 [26] -0.9859875921  1.0442231125 -0.3706143380 -0.2623011550  1.1781254128
 [31]  0.4610682990  0.9512898089  0.2888262615 -1.5448460113 -1.0852648757
 [36] -0.7099966364 -0.9307104747  0.4274520827 -0.3059769265  0.3374067142
 [41]  0.5303049013  0.4952092531  1.0573197647  1.0776350199  0.2471806163
 [46] -1.0182888893  1.4357048285  1.8034430509  1.4836787314 -0.3137806993
 [51] -0.5427259499  2.0252820638 -0.9066430941 -1.5281845268  0.2374493815
 [56]  0.7051508259 -0.7073427891  0.1024457495  0.7405048686 -0.7931279956
 [61]  0.5897716348  1.5723956590  0.1705890049 -0.4235075111 -0.3674295029
 [66]  0.4597351009 -0.3343673387 -1.1188189920  0.9675934322 -0.6418628285
 [71]  0.6465411775 -0.7991803153  0.8036642794 -0.9600256954  1.2709159675
 [76]  1.6786636848 -0.7810679458 -0.8512471290  0.2636712145 -0.3729940811
 [81] -0.6449831542  1.6591098641  0.1390586511  0.6590639078  0.1075035682
 [86]  0.2645987676  0.4063338579 -0.4129985380  0.7883257007  0.1925451598
 [91] -0.1468874209 -0.3944034365  1.2740715128 -0.2777384566 -1.2935874697
 [96]  0.7921789395 -0.0005687176 -0.9736606526  1.3833121807  0.5347843234
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.7853864377  1.0070105827 -0.2646364953  1.5181316156 -0.5512349484
  [6]  1.2996139364  0.0960280103  0.7598965634 -0.6379605169  0.4939688386
 [11] -0.5695221195 -1.5222558918 -1.5847247558 -0.3281793580 -0.5236022398
 [16]  0.3810630308 -0.6088597928 -0.7609707495 -0.1742372126  1.0828963611
 [21] -1.3092999057  1.9859170835  0.3210780578  0.0059332372 -0.8712737561
 [26] -0.9859875921  1.0442231125 -0.3706143380 -0.2623011550  1.1781254128
 [31]  0.4610682990  0.9512898089  0.2888262615 -1.5448460113 -1.0852648757
 [36] -0.7099966364 -0.9307104747  0.4274520827 -0.3059769265  0.3374067142
 [41]  0.5303049013  0.4952092531  1.0573197647  1.0776350199  0.2471806163
 [46] -1.0182888893  1.4357048285  1.8034430509  1.4836787314 -0.3137806993
 [51] -0.5427259499  2.0252820638 -0.9066430941 -1.5281845268  0.2374493815
 [56]  0.7051508259 -0.7073427891  0.1024457495  0.7405048686 -0.7931279956
 [61]  0.5897716348  1.5723956590  0.1705890049 -0.4235075111 -0.3674295029
 [66]  0.4597351009 -0.3343673387 -1.1188189920  0.9675934322 -0.6418628285
 [71]  0.6465411775 -0.7991803153  0.8036642794 -0.9600256954  1.2709159675
 [76]  1.6786636848 -0.7810679458 -0.8512471290  0.2636712145 -0.3729940811
 [81] -0.6449831542  1.6591098641  0.1390586511  0.6590639078  0.1075035682
 [86]  0.2645987676  0.4063338579 -0.4129985380  0.7883257007  0.1925451598
 [91] -0.1468874209 -0.3944034365  1.2740715128 -0.2777384566 -1.2935874697
 [96]  0.7921789395 -0.0005687176 -0.9736606526  1.3833121807  0.5347843234
> rowMin(tmp2)
  [1]  0.7853864377  1.0070105827 -0.2646364953  1.5181316156 -0.5512349484
  [6]  1.2996139364  0.0960280103  0.7598965634 -0.6379605169  0.4939688386
 [11] -0.5695221195 -1.5222558918 -1.5847247558 -0.3281793580 -0.5236022398
 [16]  0.3810630308 -0.6088597928 -0.7609707495 -0.1742372126  1.0828963611
 [21] -1.3092999057  1.9859170835  0.3210780578  0.0059332372 -0.8712737561
 [26] -0.9859875921  1.0442231125 -0.3706143380 -0.2623011550  1.1781254128
 [31]  0.4610682990  0.9512898089  0.2888262615 -1.5448460113 -1.0852648757
 [36] -0.7099966364 -0.9307104747  0.4274520827 -0.3059769265  0.3374067142
 [41]  0.5303049013  0.4952092531  1.0573197647  1.0776350199  0.2471806163
 [46] -1.0182888893  1.4357048285  1.8034430509  1.4836787314 -0.3137806993
 [51] -0.5427259499  2.0252820638 -0.9066430941 -1.5281845268  0.2374493815
 [56]  0.7051508259 -0.7073427891  0.1024457495  0.7405048686 -0.7931279956
 [61]  0.5897716348  1.5723956590  0.1705890049 -0.4235075111 -0.3674295029
 [66]  0.4597351009 -0.3343673387 -1.1188189920  0.9675934322 -0.6418628285
 [71]  0.6465411775 -0.7991803153  0.8036642794 -0.9600256954  1.2709159675
 [76]  1.6786636848 -0.7810679458 -0.8512471290  0.2636712145 -0.3729940811
 [81] -0.6449831542  1.6591098641  0.1390586511  0.6590639078  0.1075035682
 [86]  0.2645987676  0.4063338579 -0.4129985380  0.7883257007  0.1925451598
 [91] -0.1468874209 -0.3944034365  1.2740715128 -0.2777384566 -1.2935874697
 [96]  0.7921789395 -0.0005687176 -0.9736606526  1.3833121807  0.5347843234
> 
> colMeans(tmp2)
[1] 0.1048317
> colSums(tmp2)
[1] 10.48317
> colVars(tmp2)
[1] 0.7949219
> colSd(tmp2)
[1] 0.8915839
> colMax(tmp2)
[1] 2.025282
> colMin(tmp2)
[1] -1.584725
> colMedians(tmp2)
[1] 0.1232811
> colRanges(tmp2)
          [,1]
[1,] -1.584725
[2,]  2.025282
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.613243 -2.547883  2.843088 -2.572317 -1.976240  9.493220  2.930503
 [8]  2.024009 -1.070568 -4.427701
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2444289
[2,] -0.8743173
[3,] -0.2548037
[4,]  0.1783836
[5,]  0.7909788
> 
> rowApply(tmp,sum)
 [1] -0.9167276 -2.5012049  2.7812680  4.3377695  0.7468124 -6.9685834
 [7]  2.2789868  2.0861844 -1.9939888  2.2323520
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    6    1    3    3    8    6    5    7    2     1
 [2,]    4    4    1    7    7    8    3    3    5     3
 [3,]    5    9    8    4    4   10    9    8    4     2
 [4,]    1    6    7    2   10    7   10    1    3     7
 [5,]    9    3    4    6    2    3    1    5    9     6
 [6,]   10   10    9    9    9    9    4    9    8    10
 [7,]    3    8   10    8    1    1    8    6    7     9
 [8,]    8    2    6   10    6    5    6    2   10     8
 [9,]    7    7    5    5    3    4    2   10    1     5
[10,]    2    5    2    1    5    2    7    4    6     4
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.72092380  2.86243342  2.70076192 -0.04730527  1.64721853 -0.82088055
 [7]  1.18619851  1.63663998 -0.03968275  1.11689519 -1.26089012  3.30746364
[13]  1.26031698 -0.85323173 -1.02492896 -1.70208033 -1.32825473 -3.52449378
[19]  1.06153566  0.92223073
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.3313901
[2,] -0.3221109
[3,] -0.2443368
[4,]  0.1858525
[5,]  0.9910615
> 
> rowApply(tmp,sum)
[1]  3.7363892 -0.9589672  4.8235897  1.1584525 -2.3804417
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    9   16    5   13    2
[2,]    5   17   17   17    9
[3,]   17   20   11    2   19
[4,]    4    9    7   19    3
[5,]   18    5   12   10   20
> 
> 
> as.matrix(tmp)
           [,1]        [,2]        [,3]        [,4]         [,5]       [,6]
[1,] -0.2443368 -0.46673279  0.96049860 -0.49522638  1.623045130 -0.6406383
[2,]  0.9910615  1.21850032  2.02244616  0.02593599 -1.070665424 -0.2897323
[3,] -0.3221109  1.13214327  0.09367679 -0.24975795  0.134603514 -0.7263011
[4,]  0.1858525  1.05446594 -1.31834034  1.74187839 -0.001108098  0.2156795
[5,] -1.3313901 -0.07594332  0.94248071 -1.07013531  0.961343413  0.6201116
            [,7]       [,8]        [,9]       [,10]      [,11]       [,12]
[1,] -0.14022361  2.2824998 -0.36190932  0.59673442  0.8684835 -0.28269433
[2,]  0.02809090  0.2768253  0.10183391  0.03604112 -1.8683856  1.60252329
[3,]  1.94830638  1.1399035 -0.27768396 -0.10679492 -0.5002045  1.78798239
[4,] -0.57812770 -1.0456901  0.01492319 -0.09301266  0.5907019  0.05234904
[5,] -0.07184747 -1.0168986  0.48315342  0.68392723 -0.3514855  0.14730326
          [,13]       [,14]       [,15]      [,16]       [,17]       [,18]
[1,] -0.2611108  1.74723919  0.04536512  0.8276031  0.21336830 -0.83412576
[2,] -0.8910555 -1.23137871  0.39932464 -1.8950470 -0.62930302 -1.32457355
[3,]  0.3518612 -0.01689064  0.07142118 -0.4018745 -0.47753945  0.25338940
[4,]  1.5077275 -0.51686014 -0.13232348  0.2029105 -0.44726624 -1.56380643
[5,]  0.5528946 -0.83534143 -1.40871642 -0.4356725  0.01248567 -0.05537745
          [,19]      [,20]
[1,]  0.5797048 -2.2811547
[2,]  1.2544148  0.2841759
[3,]  0.1421533  0.8473067
[4,] -0.6671455  1.9556448
[5,] -0.2475917  0.1162581
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1       col2       col3      col4      col5      col6      col7
row1 0.1735206 -0.2161911 -0.7745597 -1.095479 -1.454676 0.8417689 0.7845852
           col8       col9      col10     col11      col12      col13    col14
row1 -0.6124712 -0.1802379 -0.1276196 0.7620305 -0.2758716 -0.1922352 1.011013
        col15    col16     col17     col18      col19     col20
row1 2.672403 -1.05018 0.2147419 -1.685513 -0.9102611 -1.789743
> tmp[,"col10"]
          col10
row1 -0.1276196
row2 -1.0730636
row3  0.4640172
row4  1.2004051
row5 -0.3332679
> tmp[c("row1","row5"),]
           col1       col2       col3      col4       col5      col6       col7
row1  0.1735206 -0.2161911 -0.7745597 -1.095479 -1.4546760 0.8417689  0.7845852
row5 -0.8040923  0.5888883  0.7945549  0.765715  0.1360824 0.5466099 -0.9143140
           col8        col9      col10     col11      col12      col13
row1 -0.6124712 -0.18023790 -0.1276196 0.7620305 -0.2758716 -0.1922352
row5 -0.5041039 -0.06854227 -0.3332679 1.3014184  0.5474387  1.6542812
          col14      col15    col16     col17     col18       col19     col20
row1 1.01101261  2.6724026 -1.05018 0.2147419 -1.685513 -0.91026113 -1.789743
row5 0.02333696 -0.3251708 -0.48578 1.3555492  2.356872 -0.07207322  1.371112
> tmp[,c("col6","col20")]
            col6      col20
row1  0.84176892 -1.7897430
row2  0.04350745 -1.2132906
row3 -1.00136607  0.2413201
row4 -2.12946500  1.2434722
row5  0.54660994  1.3711120
> tmp[c("row1","row5"),c("col6","col20")]
          col6     col20
row1 0.8417689 -1.789743
row5 0.5466099  1.371112
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3    col4    col5     col6     col7     col8
row1 50.96231 50.61937 48.81417 49.3041 50.8214 105.6799 50.58669 50.13239
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.41914 50.80026 48.99768 49.72125 48.40819 51.26772 50.48725 50.22437
        col17    col18    col19    col20
row1 51.58439 50.67395 48.63025 107.0982
> tmp[,"col10"]
        col10
row1 50.80026
row2 28.64462
row3 29.86845
row4 30.88048
row5 50.01843
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.96231 50.61937 48.81417 49.30410 50.82140 105.6799 50.58669 50.13239
row5 50.60306 49.90382 51.36088 49.67002 50.81721 105.6374 49.69766 49.95059
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.41914 50.80026 48.99768 49.72125 48.40819 51.26772 50.48725 50.22437
row5 50.65100 50.01843 48.20905 50.00960 49.71663 48.93774 48.62240 50.71666
        col17    col18    col19    col20
row1 51.58439 50.67395 48.63025 107.0982
row5 50.49774 51.75521 51.28969 105.7507
> tmp[,c("col6","col20")]
          col6     col20
row1 105.67991 107.09815
row2  75.62831  76.01326
row3  75.51761  74.92398
row4  75.86158  75.19901
row5 105.63735 105.75074
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.6799 107.0982
row5 105.6374 105.7507
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.6799 107.0982
row5 105.6374 105.7507
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.1545735
[2,] -1.7923866
[3,] -0.1465615
[4,]  0.4432162
[5,]  0.1843661
> tmp[,c("col17","col7")]
          col17        col7
[1,]  0.5878825  1.17966834
[2,]  1.6831098 -2.58242370
[3,]  0.4380353 -0.82184377
[4,] -1.2153309  0.08278238
[5,]  0.3758350 -0.52379572
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  1.4640151  0.5750350
[2,] -0.4475855  1.5689192
[3,] -0.8857409 -2.2547510
[4,]  0.1475675  0.4651068
[5,] -1.0127342 -2.0342099
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 1.464015
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  1.4640151
[2,] -0.4475855
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]      [,2]       [,3]      [,4]       [,5]       [,6]        [,7]
row3  1.671080 0.6000764 -1.2608217 0.9237189 -1.0109000  1.0823347 -0.02477107
row1 -2.427337 0.7229507  0.2805602 0.6167897  0.6914074 -0.4898628 -0.94514905
           [,8]       [,9]     [,10]      [,11]      [,12]      [,13]
row3  0.8266191  1.1924165 -1.022648  0.1175154  0.2639288 -0.4880646
row1 -0.1442321 -0.5113385  0.720885 -0.1379113 -0.3147411 -0.5590653
            [,14]      [,15]      [,16]      [,17]        [,18]      [,19]
row3  0.005516401  0.3920157 -0.3047329  0.2863283  0.864696932  0.2080843
row1 -0.583333832 -1.5732941 -2.4688241 -2.4640183 -0.007350393 -0.3900799
         [,20]
row3  1.587092
row1 -1.379237
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]      [,3]       [,4]       [,5]       [,6]       [,7]
row2 -2.650831 0.1879443 -1.228712 -0.8347992 0.08785485 -0.8465309 0.03051387
          [,8]       [,9]      [,10]
row2 0.3778488 -0.4115999 -0.6898791
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]       [,2]       [,3]       [,4]       [,5]        [,6]      [,7]
row5 2.270773 -0.8650945 0.03074014 -0.6370066 -0.1595131 -0.06950304 -2.393926
           [,8]       [,9]      [,10]    [,11]     [,12]     [,13]     [,14]
row5 -0.7554756 -0.5967725 -0.6791444 1.168519 -1.070885 -1.935717 0.6915128
         [,15]      [,16]     [,17]      [,18]      [,19]     [,20]
row5 0.3356802 -0.3799153 -0.150372 -0.4856152 -0.2985554 0.8949877
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5f14217e8050>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a583f91dc"
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a50835861"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a60560108"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a5a7a67b5"
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a607acdd1"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a6d665707"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400af257c81" 
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a46edbf93"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400ac7e6d5e" 
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a23fd2e01"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a5188cc6" 
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a351c007d"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a2dd962cb"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a5b573eb8"
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM27400a1ecab1f7"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5f1421443ef0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5f1421443ef0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5f1421443ef0>
> rowMedians(tmp)
  [1] -0.244509606  0.041381817  0.123977279  0.218791927  0.300549461
  [6] -0.606364241  0.150496162 -0.597107564  0.147994261 -0.183187468
 [11] -0.665836120 -0.191160106 -0.210846056 -0.603108131 -0.455491106
 [16]  0.458559492 -0.361723468 -0.388130795 -0.679224084 -0.095085111
 [21] -0.006586849  0.176390759  0.123287954  0.306835309  0.158204969
 [26]  0.266551427  0.193644255  0.524819351  0.381065287  0.551237851
 [31] -0.276426954 -0.345666804 -0.200959001 -0.107125112  0.445892184
 [36] -0.209337681  0.427104479 -0.422899615  0.304902127 -0.119353058
 [41] -0.595333604 -0.394211984 -0.743178356  0.154973989 -0.120557601
 [46]  0.398066043 -0.765801514 -0.220460349  0.034786240 -0.436307502
 [51] -0.199576379 -0.003957358 -0.122015819  0.254710350  0.043812769
 [56] -0.187718467  0.004669112  0.001225114  0.543857068  0.122685841
 [61] -0.312445340 -0.257856108  0.408367349  0.114352593  0.160626201
 [66] -0.031401955  0.040959563  0.324288171  0.204741543  0.069227285
 [71]  0.125381328 -0.088268566 -0.306703173  0.049220577 -0.692767614
 [76] -0.589274689 -0.014131552  0.098218544  0.696874836  0.150434178
 [81] -0.051109192 -0.280755872 -0.322846202 -0.439864627 -0.264931257
 [86]  0.177521753 -0.261583233  0.417812813  0.247621693  0.037436866
 [91] -0.019111983 -0.195020463  0.554192755 -0.115755934 -0.063519990
 [96]  0.277080008  0.573867001 -0.359150574  0.199578976  0.100590370
[101] -0.231155464  0.133487919  0.134133435  0.054330231 -0.385456238
[106] -0.304980681  0.466237848  0.211034331 -1.085454615 -0.201260014
[111] -0.287027826  0.165735126 -0.474802667 -0.249404677  0.028529099
[116]  0.074641624 -0.122166139  0.674818943 -0.002907794  0.721487744
[121]  0.103028277 -0.144187732 -0.266572053 -0.127902940  0.154198741
[126] -0.219058131 -0.381013957  0.459144132 -0.212560074 -0.012845628
[131]  0.591372792  0.082788457 -0.044413066  0.429039401 -0.389156854
[136]  0.016544392 -0.092430639 -0.376443570  1.201216774 -0.383531948
[141] -0.192122672  0.158827594  0.395864099 -0.125658260 -0.099437874
[146]  0.342999535  0.450719802 -0.151422688 -0.046435513  0.255523247
[151] -0.229510063  0.417738860  0.114240122 -0.015767716  0.255108803
[156] -0.180718887 -0.271467550 -0.221720149 -0.507993329 -0.673051885
[161] -0.033821854  0.397947624 -0.219224432 -0.259367348 -0.077163231
[166]  0.175365191 -0.091979305 -0.021285010 -0.045477561  0.372954715
[171]  0.093039027 -0.413358283  0.158756512 -0.596925412 -0.258275128
[176]  0.432990651 -0.255775313 -0.054174627 -0.019787304 -0.032962126
[181] -0.043699448  0.836832066  0.083628341 -0.327307036  0.144562437
[186]  0.018134274 -0.098570580 -0.623024917  0.239724914 -0.158836450
[191] -0.374214930  0.381475899  0.287496880  0.903197037  0.410920832
[196] -0.210497420 -0.435193628  0.526625998 -0.084985584 -0.365501782
[201]  0.103019942 -0.103877532  0.020454691  0.130559100  0.370549208
[206] -0.083397661 -0.008430579 -0.548238439 -0.199600032 -0.416934511
[211] -0.007542482 -0.192634696 -0.109860386 -0.238721465  0.398409576
[216] -0.274110412 -0.257010710  0.249363895 -0.208857943 -0.265238937
[221] -0.121474112 -0.310489072  0.146433444  0.355072153  0.748113975
[226]  0.139048395  0.135728928 -0.100594753 -0.431670979  0.459569215
> 
> proc.time()
   user  system elapsed 
  1.403   1.478   2.871 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5cbe83e2ac10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5cbe83e2ac10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5cbe83e2ac10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5cbe83e2ac10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5cbe84aed2d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84aed2d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5cbe84aed2d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84aed2d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5cbe84aed2d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe851c2d70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe851c2d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5cbe851c2d70>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5cbe851c2d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5cbe851c2d70>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5cbe851c2d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5cbe851c2d70>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5cbe851c2d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5cbe851c2d70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84d36370>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5cbe84d36370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84d36370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84d36370>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile27413a20ec723a" "BufferedMatrixFile27413a3bed5159"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile27413a20ec723a" "BufferedMatrixFile27413a3bed5159"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84c81ff0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84c81ff0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5cbe84c81ff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5cbe84c81ff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5cbe84c81ff0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5cbe84c81ff0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84e643d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5cbe84e643d0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5cbe84e643d0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5cbe84e643d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5cbe86615fb0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5cbe86615fb0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.262   0.049   0.300 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.248   0.040   0.278 

Example timings