Back to Mac ARM64 build report for BioC 3.17 |
|
This page was generated on 2023-10-20 09:38:12 -0400 (Fri, 20 Oct 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
kjohnson2 | macOS 12.6.1 Monterey | arm64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4347 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 1934/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
singleCellTK 2.10.0 (landing page) Yichen Wang
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | OK | OK | OK | OK | ||||||||
To the developers/maintainers of the singleCellTK package: - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: singleCellTK |
Version: 2.10.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.10.0.tar.gz |
StartedAt: 2023-10-19 01:45:21 -0400 (Thu, 19 Oct 2023) |
EndedAt: 2023-10-19 02:13:36 -0400 (Thu, 19 Oct 2023) |
EllapsedTime: 1695.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: singleCellTK.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.10.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/singleCellTK.Rcheck’ * using R version 4.3.1 (2023-06-16) * using platform: aarch64-apple-darwin20 (64-bit) * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.6.7 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘singleCellTK/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘singleCellTK’ version ‘2.10.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘singleCellTK’ can be installed ... OK * checking installed package size ... NOTE installed size is 6.7Mb sub-directories of 1Mb or more: extdata 1.5Mb shiny 2.9Mb * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed plotScDblFinderResults 33.723 0.716 62.224 importExampleData 22.052 2.566 45.813 runScDblFinder 24.172 0.354 43.776 plotDoubletFinderResults 23.572 0.287 40.632 runDoubletFinder 17.794 0.147 31.846 plotBatchCorrCompare 10.330 0.195 19.593 plotScdsHybridResults 8.881 0.197 16.654 plotBcdsResults 7.848 0.175 14.551 plotDecontXResults 7.894 0.080 13.986 plotTSCANClusterDEG 6.843 0.116 12.416 plotEmptyDropsResults 6.636 0.050 11.263 plotEmptyDropsScatter 6.620 0.049 11.966 runDecontX 6.398 0.071 11.454 runEmptyDrops 6.221 0.044 11.128 plotCxdsResults 6.163 0.092 11.572 plotUMAP 5.991 0.093 10.643 runUMAP 5.880 0.080 11.175 plotFindMarkerHeatmap 5.885 0.062 10.572 detectCellOutlier 5.520 0.160 10.124 plotDEGViolin 5.369 0.123 9.840 plotDEGRegression 4.580 0.083 8.305 runSeuratSCTransform 4.400 0.086 8.026 importGeneSetsFromMSigDB 4.028 0.230 7.669 runFindMarker 4.151 0.081 7.398 getFindMarkerTopTable 4.048 0.077 7.433 plotDEGHeatmap 3.529 0.129 6.602 convertSCEToSeurat 3.440 0.192 6.501 plotTSCANPseudotimeHeatmap 2.955 0.049 5.052 plotTSCANClusterPseudo 2.871 0.054 5.195 plotTSCANDimReduceFeatures 2.840 0.046 5.194 plotRunPerCellQCResults 2.775 0.041 5.029 plotTSCANPseudotimeGenes 2.766 0.043 5.031 getEnrichRResult 0.391 0.045 9.759 runEnrichR 0.355 0.035 9.483 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘spelling.R’ Running ‘testthat.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in ‘inst/doc’ ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/Users/biocbuild/bbs-3.17-bioc-mac-arm64/meat/singleCellTK.Rcheck/00check.log’ for details.
singleCellTK.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library’ * installing *source* package ‘singleCellTK’ ... ** using staged installation ** R ** data ** exec ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (singleCellTK)
singleCellTK.Rcheck/tests/spelling.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > if (requireNamespace('spelling', quietly = TRUE)) + spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE) NULL > > proc.time() user system elapsed 0.212 0.063 0.514
singleCellTK.Rcheck/tests/testthat.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(testthat) > library(singleCellTK) Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: 'MatrixGenerics' The following objects are masked from 'package:matrixStats': colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: 'BiocGenerics' The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: 'S4Vectors' The following object is masked from 'package:utils': findMatches The following objects are masked from 'package:base': I, expand.grid, unname Loading required package: IRanges Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Attaching package: 'Biobase' The following object is masked from 'package:MatrixGenerics': rowMedians The following objects are masked from 'package:matrixStats': anyMissing, rowMedians Loading required package: SingleCellExperiment Loading required package: DelayedArray Loading required package: Matrix Attaching package: 'Matrix' The following object is masked from 'package:S4Vectors': expand Loading required package: S4Arrays Loading required package: abind Attaching package: 'S4Arrays' The following object is masked from 'package:abind': abind The following object is masked from 'package:base': rowsum Attaching package: 'DelayedArray' The following objects are masked from 'package:base': apply, scale, sweep Attaching package: 'singleCellTK' The following object is masked from 'package:BiocGenerics': plotPCA > > test_check("singleCellTK") Found 2 batches Using null model in ComBat-seq. Adjusting for 0 covariate(s) or covariate level(s) Estimating dispersions Fitting the GLM model Shrinkage off - using GLM estimates for parameters Adjusting the data Found 2 batches Using null model in ComBat-seq. Adjusting for 1 covariate(s) or covariate level(s) Estimating dispersions Fitting the GLM model Shrinkage off - using GLM estimates for parameters Adjusting the data Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Uploading data to Enrichr... Done. Querying HDSigDB_Human_2021... Done. Parsing results... Done. Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene means 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variance to mean ratios 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene means 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variance to mean ratios 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Estimating GSVA scores for 34 gene sets. Estimating ECDFs with Gaussian kernels | | | 0% | |== | 3% | |==== | 6% | |====== | 9% | |======== | 12% | |========== | 15% | |============ | 18% | |============== | 21% | |================ | 24% | |=================== | 26% | |===================== | 29% | |======================= | 32% | |========================= | 35% | |=========================== | 38% | |============================= | 41% | |=============================== | 44% | |================================= | 47% | |=================================== | 50% | |===================================== | 53% | |======================================= | 56% | |========================================= | 59% | |=========================================== | 62% | |============================================= | 65% | |=============================================== | 68% | |================================================= | 71% | |=================================================== | 74% | |====================================================== | 76% | |======================================================== | 79% | |========================================================== | 82% | |============================================================ | 85% | |============================================================== | 88% | |================================================================ | 91% | |================================================================== | 94% | |==================================================================== | 97% | |======================================================================| 100% Estimating GSVA scores for 2 gene sets. Estimating ECDFs with Gaussian kernels | | | 0% | |=================================== | 50% | |======================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% Calculating gene variances 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Calculating feature variances of standardized and clipped values 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 390 Number of edges: 9590 Running Louvain algorithm... 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| Maximum modularity in 10 random starts: 0.8042 Number of communities: 6 Elapsed time: 0 seconds Using method 'umap' 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% | | | 0% | |======================================================================| 100% Performing log-normalization 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| **************************************************| [ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ] [ FAIL 0 | WARN 19 | SKIP 0 | PASS 220 ] > > proc.time() user system elapsed 268.941 7.027 503.790
singleCellTK.Rcheck/singleCellTK-Ex.timings
name | user | system | elapsed | |
MitoGenes | 0.003 | 0.002 | 0.008 | |
SEG | 0.003 | 0.001 | 0.008 | |
calcEffectSizes | 0.220 | 0.023 | 0.429 | |
combineSCE | 1.864 | 0.055 | 3.446 | |
computeZScore | 0.407 | 0.015 | 0.764 | |
convertSCEToSeurat | 3.440 | 0.192 | 6.501 | |
convertSeuratToSCE | 0.565 | 0.011 | 1.035 | |
dedupRowNames | 0.078 | 0.002 | 0.141 | |
detectCellOutlier | 5.520 | 0.160 | 10.124 | |
diffAbundanceFET | 0.053 | 0.007 | 0.109 | |
discreteColorPalette | 0.009 | 0.001 | 0.014 | |
distinctColors | 0.003 | 0.000 | 0.008 | |
downSampleCells | 0.803 | 0.085 | 1.604 | |
downSampleDepth | 0.601 | 0.024 | 1.122 | |
expData-ANY-character-method | 0.385 | 0.009 | 0.706 | |
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method | 0.429 | 0.011 | 0.783 | |
expData-set | 0.421 | 0.021 | 0.801 | |
expData | 0.429 | 0.038 | 0.835 | |
expDataNames-ANY-method | 0.384 | 0.009 | 0.712 | |
expDataNames | 0.383 | 0.009 | 0.699 | |
expDeleteDataTag | 0.044 | 0.003 | 0.079 | |
expSetDataTag | 0.030 | 0.003 | 0.058 | |
expTaggedData | 0.031 | 0.002 | 0.059 | |
exportSCE | 0.030 | 0.003 | 0.057 | |
exportSCEtoAnnData | 0.100 | 0.007 | 0.188 | |
exportSCEtoFlatFile | 0.101 | 0.007 | 0.191 | |
featureIndex | 0.041 | 0.003 | 0.077 | |
generateSimulatedData | 0.048 | 0.005 | 0.089 | |
getBiomarker | 0.059 | 0.006 | 0.107 | |
getDEGTopTable | 1.075 | 0.045 | 1.944 | |
getDiffAbundanceResults | 0.045 | 0.004 | 0.090 | |
getEnrichRResult | 0.391 | 0.045 | 9.759 | |
getFindMarkerTopTable | 4.048 | 0.077 | 7.433 | |
getMSigDBTable | 0.005 | 0.003 | 0.012 | |
getPathwayResultNames | 0.026 | 0.003 | 0.052 | |
getSampleSummaryStatsTable | 0.412 | 0.007 | 0.762 | |
getSoupX | 0 | 0 | 0 | |
getTSCANResults | 2.373 | 0.061 | 4.406 | |
getTopHVG | 1.009 | 0.019 | 1.956 | |
importAnnData | 0.002 | 0.001 | 0.007 | |
importBUStools | 0.504 | 0.010 | 0.963 | |
importCellRanger | 1.346 | 0.050 | 2.482 | |
importCellRangerV2Sample | 0.330 | 0.005 | 0.594 | |
importCellRangerV3Sample | 0.495 | 0.021 | 0.927 | |
importDropEst | 0.413 | 0.007 | 0.752 | |
importExampleData | 22.052 | 2.566 | 45.813 | |
importGeneSetsFromCollection | 0.938 | 0.106 | 1.940 | |
importGeneSetsFromGMT | 0.091 | 0.005 | 0.168 | |
importGeneSetsFromList | 0.174 | 0.006 | 0.329 | |
importGeneSetsFromMSigDB | 4.028 | 0.230 | 7.669 | |
importMitoGeneSet | 0.067 | 0.007 | 0.107 | |
importOptimus | 0.002 | 0.001 | 0.003 | |
importSEQC | 0.36 | 0.02 | 0.59 | |
importSTARsolo | 0.360 | 0.035 | 0.640 | |
iterateSimulations | 0.492 | 0.033 | 0.904 | |
listSampleSummaryStatsTables | 0.504 | 0.010 | 0.787 | |
mergeSCEColData | 0.588 | 0.029 | 0.972 | |
mouseBrainSubsetSCE | 0.031 | 0.005 | 0.055 | |
msigdb_table | 0.001 | 0.002 | 0.004 | |
plotBarcodeRankDropsResults | 1.114 | 0.057 | 1.918 | |
plotBarcodeRankScatter | 0.844 | 0.018 | 1.576 | |
plotBatchCorrCompare | 10.330 | 0.195 | 19.593 | |
plotBatchVariance | 0.392 | 0.012 | 0.654 | |
plotBcdsResults | 7.848 | 0.175 | 14.551 | |
plotClusterAbundance | 1.388 | 0.028 | 2.349 | |
plotCxdsResults | 6.163 | 0.092 | 11.572 | |
plotDEGHeatmap | 3.529 | 0.129 | 6.602 | |
plotDEGRegression | 4.580 | 0.083 | 8.305 | |
plotDEGViolin | 5.369 | 0.123 | 9.840 | |
plotDEGVolcano | 1.335 | 0.024 | 2.442 | |
plotDecontXResults | 7.894 | 0.080 | 13.986 | |
plotDimRed | 0.328 | 0.008 | 0.538 | |
plotDoubletFinderResults | 23.572 | 0.287 | 40.632 | |
plotEmptyDropsResults | 6.636 | 0.050 | 11.263 | |
plotEmptyDropsScatter | 6.620 | 0.049 | 11.966 | |
plotFindMarkerHeatmap | 5.885 | 0.062 | 10.572 | |
plotMASTThresholdGenes | 1.895 | 0.038 | 3.452 | |
plotPCA | 0.608 | 0.014 | 1.124 | |
plotPathway | 1.111 | 0.021 | 2.014 | |
plotRunPerCellQCResults | 2.775 | 0.041 | 5.029 | |
plotSCEBarAssayData | 0.220 | 0.008 | 0.406 | |
plotSCEBarColData | 0.165 | 0.006 | 0.289 | |
plotSCEBatchFeatureMean | 0.269 | 0.005 | 0.471 | |
plotSCEDensity | 0.340 | 0.009 | 0.610 | |
plotSCEDensityAssayData | 0.201 | 0.007 | 0.355 | |
plotSCEDensityColData | 0.251 | 0.008 | 0.436 | |
plotSCEDimReduceColData | 1.163 | 0.021 | 2.071 | |
plotSCEDimReduceFeatures | 0.476 | 0.012 | 0.870 | |
plotSCEHeatmap | 0.946 | 0.015 | 1.700 | |
plotSCEScatter | 0.549 | 0.012 | 0.996 | |
plotSCEViolin | 0.277 | 0.008 | 0.502 | |
plotSCEViolinAssayData | 0.304 | 0.008 | 0.564 | |
plotSCEViolinColData | 0.294 | 0.008 | 0.535 | |
plotScDblFinderResults | 33.723 | 0.716 | 62.224 | |
plotScanpyDotPlot | 0.029 | 0.004 | 0.060 | |
plotScanpyEmbedding | 0.030 | 0.002 | 0.053 | |
plotScanpyHVG | 0.053 | 0.003 | 0.095 | |
plotScanpyHeatmap | 0.029 | 0.002 | 0.057 | |
plotScanpyMarkerGenes | 0.033 | 0.002 | 0.061 | |
plotScanpyMarkerGenesDotPlot | 0.027 | 0.001 | 0.051 | |
plotScanpyMarkerGenesHeatmap | 0.027 | 0.001 | 0.049 | |
plotScanpyMarkerGenesMatrixPlot | 0.029 | 0.002 | 0.056 | |
plotScanpyMarkerGenesViolin | 0.027 | 0.002 | 0.050 | |
plotScanpyMatrixPlot | 0.030 | 0.003 | 0.053 | |
plotScanpyPCA | 0.031 | 0.003 | 0.062 | |
plotScanpyPCAGeneRanking | 0.027 | 0.001 | 0.050 | |
plotScanpyPCAVariance | 0.028 | 0.002 | 0.051 | |
plotScanpyViolin | 0.027 | 0.001 | 0.046 | |
plotScdsHybridResults | 8.881 | 0.197 | 16.654 | |
plotScrubletResults | 0.028 | 0.005 | 0.055 | |
plotSeuratElbow | 0.027 | 0.003 | 0.044 | |
plotSeuratHVG | 0.027 | 0.003 | 0.053 | |
plotSeuratJackStraw | 0.028 | 0.001 | 0.061 | |
plotSeuratReduction | 0.029 | 0.002 | 0.059 | |
plotSoupXResults | 0 | 0 | 0 | |
plotTSCANClusterDEG | 6.843 | 0.116 | 12.416 | |
plotTSCANClusterPseudo | 2.871 | 0.054 | 5.195 | |
plotTSCANDimReduceFeatures | 2.840 | 0.046 | 5.194 | |
plotTSCANPseudotimeGenes | 2.766 | 0.043 | 5.031 | |
plotTSCANPseudotimeHeatmap | 2.955 | 0.049 | 5.052 | |
plotTSCANResults | 2.684 | 0.043 | 4.732 | |
plotTSNE | 0.687 | 0.013 | 1.244 | |
plotTopHVG | 0.451 | 0.012 | 0.824 | |
plotUMAP | 5.991 | 0.093 | 10.643 | |
readSingleCellMatrix | 0.005 | 0.001 | 0.011 | |
reportCellQC | 0.225 | 0.007 | 0.354 | |
reportDropletQC | 0.027 | 0.004 | 0.041 | |
reportQCTool | 0.222 | 0.007 | 0.340 | |
retrieveSCEIndex | 0.034 | 0.004 | 0.058 | |
runBBKNN | 0.000 | 0.001 | 0.000 | |
runBarcodeRankDrops | 0.538 | 0.013 | 0.847 | |
runBcds | 2.031 | 0.057 | 3.188 | |
runCellQC | 0.231 | 0.008 | 0.380 | |
runComBatSeq | 0.597 | 0.020 | 0.954 | |
runCxds | 0.757 | 0.022 | 1.391 | |
runCxdsBcdsHybrid | 2.150 | 0.060 | 3.843 | |
runDEAnalysis | 0.888 | 0.017 | 1.621 | |
runDecontX | 6.398 | 0.071 | 11.454 | |
runDimReduce | 0.577 | 0.010 | 1.040 | |
runDoubletFinder | 17.794 | 0.147 | 31.846 | |
runDropletQC | 0.031 | 0.002 | 0.064 | |
runEmptyDrops | 6.221 | 0.044 | 11.128 | |
runEnrichR | 0.355 | 0.035 | 9.483 | |
runFastMNN | 2.110 | 0.050 | 3.744 | |
runFeatureSelection | 0.254 | 0.006 | 0.462 | |
runFindMarker | 4.151 | 0.081 | 7.398 | |
runGSVA | 0.902 | 0.022 | 1.664 | |
runHarmony | 0.042 | 0.002 | 0.081 | |
runKMeans | 0.502 | 0.013 | 0.922 | |
runLimmaBC | 0.097 | 0.002 | 0.176 | |
runMNNCorrect | 0.631 | 0.011 | 1.151 | |
runModelGeneVar | 0.579 | 0.013 | 1.066 | |
runNormalization | 0.775 | 0.020 | 1.440 | |
runPerCellQC | 0.695 | 0.016 | 1.276 | |
runSCANORAMA | 0 | 0 | 0 | |
runSCMerge | 0.005 | 0.001 | 0.010 | |
runScDblFinder | 24.172 | 0.354 | 43.776 | |
runScanpyFindClusters | 0.028 | 0.002 | 0.055 | |
runScanpyFindHVG | 0.028 | 0.002 | 0.056 | |
runScanpyFindMarkers | 0.027 | 0.003 | 0.054 | |
runScanpyNormalizeData | 0.312 | 0.035 | 0.616 | |
runScanpyPCA | 0.030 | 0.003 | 0.062 | |
runScanpyScaleData | 0.028 | 0.002 | 0.052 | |
runScanpyTSNE | 0.033 | 0.002 | 0.062 | |
runScanpyUMAP | 0.030 | 0.002 | 0.057 | |
runScranSNN | 0.888 | 0.019 | 1.638 | |
runScrublet | 0.029 | 0.003 | 0.056 | |
runSeuratFindClusters | 0.029 | 0.003 | 0.057 | |
runSeuratFindHVG | 0.810 | 0.015 | 1.478 | |
runSeuratHeatmap | 0.029 | 0.002 | 0.056 | |
runSeuratICA | 0.027 | 0.002 | 0.056 | |
runSeuratJackStraw | 0.031 | 0.002 | 0.059 | |
runSeuratNormalizeData | 0.032 | 0.003 | 0.062 | |
runSeuratPCA | 0.028 | 0.002 | 0.053 | |
runSeuratSCTransform | 4.400 | 0.086 | 8.026 | |
runSeuratScaleData | 0.029 | 0.002 | 0.056 | |
runSeuratUMAP | 0.031 | 0.002 | 0.057 | |
runSingleR | 0.046 | 0.002 | 0.085 | |
runSoupX | 0 | 0 | 0 | |
runTSCAN | 1.799 | 0.032 | 3.261 | |
runTSCANClusterDEAnalysis | 1.986 | 0.035 | 3.640 | |
runTSCANDEG | 1.873 | 0.031 | 3.384 | |
runTSNE | 0.981 | 0.025 | 1.806 | |
runUMAP | 5.880 | 0.080 | 11.175 | |
runVAM | 0.696 | 0.015 | 1.252 | |
runZINBWaVE | 0.005 | 0.002 | 0.011 | |
sampleSummaryStats | 0.384 | 0.007 | 0.685 | |
scaterCPM | 0.155 | 0.007 | 0.294 | |
scaterPCA | 0.552 | 0.010 | 1.010 | |
scaterlogNormCounts | 0.296 | 0.010 | 0.551 | |
sce | 0.028 | 0.008 | 0.063 | |
sctkListGeneSetCollections | 0.097 | 0.005 | 0.185 | |
sctkPythonInstallConda | 0.001 | 0.000 | 0.001 | |
sctkPythonInstallVirtualEnv | 0.001 | 0.000 | 0.001 | |
selectSCTKConda | 0.001 | 0.000 | 0.000 | |
selectSCTKVirtualEnvironment | 0 | 0 | 0 | |
setRowNames | 0.113 | 0.007 | 0.213 | |
setSCTKDisplayRow | 0.587 | 0.021 | 1.077 | |
singleCellTK | 0.000 | 0.001 | 0.001 | |
subDiffEx | 0.607 | 0.023 | 1.138 | |
subsetSCECols | 0.221 | 0.006 | 0.404 | |
subsetSCERows | 0.521 | 0.013 | 0.957 | |
summarizeSCE | 0.069 | 0.005 | 0.130 | |
trimCounts | 0.314 | 0.015 | 0.583 | |