CHECK report for LINC on malbec1
This page was generated on 2021-05-06 12:28:05 -0400 (Thu, 06 May 2021).
To the developers/maintainers of the LINC package: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
|
| LINC 1.18.0 (landing page) Manuel Goepferich
Snapshot Date: 2021-05-05 14:51:38 -0400 (Wed, 05 May 2021) |
URL: https://git.bioconductor.org/packages/LINC |
Branch: RELEASE_3_12 |
Last Commit: 2fe2a42 |
Last Changed Date: 2020-10-27 11:17:30 -0400 (Tue, 27 Oct 2020) |
| malbec1 | Linux (Ubuntu 18.04.5 LTS) / x86_64 | OK | OK | ERROR | | | |
| tokay1 | Windows Server 2012 R2 Standard / x64 | OK | OK | ERROR | OK | | |
| merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | ERROR | OK | | |
Summary
Command output
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.12-bioc/R/bin/R CMD check --install=check:LINC.install-out.txt --library=/home/biocbuild/bbs-3.12-bioc/R/library --no-vignettes --timings LINC_1.18.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.12-bioc/meat/LINC.Rcheck’
* using R version 4.0.5 (2021-03-31)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘LINC/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘LINC’ version ‘1.18.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘LINC’ can be installed ... WARNING
Found the following significant warnings:
Warning: Package 'LINC' is deprecated and will be removed from Bioconductor
See ‘/home/biocbuild/bbs-3.12-bioc/meat/LINC.Rcheck/00install.out’ for details.
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... NOTE
Note: significantly better compression could be obtained
by using R CMD build --resave-data
old_size new_size compress
sysdata.rda 449Kb 314Kb xz
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘LINC-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: linc-methods
> ### Title: Compute A Correlation Matrix of Co-expressed Coding And
> ### Non-Coding Genes
> ### Aliases: linc-methods linc,data.frame,ANY-method
> ### linc,ExpressionSet,ANY-method linc,LINCmatrix,missing-method
> ### linc,matrix,ANY-method linc
> ### Keywords: methods linc
>
> ### ** Examples
>
> data(BRAIN_EXPR)
>
> # call 'linc' with no further arguments
> crbl_matrix <- linc(cerebellum, codingGenes = pcgenes_crbl)
linc: gene system(s) assumed:
ENTREZID
Warning in linc(cerebellum, codingGenes = pcgenes_crbl) :
single outliers and high sample variance were detected
by ESD and ANOVA; statistical correction is recommended
linc: Correlation function with 'everything' called
linc: Computation of correlation matrix started
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
LINC
--- call from context ---
linc(cerebellum, codingGenes = pcgenes_crbl)
--- call from argument ---
if (class(out_cormatrix) == "try-error") stop(errorm12)
--- R stacktrace ---
where 1: linc(cerebellum, codingGenes = pcgenes_crbl)
where 2: linc(cerebellum, codingGenes = pcgenes_crbl)
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
Method Definition:
function (object, codingGenes = NULL, corMethod = "spearman",
batchGroups = NULL, nsv = 1, rmPC = NULL, outlier = NULL,
userFun = NULL, verbose = TRUE)
{
errorm00 <- paste("Assignment of protein-coding genes", "in 'codingGenes' is required")
errorm01 <- paste("'codingGenes' must have the same", "length as 'nrow(object)'")
errorm02 <- paste("'corMethod' needs to be 'pearson',", "'kendall' or 'spearman'")
errorm03 <- "A numeric matrix is required as input"
errorm04 <- "Size or content of matrix insufficient"
errorm05 <- "Gene names as 'rownames(object)' required"
errorm06 <- paste("'batchGroups' need to be of the", "same length as the columns")
errorm07 <- paste("Not allowed to use the same name", "for every entry in 'batchGroups'")
errorm08 <- paste("unable to use 'rmPC' as an index", "vector for the removal of pcs")
errorm09 <- paste("'outlier' needs to be 'zscore',", "or 'esd'")
errorm10 <- paste("'codingGenes' needs to be a gene", "annotation or a logical vector")
errorm11 <- paste("Error in argument 'codingGenes',", "not enough protein-coding genes")
errorm12 <- paste("unable to compute correlation matrix:",
"1. check input for infinite values / NAs", "2. check user-defined correlation function",
sep = "\n")
errorm13 <- "computation of cor. matrix lnc vs lnc failed"
warnim01 <- "Input 'object' contains infinite values"
warnim02 <- "'linc' was unable to identify a gene system"
warnim03 <- paste("single outliers and high sample variance were detected",
"by ESD and ANOVA; statistical correction is recommended",
sep = "\n")
warnim04 <- paste("Subsequent use of sva and removal of",
"principle components is not intended")
warnim05 <- paste("correlation matrix contains infinite",
"or missing values; converted to 0")
inform01 <- quote(paste("linc: removed ", infrm, "rows contaning only infinite values"))
inform02 <- quote(paste("removed", length(obvar[obvar ==
0]), "zero variance genes from input"))
inform22 <- "removed genes with duplicated names"
inform03 <- "linc: gene system(s) assumed:"
inform04 <- "linc: correction by sva was called"
inform05 <- "linc: remove principle components"
inform06 <- quote(paste("linc: The outlier method '", ol_promise,
"' was called"))
inform07 <- quote(paste("linc: Correlation function", " with '",
cor_use, "' called", sep = ""))
inform08 <- paste("linc: Computation of correlation", "matrix started")
store <- new.env(parent = emptyenv())
out_history <- new.env(parent = emptyenv())
if (is.null(codingGenes))
stop(errorm00)
if (length(codingGenes) != nrow(object))
stop(errorm01)
pc_promise <- codingGenes
if (class(verbose) != "logical") {
verbose <- TRUE
}
else {
if (!any(verbose))
verbose <- FALSE
if (any(verbose))
verbose <- TRUE
}
if (!verbose)
message <- function(x) x
cM_promise <- try(match.arg(corMethod, c("pearson", "kendall",
"spearman")), silent = TRUE)
if (class(cM_promise) == "try-error")
stop(errorm02)
if (!is.null(userFun))
cor_Method <- "user-defined"
if (!is.numeric(object))
stop(errorm03)
if (!all(is.finite(object))) {
warning(warnim01)
mobject <- object[apply(object, 1, function(x) {
any(is.finite(x))
}), ]
pcobject <- object
rownames(pcobject) <- pc_promise
pcobject <- pcobject[apply(pcobject, 1, function(x) {
any(is.finite(x))
}), ]
infrm <- nrow(object) - nrow(mobject)
if (infrm != 0) {
message(inform01)
object <- mobject
pc_promise <- rownames(pcobject)
}
}
obvar <- apply(object, 1, var)
if (is.element(0, obvar)) {
object <- object[obvar != 0, ]
pc_promise <- pc_promise[obvar != 0]
message(eval(inform02))
}
if (any(duplicated(rownames(object)))) {
pc_promise <- pc_promise[!duplicated(rownames(object))]
object <- object[(!duplicated(rownames(object))), ]
message(inform22)
}
out_object <- object
object <- object[!is.na(rownames(object)), ]
pc_promise <- pc_promise[!is.na(pc_promise)]
if (!all(dim(object) > 5))
stop(errorm04)
colnum <- ncol(object)
gN_promise <- rownames(object)
if (is.null(gN_promise))
stop(errorm05)
gD_promise <- try(identifyGenes(gN_promise), silent = TRUE)
if (class(gD_promise) == "try-error" | length(gD_promise) ==
0) {
warning(warnim02)
out_history$gene_system <- NA
}
else {
out_history$gene_system <- gD_promise
message(inform03)
sapply(gD_promise, function(x) message(x))
}
if (!is.null(batchGroups)) {
if (length(batchGroups) != colnum)
stop(errorm06)
if (1 == length(unique(batchGroups)))
stop(errorm07)
store$SVA <- TRUE
message(inform04)
if (length(nsv) == 1 && is.numeric(nsv) && is.vector(nsv)) {
bn_promise <- nsv
}
else {
bn_promise <- 1
}
}
if (!is.null(rmPC)) {
col_sel <- try(seq_len(colnum)[-rmPC], silent = TRUE)
if (class(col_sel) == "try-error")
stop(errorm08)
if (length(col_sel) == 0 | anyNA(col_sel))
stop(errorm08)
rm_promise <- seq_len(colnum)[-rmPC]
store$PCA <- TRUE
message(inform05)
}
if (!is.null(outlier)) {
ol_promise <- try(match.arg(outlier, c("zscore", "esd")),
silent = TRUE)
if (class(ol_promise) == "try-error")
stop(errorm09)
store$outlier <- TRUE
message(eval(inform06))
}
av_promise <- suppressMessages(reshape2::melt(data.frame(object)))
colnames(av_promise) <- c("group", "y")
anova_test <- anova(lm(y ~ group, data = av_promise))
f_sample <- anova_test$`F value`[1]
f_df <- anova_test$Df
f_critical <- df(0.95, df1 = f_df[1], df2 = f_df[2])
anova_passed <- (f_sample <= f_critical)
out_history$F_critical <- round(f_critical, 2)
out_history$F_sample <- round(f_sample, 2)
out_history$F_anova <- anova_passed
out_genes <- apply(object, 1, detectesd, alpha = 0.05, rmax = 4)
outlier_det <- (100 * sum(out_genes, na.rm = TRUE))/nrow(object)
out_history$outlier_detected <- round(outlier_det, 1)
stats_fail <- all((outlier_det > 10) && !anova_passed)
if (!exists("SVA", store) & !exists("PCA", store) & !exists("outlier",
store)) {
out_sobject <- object
sobject <- out_sobject
stats_applied <- "none"
if (stats_fail)
warning(warnim03)
}
else {
stats_applied <- paste(ls(store), collapse = ",")
}
if (exists("SVA", store) & exists("PCA", store))
warning(warnim04)
if (exists("outlier", store)) {
if (ol_promise == "esd") {
sobject <- t(apply(object, 1, correctESD, alpha = 0.05,
rmax = 4))
}
if (ol_promise == "zscore") {
sobject <- t(apply(object, 1, modZscore))
}
out_sobject <- sobject
}
else {
sobject <- object
out_sobject <- object
}
if (exists("PCA", store)) {
pca_object <- prcomp(sobject, center = FALSE, scale. = FALSE)
out_sobject <- pca_object$x[, rm_promise] %*% t(pca_object$rotation[,
rm_promise])
sobject <- out_sobject
}
if (exists("SVA", store)) {
exbatch <- as.factor(batchGroups)
mod1 <- model.matrix(~exbatch)
mod0 <- cbind(mod1[, 1])
svse <- svaseq(sobject, mod1, mod0, n.sv = bn_promise)$sv
out_sobject <- svaSolv(sobject, mod1, svse)
sobject <- out_sobject
}
if (anyNA(sobject)) {
cor_use <- "pairwise"
}
else {
cor_use <- "everything"
}
if (is.vector(pc_promise) && is.logical(pc_promise)) {
store$pc_index <- pc_promise
out_assignment <- gN_promise[store$pc_index]
}
if (is.vector(pc_promise) && is.character(pc_promise)) {
store$pc_index <- is.element(pc_promise, c("protein_coding",
"coding", "protein", "protein-coding", "protein coding"))
out_assignment <- gN_promise[store$pc_index]
}
if (!exists("pc_index", store))
stop(errorm10)
if (length(which(store$pc_index)) < 5)
stop(errorm11)
pc_matrix <- sobject[store$pc_index, ]
nc_matrix <- sobject[!store$pc_index, ]
message(eval(inform07))
message(inform08)
out_cormatrix <- try(callCor(corMethod, userFun, cor_use)(pc_matrix,
nc_matrix), silent = TRUE)
if (class(out_cormatrix) == "try-error")
stop(errorm12)
rownames(out_cormatrix) <- rownames(pc_matrix)
colnames(out_cormatrix) <- rownames(nc_matrix)
if (!all(is.finite(out_cormatrix))) {
warning(warnim05)
out_cormatrix[is.infinite(out_cormatrix) | is.na(out_cormatrix)] <- 0
}
out_ltlmatrix <- try(callCor(corMethod, userFun, cor_use)(nc_matrix,
nc_matrix), silent = TRUE)
if (class(out_ltlmatrix) == "try-error")
stop(errorm13)
rownames(out_ltlmatrix) <- rownames(nc_matrix)
colnames(out_ltlmatrix) <- rownames(nc_matrix)
if (!all(is.finite(out_ltlmatrix))) {
out_ltlmatrix[is.infinite(out_ltlmatrix) | is.na(out_ltlmatrix)] <- 0
}
out_history$cor_max <- round(max(out_cormatrix, na.rm = TRUE),
2)
out_history$corMethod <- corMethod
out_history$cor_use <- cor_use
out_history$pc_matrix <- pc_matrix
out_history$nc_matrix <- nc_matrix
out_history$stats_use <- stats_applied
out_linc <- new("LINCmatrix")
results(out_linc) <- list(statscorr = out_sobject)
assignment(out_linc) <- out_assignment
correlation(out_linc) <- list(cormatrix = out_cormatrix,
lnctolnc = out_ltlmatrix)
express(out_linc) <- out_object
history(out_linc) <- out_history
out_linCenvir <- NULL
out_linCenvir <- new.env(parent = emptyenv())
out_linCenvir$linc <- out_linc
linCenvir(out_linc) <- out_linCenvir
return(out_linc)
}
<bytecode: 0x565105c28d98>
<environment: namespace:LINC>
Signatures:
object codingGenes
target "matrix" "logical"
defined "matrix" "ANY"
--- function search by body ---
S4 Method linc:LINC defined in namespace LINC with signature matrix#ANY has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
ERROR
Running the tests in ‘tests/runTests.R’ failed.
Last 13 lines of output:
out_linCenvir$linc <- out_linc
linCenvir(out_linc) <- out_linCenvir
return(out_linc)
}
<bytecode: 0x55f5d1e1d120>
<environment: namespace:LINC>
Signatures:
object codingGenes
target "matrix" "logical"
defined "matrix" "ANY"
--- function search by body ---
S4 Method linc:LINC defined in namespace LINC with signature matrix#ANY has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 ERRORs, 1 WARNING, 2 NOTEs
See
‘/home/biocbuild/bbs-3.12-bioc/meat/LINC.Rcheck/00check.log’
for details.
Installation output
LINC.Rcheck/00install.out
Tests output
LINC.Rcheck/tests/runTests.Rout.fail
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("LINC")
Attaching package: 'LINC'
The following object is masked from 'package:utils':
history
removed 4 zero variance genes from input
removed genes with duplicated names
linc: gene system(s) assumed:
ENTREZID
linc: Correlation function with 'everything' called
linc: Computation of correlation matrix started
----------- FAILURE REPORT --------------
--- failure: the condition has length > 1 ---
--- srcref ---
:
--- package (from environment) ---
LINC
--- call from context ---
linc(cor_test_mat, codingGenes = c(TRUE, FALSE, TRUE, TRUE, FALSE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, rep(FALSE,
7)))
--- call from argument ---
if (class(out_cormatrix) == "try-error") stop(errorm12)
--- R stacktrace ---
where 1: linc(cor_test_mat, codingGenes = c(TRUE, FALSE, TRUE, TRUE, FALSE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, rep(FALSE,
7)))
where 2: linc(cor_test_mat, codingGenes = c(TRUE, FALSE, TRUE, TRUE, FALSE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, rep(FALSE,
7)))
where 3: func()
where 4: system.time(func(), gcFirst = RUnitEnv$.gcBeforeTest)
where 5: doTryCatch(return(expr), name, parentenv, handler)
where 6: tryCatchOne(expr, names, parentenv, handlers[[1L]])
where 7: tryCatchList(expr, classes, parentenv, handlers)
where 8: tryCatch(expr, error = function(e) {
call <- conditionCall(e)
if (!is.null(call)) {
if (identical(call[[1L]], quote(doTryCatch)))
call <- sys.call(-4L)
dcall <- deparse(call)[1L]
prefix <- paste("Error in", dcall, ": ")
LONG <- 75L
sm <- strsplit(conditionMessage(e), "\n")[[1L]]
w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w")
if (is.na(w))
w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L],
type = "b")
if (w > LONG)
prefix <- paste0(prefix, "\n ")
}
else prefix <- "Error : "
msg <- paste0(prefix, conditionMessage(e), "\n")
.Internal(seterrmessage(msg[1L]))
if (!silent && isTRUE(getOption("show.error.messages"))) {
cat(msg, file = outFile)
.Internal(printDeferredWarnings())
}
invisible(structure(msg, class = "try-error", condition = e))
})
where 9: try(system.time(func(), gcFirst = RUnitEnv$.gcBeforeTest))
where 10: .executeTestCase(funcName, envir = sandbox, setUpFunc = .setUp,
tearDownFunc = .tearDown)
where 11: .sourceTestFile(testFile, testSuite$testFuncRegexp)
where 12: RUnit::runTestSuite(suite)
where 13: BiocGenerics:::testPackage("LINC")
--- value of length: 2 type: logical ---
[1] FALSE FALSE
--- function from context ---
Method Definition:
function (object, codingGenes = NULL, corMethod = "spearman",
batchGroups = NULL, nsv = 1, rmPC = NULL, outlier = NULL,
userFun = NULL, verbose = TRUE)
{
errorm00 <- paste("Assignment of protein-coding genes", "in 'codingGenes' is required")
errorm01 <- paste("'codingGenes' must have the same", "length as 'nrow(object)'")
errorm02 <- paste("'corMethod' needs to be 'pearson',", "'kendall' or 'spearman'")
errorm03 <- "A numeric matrix is required as input"
errorm04 <- "Size or content of matrix insufficient"
errorm05 <- "Gene names as 'rownames(object)' required"
errorm06 <- paste("'batchGroups' need to be of the", "same length as the columns")
errorm07 <- paste("Not allowed to use the same name", "for every entry in 'batchGroups'")
errorm08 <- paste("unable to use 'rmPC' as an index", "vector for the removal of pcs")
errorm09 <- paste("'outlier' needs to be 'zscore',", "or 'esd'")
errorm10 <- paste("'codingGenes' needs to be a gene", "annotation or a logical vector")
errorm11 <- paste("Error in argument 'codingGenes',", "not enough protein-coding genes")
errorm12 <- paste("unable to compute correlation matrix:",
"1. check input for infinite values / NAs", "2. check user-defined correlation function",
sep = "\n")
errorm13 <- "computation of cor. matrix lnc vs lnc failed"
warnim01 <- "Input 'object' contains infinite values"
warnim02 <- "'linc' was unable to identify a gene system"
warnim03 <- paste("single outliers and high sample variance were detected",
"by ESD and ANOVA; statistical correction is recommended",
sep = "\n")
warnim04 <- paste("Subsequent use of sva and removal of",
"principle components is not intended")
warnim05 <- paste("correlation matrix contains infinite",
"or missing values; converted to 0")
inform01 <- quote(paste("linc: removed ", infrm, "rows contaning only infinite values"))
inform02 <- quote(paste("removed", length(obvar[obvar ==
0]), "zero variance genes from input"))
inform22 <- "removed genes with duplicated names"
inform03 <- "linc: gene system(s) assumed:"
inform04 <- "linc: correction by sva was called"
inform05 <- "linc: remove principle components"
inform06 <- quote(paste("linc: The outlier method '", ol_promise,
"' was called"))
inform07 <- quote(paste("linc: Correlation function", " with '",
cor_use, "' called", sep = ""))
inform08 <- paste("linc: Computation of correlation", "matrix started")
store <- new.env(parent = emptyenv())
out_history <- new.env(parent = emptyenv())
if (is.null(codingGenes))
stop(errorm00)
if (length(codingGenes) != nrow(object))
stop(errorm01)
pc_promise <- codingGenes
if (class(verbose) != "logical") {
verbose <- TRUE
}
else {
if (!any(verbose))
verbose <- FALSE
if (any(verbose))
verbose <- TRUE
}
if (!verbose)
message <- function(x) x
cM_promise <- try(match.arg(corMethod, c("pearson", "kendall",
"spearman")), silent = TRUE)
if (class(cM_promise) == "try-error")
stop(errorm02)
if (!is.null(userFun))
cor_Method <- "user-defined"
if (!is.numeric(object))
stop(errorm03)
if (!all(is.finite(object))) {
warning(warnim01)
mobject <- object[apply(object, 1, function(x) {
any(is.finite(x))
}), ]
pcobject <- object
rownames(pcobject) <- pc_promise
pcobject <- pcobject[apply(pcobject, 1, function(x) {
any(is.finite(x))
}), ]
infrm <- nrow(object) - nrow(mobject)
if (infrm != 0) {
message(inform01)
object <- mobject
pc_promise <- rownames(pcobject)
}
}
obvar <- apply(object, 1, var)
if (is.element(0, obvar)) {
object <- object[obvar != 0, ]
pc_promise <- pc_promise[obvar != 0]
message(eval(inform02))
}
if (any(duplicated(rownames(object)))) {
pc_promise <- pc_promise[!duplicated(rownames(object))]
object <- object[(!duplicated(rownames(object))), ]
message(inform22)
}
out_object <- object
object <- object[!is.na(rownames(object)), ]
pc_promise <- pc_promise[!is.na(pc_promise)]
if (!all(dim(object) > 5))
stop(errorm04)
colnum <- ncol(object)
gN_promise <- rownames(object)
if (is.null(gN_promise))
stop(errorm05)
gD_promise <- try(identifyGenes(gN_promise), silent = TRUE)
if (class(gD_promise) == "try-error" | length(gD_promise) ==
0) {
warning(warnim02)
out_history$gene_system <- NA
}
else {
out_history$gene_system <- gD_promise
message(inform03)
sapply(gD_promise, function(x) message(x))
}
if (!is.null(batchGroups)) {
if (length(batchGroups) != colnum)
stop(errorm06)
if (1 == length(unique(batchGroups)))
stop(errorm07)
store$SVA <- TRUE
message(inform04)
if (length(nsv) == 1 && is.numeric(nsv) && is.vector(nsv)) {
bn_promise <- nsv
}
else {
bn_promise <- 1
}
}
if (!is.null(rmPC)) {
col_sel <- try(seq_len(colnum)[-rmPC], silent = TRUE)
if (class(col_sel) == "try-error")
stop(errorm08)
if (length(col_sel) == 0 | anyNA(col_sel))
stop(errorm08)
rm_promise <- seq_len(colnum)[-rmPC]
store$PCA <- TRUE
message(inform05)
}
if (!is.null(outlier)) {
ol_promise <- try(match.arg(outlier, c("zscore", "esd")),
silent = TRUE)
if (class(ol_promise) == "try-error")
stop(errorm09)
store$outlier <- TRUE
message(eval(inform06))
}
av_promise <- suppressMessages(reshape2::melt(data.frame(object)))
colnames(av_promise) <- c("group", "y")
anova_test <- anova(lm(y ~ group, data = av_promise))
f_sample <- anova_test$`F value`[1]
f_df <- anova_test$Df
f_critical <- df(0.95, df1 = f_df[1], df2 = f_df[2])
anova_passed <- (f_sample <= f_critical)
out_history$F_critical <- round(f_critical, 2)
out_history$F_sample <- round(f_sample, 2)
out_history$F_anova <- anova_passed
out_genes <- apply(object, 1, detectesd, alpha = 0.05, rmax = 4)
outlier_det <- (100 * sum(out_genes, na.rm = TRUE))/nrow(object)
out_history$outlier_detected <- round(outlier_det, 1)
stats_fail <- all((outlier_det > 10) && !anova_passed)
if (!exists("SVA", store) & !exists("PCA", store) & !exists("outlier",
store)) {
out_sobject <- object
sobject <- out_sobject
stats_applied <- "none"
if (stats_fail)
warning(warnim03)
}
else {
stats_applied <- paste(ls(store), collapse = ",")
}
if (exists("SVA", store) & exists("PCA", store))
warning(warnim04)
if (exists("outlier", store)) {
if (ol_promise == "esd") {
sobject <- t(apply(object, 1, correctESD, alpha = 0.05,
rmax = 4))
}
if (ol_promise == "zscore") {
sobject <- t(apply(object, 1, modZscore))
}
out_sobject <- sobject
}
else {
sobject <- object
out_sobject <- object
}
if (exists("PCA", store)) {
pca_object <- prcomp(sobject, center = FALSE, scale. = FALSE)
out_sobject <- pca_object$x[, rm_promise] %*% t(pca_object$rotation[,
rm_promise])
sobject <- out_sobject
}
if (exists("SVA", store)) {
exbatch <- as.factor(batchGroups)
mod1 <- model.matrix(~exbatch)
mod0 <- cbind(mod1[, 1])
svse <- svaseq(sobject, mod1, mod0, n.sv = bn_promise)$sv
out_sobject <- svaSolv(sobject, mod1, svse)
sobject <- out_sobject
}
if (anyNA(sobject)) {
cor_use <- "pairwise"
}
else {
cor_use <- "everything"
}
if (is.vector(pc_promise) && is.logical(pc_promise)) {
store$pc_index <- pc_promise
out_assignment <- gN_promise[store$pc_index]
}
if (is.vector(pc_promise) && is.character(pc_promise)) {
store$pc_index <- is.element(pc_promise, c("protein_coding",
"coding", "protein", "protein-coding", "protein coding"))
out_assignment <- gN_promise[store$pc_index]
}
if (!exists("pc_index", store))
stop(errorm10)
if (length(which(store$pc_index)) < 5)
stop(errorm11)
pc_matrix <- sobject[store$pc_index, ]
nc_matrix <- sobject[!store$pc_index, ]
message(eval(inform07))
message(inform08)
out_cormatrix <- try(callCor(corMethod, userFun, cor_use)(pc_matrix,
nc_matrix), silent = TRUE)
if (class(out_cormatrix) == "try-error")
stop(errorm12)
rownames(out_cormatrix) <- rownames(pc_matrix)
colnames(out_cormatrix) <- rownames(nc_matrix)
if (!all(is.finite(out_cormatrix))) {
warning(warnim05)
out_cormatrix[is.infinite(out_cormatrix) | is.na(out_cormatrix)] <- 0
}
out_ltlmatrix <- try(callCor(corMethod, userFun, cor_use)(nc_matrix,
nc_matrix), silent = TRUE)
if (class(out_ltlmatrix) == "try-error")
stop(errorm13)
rownames(out_ltlmatrix) <- rownames(nc_matrix)
colnames(out_ltlmatrix) <- rownames(nc_matrix)
if (!all(is.finite(out_ltlmatrix))) {
out_ltlmatrix[is.infinite(out_ltlmatrix) | is.na(out_ltlmatrix)] <- 0
}
out_history$cor_max <- round(max(out_cormatrix, na.rm = TRUE),
2)
out_history$corMethod <- corMethod
out_history$cor_use <- cor_use
out_history$pc_matrix <- pc_matrix
out_history$nc_matrix <- nc_matrix
out_history$stats_use <- stats_applied
out_linc <- new("LINCmatrix")
results(out_linc) <- list(statscorr = out_sobject)
assignment(out_linc) <- out_assignment
correlation(out_linc) <- list(cormatrix = out_cormatrix,
lnctolnc = out_ltlmatrix)
express(out_linc) <- out_object
history(out_linc) <- out_history
out_linCenvir <- NULL
out_linCenvir <- new.env(parent = emptyenv())
out_linCenvir$linc <- out_linc
linCenvir(out_linc) <- out_linCenvir
return(out_linc)
}
<bytecode: 0x55f5d1e1d120>
<environment: namespace:LINC>
Signatures:
object codingGenes
target "matrix" "logical"
defined "matrix" "ANY"
--- function search by body ---
S4 Method linc:LINC defined in namespace LINC with signature matrix#ANY has this body.
----------- END OF FAILURE REPORT --------------
Fatal error: the condition has length > 1
Example timings
LINC.Rcheck/LINC-Ex.timings