Back to Multiple platform build/check report for BioC 3.11
ABCDEFGH[I]JKLMNOPQRSTUVWXYZ

CHECK report for ImpulseDE on tokay2

This page was generated on 2020-10-17 11:56:52 -0400 (Sat, 17 Oct 2020).

TO THE DEVELOPERS/MAINTAINERS OF THE ImpulseDE PACKAGE: Please make sure to use the following settings in order to reproduce any error or warning you see on this page.
Package 872/1905HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
ImpulseDE 1.14.0
Jil Sander , Nir Yosef
Snapshot Date: 2020-10-16 14:40:19 -0400 (Fri, 16 Oct 2020)
URL: https://git.bioconductor.org/packages/ImpulseDE
Branch: RELEASE_3_11
Last Commit: 4241ff7
Last Changed Date: 2020-04-27 14:59:44 -0400 (Mon, 27 Apr 2020)
malbec2 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  ERROR 
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ ERROR ] OK 
machv2 macOS 10.14.6 Mojave / x86_64  OK  OK  ERROR  OK 

Summary

Package: ImpulseDE
Version: 1.14.0
Command: C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:ImpulseDE.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings ImpulseDE_1.14.0.tar.gz
StartedAt: 2020-10-17 05:11:57 -0400 (Sat, 17 Oct 2020)
EndedAt: 2020-10-17 05:14:21 -0400 (Sat, 17 Oct 2020)
EllapsedTime: 144.0 seconds
RetCode: 1
Status:  ERROR  
CheckDir: ImpulseDE.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:ImpulseDE.install-out.txt --library=C:\Users\biocbuild\bbs-3.11-bioc\R\library --no-vignettes --timings ImpulseDE_1.14.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.11-bioc/meat/ImpulseDE.Rcheck'
* using R version 4.0.3 (2020-10-10)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'ImpulseDE/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'ImpulseDE' version '1.14.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'ImpulseDE' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... ERROR
Running examples in 'ImpulseDE-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: impulse_DE
> ### Title: Differential expression analysis using impulse models
> ### Aliases: impulseDE impulse_DE
> 
> ### ** Examples
> 
> #' Install package longitudinal and load it
> library(longitudinal)
Loading required package: corpcor
> #' Attach datasets
> data(tcell)
> #' check dimension of data matrix of interest
> dim(tcell.10)
[1] 100  58
> #' generate a proper annotation table
> annot <- as.data.frame(cbind("Time" =
+    sort(rep(get.time.repeats(tcell.10)$time,10)),
+    "Condition" = "activated"), stringsAsFactors = FALSE)
> #' Time columns must be numeric
> annot$Time <- as.numeric(annot$Time)
> #' rownames of annotation table must appear in data table
> rownames(annot) = rownames(tcell.10)
> #' apply ImpulseDE in single time course mode
> #' since genes must be in rows, transpose data matrix using t()
> #' For the example, reduce iterations to 10, randomizations to 50, number of
> #' genes to 20 and number of used processors to 1:
> impulse_results <- impulse_DE(t(tcell.10)[1:20,], annot, "Time", "Condition",
+    n_iter = 10, n_randoms = 50, n_process = 1)
[1] "START: Prepare annotation table for internal usage"
[1] "-------------------------------------------------------------------"
[1] "Case condition: activated"
[1] "DONE"
[1] "###################################################################"
[1] "START: Clustering genes for Impulse model fit"
[1] "-------------------------------------------------------------------"
[1] "Clustering of case data set"
[1] "- 13 genes were excluded due to very low variation"
[1] "--- Number of correlation-based pre-clusters: 1"
[1] "------ Number of genes in pre-clusters: C1: 7"
[1] "--- Final number of clusters: 1"
[1] "------ Number of genes in final clusters: C1: 7"
[1] "DONE"
[1] "Consumed time: 0.03 min"
[1] "##################################################################"
[1] "START: Fitting Impulse model to the clusters"
[1] "-------------------------------------------------------------------"
[1] "DONE"
[1] "Consumed time: 0.02 min"
[1] "###################################################################"
[1] "START: Fitting Impulse model to the genes"
[1] "-------------------------------------------------------------------"
[1] "DONE"
[1] "Consumed time: 0.39 min"
[1] "###################################################################"
[1] "START: Generate background"
[1] "-------------------------------------------------------------------"
[1] "DONE"
[1] "Consumed time: 0.34 min"
[1] "###################################################################"
[1] "START: DE analysis"
[1] "-------------------------------------------------------------------"
 ----------- FAILURE REPORT -------------- 
 --- failure: length > 1 in coercion to logical ---
 --- srcref --- 
: 
 --- package (from environment) --- 
ImpulseDE
 --- call from context --- 
which(x > 2 || x < 0.5)
 --- call from argument --- 
x > 2 || x < 0.5
 --- R stacktrace ---
where 1: which(x > 2 || x < 0.5)
where 2: FUN(newX[, i], ...)
where 3: apply(Ratios_TPs, 1, function(x) {
    if (length(which(x > 2 || x < 0.5)) >= 2) {
        "DE"
    }
    else {
        "not_DE"
    }
})
where 4: DE_analysis(expression_table, prepared_annotation, impulse_fit_genes, 
    background_results, control_timecourse, control_name, expr_type, 
    Q_value)
where 5: system.time({
    impulse_DE_genes <- DE_analysis(expression_table, prepared_annotation, 
        impulse_fit_genes, background_results, control_timecourse, 
        control_name, expr_type, Q_value)
})
where 6: system.time({
    print("START: Prepare annotation table for internal usage")
    print("-------------------------------------------------------------------")
    prepared_annotation <- annotation_preparation(annotation_table, 
        expression_table, colname_time, colname_condition, control_timecourse, 
        control_name, case_name)
    prepared_annotation <- prepared_annotation[order(prepared_annotation$Condition), 
        ]
    prepared_annotation <- prepared_annotation[order(prepared_annotation$Time), 
        ]
    print("DONE")
    print("###################################################################")
    expression_table <- as.matrix(expression_table)
    expression_table <- expression_table[, rownames(prepared_annotation)]
    indx <- apply(expression_table, 1, function(x) {
        TRUE %in% is.na(x)
    })
    expression_table <- expression_table[!(indx), ]
    if (is.null(rownames(expression_table))) {
        rownames(expression_table) <- paste("G", 1:nrow(expression_table), 
            sep = "_")
    }
    else if (length(grep("[a-zA-Z]", rownames(expression_table))) == 
        0) {
        rownames(expression_table) <- paste(rownames(expression_table), 
            "G", sep = "_")
    }
    print("START: Clustering genes for Impulse model fit")
    print("-------------------------------------------------------------------")
    tm_clust <- system.time({
        clustering_results <- cluster_genes_for_impulse(expression_table, 
            prepared_annotation, control_timecourse, control_name, 
            plot_clusters, n_device = new_device)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_clust["elapsed"]/60, 
        2), " min", sep = ""))
    print("##################################################################")
    print("START: Fitting Impulse model to the clusters")
    print("-------------------------------------------------------------------")
    tm_imp_fit_clus <- system.time({
        impulse_fit_clusters <- impulse_fit(clustering_results, 
            prepared_annotation, n_iter, control_timecourse, 
            control_name, n_proc = n_process)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_imp_fit_clus["elapsed"]/60, 
        2), " min", sep = ""))
    print("###################################################################")
    print("START: Fitting Impulse model to the genes")
    print("-------------------------------------------------------------------")
    tm_imp_fit_gen <- system.time({
        impulse_fit_genes <- impulse_fit(expression_table, prepared_annotation, 
            n_iter, control_timecourse, control_name, clustering_results, 
            impulse_fit_clusters, n_proc = n_process)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_imp_fit_gen["elapsed"]/60, 
        2), " min", sep = ""))
    print("###################################################################")
    print("START: Generate background")
    print("-------------------------------------------------------------------")
    tm_bg <- system.time({
        background_results <- generate_background(expression_table, 
            prepared_annotation, n_iter, impulse_fit_genes, control_timecourse, 
            control_name, clustering_results, n_randoms, n_process)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_bg["elapsed"]/60, 
        2), " min", sep = ""))
    print("###################################################################")
    print("START: DE analysis")
    print("-------------------------------------------------------------------")
    tm_DE <- system.time({
        impulse_DE_genes <- DE_analysis(expression_table, prepared_annotation, 
            impulse_fit_genes, background_results, control_timecourse, 
            control_name, expr_type, Q_value)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_DE["elapsed"]/60, 
        2), " min", sep = ""))
    print("##################################################################")
})
where 7: impulse_DE(t(tcell.10)[1:20, ], annot, "Time", "Condition", n_iter = 10, 
    n_randoms = 50, n_process = 1)

 --- value of length: 9 type: logical ---
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 --- function from context --- 
function (x, arr.ind = FALSE, useNames = TRUE) 
{
    wh <- .Internal(which(x))
    if (arr.ind && !is.null(d <- dim(x))) 
        arrayInd(wh, d, dimnames(x), useNames = useNames)
    else wh
}
<bytecode: 0x01ff5438>
<environment: namespace:base>
 --- function search by body ---
Function which in namespace base has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: length > 1 in coercion to logical

** running examples for arch 'x64' ... ERROR
Running examples in 'ImpulseDE-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: impulse_DE
> ### Title: Differential expression analysis using impulse models
> ### Aliases: impulseDE impulse_DE
> 
> ### ** Examples
> 
> #' Install package longitudinal and load it
> library(longitudinal)
Loading required package: corpcor
> #' Attach datasets
> data(tcell)
> #' check dimension of data matrix of interest
> dim(tcell.10)
[1] 100  58
> #' generate a proper annotation table
> annot <- as.data.frame(cbind("Time" =
+    sort(rep(get.time.repeats(tcell.10)$time,10)),
+    "Condition" = "activated"), stringsAsFactors = FALSE)
> #' Time columns must be numeric
> annot$Time <- as.numeric(annot$Time)
> #' rownames of annotation table must appear in data table
> rownames(annot) = rownames(tcell.10)
> #' apply ImpulseDE in single time course mode
> #' since genes must be in rows, transpose data matrix using t()
> #' For the example, reduce iterations to 10, randomizations to 50, number of
> #' genes to 20 and number of used processors to 1:
> impulse_results <- impulse_DE(t(tcell.10)[1:20,], annot, "Time", "Condition",
+    n_iter = 10, n_randoms = 50, n_process = 1)
[1] "START: Prepare annotation table for internal usage"
[1] "-------------------------------------------------------------------"
[1] "Case condition: activated"
[1] "DONE"
[1] "###################################################################"
[1] "START: Clustering genes for Impulse model fit"
[1] "-------------------------------------------------------------------"
[1] "Clustering of case data set"
[1] "- 13 genes were excluded due to very low variation"
[1] "--- Number of correlation-based pre-clusters: 1"
[1] "------ Number of genes in pre-clusters: C1: 7"
[1] "--- Final number of clusters: 1"
[1] "------ Number of genes in final clusters: C1: 7"
[1] "DONE"
[1] "Consumed time: 0.01 min"
[1] "##################################################################"
[1] "START: Fitting Impulse model to the clusters"
[1] "-------------------------------------------------------------------"
[1] "DONE"
[1] "Consumed time: 0.02 min"
[1] "###################################################################"
[1] "START: Fitting Impulse model to the genes"
[1] "-------------------------------------------------------------------"
[1] "DONE"
[1] "Consumed time: 0.39 min"
[1] "###################################################################"
[1] "START: Generate background"
[1] "-------------------------------------------------------------------"
[1] "DONE"
[1] "Consumed time: 0.36 min"
[1] "###################################################################"
[1] "START: DE analysis"
[1] "-------------------------------------------------------------------"
 ----------- FAILURE REPORT -------------- 
 --- failure: length > 1 in coercion to logical ---
 --- srcref --- 
: 
 --- package (from environment) --- 
ImpulseDE
 --- call from context --- 
which(x > 2 || x < 0.5)
 --- call from argument --- 
x > 2 || x < 0.5
 --- R stacktrace ---
where 1: which(x > 2 || x < 0.5)
where 2: FUN(newX[, i], ...)
where 3: apply(Ratios_TPs, 1, function(x) {
    if (length(which(x > 2 || x < 0.5)) >= 2) {
        "DE"
    }
    else {
        "not_DE"
    }
})
where 4: DE_analysis(expression_table, prepared_annotation, impulse_fit_genes, 
    background_results, control_timecourse, control_name, expr_type, 
    Q_value)
where 5: system.time({
    impulse_DE_genes <- DE_analysis(expression_table, prepared_annotation, 
        impulse_fit_genes, background_results, control_timecourse, 
        control_name, expr_type, Q_value)
})
where 6: system.time({
    print("START: Prepare annotation table for internal usage")
    print("-------------------------------------------------------------------")
    prepared_annotation <- annotation_preparation(annotation_table, 
        expression_table, colname_time, colname_condition, control_timecourse, 
        control_name, case_name)
    prepared_annotation <- prepared_annotation[order(prepared_annotation$Condition), 
        ]
    prepared_annotation <- prepared_annotation[order(prepared_annotation$Time), 
        ]
    print("DONE")
    print("###################################################################")
    expression_table <- as.matrix(expression_table)
    expression_table <- expression_table[, rownames(prepared_annotation)]
    indx <- apply(expression_table, 1, function(x) {
        TRUE %in% is.na(x)
    })
    expression_table <- expression_table[!(indx), ]
    if (is.null(rownames(expression_table))) {
        rownames(expression_table) <- paste("G", 1:nrow(expression_table), 
            sep = "_")
    }
    else if (length(grep("[a-zA-Z]", rownames(expression_table))) == 
        0) {
        rownames(expression_table) <- paste(rownames(expression_table), 
            "G", sep = "_")
    }
    print("START: Clustering genes for Impulse model fit")
    print("-------------------------------------------------------------------")
    tm_clust <- system.time({
        clustering_results <- cluster_genes_for_impulse(expression_table, 
            prepared_annotation, control_timecourse, control_name, 
            plot_clusters, n_device = new_device)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_clust["elapsed"]/60, 
        2), " min", sep = ""))
    print("##################################################################")
    print("START: Fitting Impulse model to the clusters")
    print("-------------------------------------------------------------------")
    tm_imp_fit_clus <- system.time({
        impulse_fit_clusters <- impulse_fit(clustering_results, 
            prepared_annotation, n_iter, control_timecourse, 
            control_name, n_proc = n_process)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_imp_fit_clus["elapsed"]/60, 
        2), " min", sep = ""))
    print("###################################################################")
    print("START: Fitting Impulse model to the genes")
    print("-------------------------------------------------------------------")
    tm_imp_fit_gen <- system.time({
        impulse_fit_genes <- impulse_fit(expression_table, prepared_annotation, 
            n_iter, control_timecourse, control_name, clustering_results, 
            impulse_fit_clusters, n_proc = n_process)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_imp_fit_gen["elapsed"]/60, 
        2), " min", sep = ""))
    print("###################################################################")
    print("START: Generate background")
    print("-------------------------------------------------------------------")
    tm_bg <- system.time({
        background_results <- generate_background(expression_table, 
            prepared_annotation, n_iter, impulse_fit_genes, control_timecourse, 
            control_name, clustering_results, n_randoms, n_process)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_bg["elapsed"]/60, 
        2), " min", sep = ""))
    print("###################################################################")
    print("START: DE analysis")
    print("-------------------------------------------------------------------")
    tm_DE <- system.time({
        impulse_DE_genes <- DE_analysis(expression_table, prepared_annotation, 
            impulse_fit_genes, background_results, control_timecourse, 
            control_name, expr_type, Q_value)
    })
    print("DONE")
    print(paste("Consumed time: ", round(tm_DE["elapsed"]/60, 
        2), " min", sep = ""))
    print("##################################################################")
})
where 7: impulse_DE(t(tcell.10)[1:20, ], annot, "Time", "Condition", n_iter = 10, 
    n_randoms = 50, n_process = 1)

 --- value of length: 9 type: logical ---
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 --- function from context --- 
function (x, arr.ind = FALSE, useNames = TRUE) 
{
    wh <- .Internal(which(x))
    if (arr.ind && !is.null(d <- dim(x))) 
        arrayInd(wh, d, dimnames(x), useNames = useNames)
    else wh
}
<bytecode: 0x00000000051beac8>
<environment: namespace:base>
 --- function search by body ---
Function which in namespace base has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: length > 1 in coercion to logical

* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 ERRORs
See
  'C:/Users/biocbuild/bbs-3.11-bioc/meat/ImpulseDE.Rcheck/00check.log'
for details.


Installation output

ImpulseDE.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.11/bioc/src/contrib/ImpulseDE_1.14.0.tar.gz && rm -rf ImpulseDE.buildbin-libdir && mkdir ImpulseDE.buildbin-libdir && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=ImpulseDE.buildbin-libdir ImpulseDE_1.14.0.tar.gz && C:\Users\biocbuild\bbs-3.11-bioc\R\bin\R.exe CMD INSTALL ImpulseDE_1.14.0.zip && rm ImpulseDE_1.14.0.tar.gz ImpulseDE_1.14.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 25594  100 25594    0     0   496k      0 --:--:-- --:--:-- --:--:--  568k

install for i386

* installing *source* package 'ImpulseDE' ...
** using staged installation
** R
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'ImpulseDE'
    finding HTML links ... done
    calc_impulse                            html  
    impulse_DE                              html  
    plot_impulse                            html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'ImpulseDE' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'ImpulseDE' as ImpulseDE_1.14.0.zip
* DONE (ImpulseDE)
* installing to library 'C:/Users/biocbuild/bbs-3.11-bioc/R/library'
package 'ImpulseDE' successfully unpacked and MD5 sums checked

Tests output


Example timings

ImpulseDE.Rcheck/examples_i386/ImpulseDE-Ex.timings

nameusersystemelapsed
calc_impulse000

ImpulseDE.Rcheck/examples_x64/ImpulseDE-Ex.timings

nameusersystemelapsed
calc_impulse000