Back to Multiple platform build/check report for BioC 3.10
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

CHECK report for STATegRa on tokay1

This page was generated on 2020-04-15 12:23:56 -0400 (Wed, 15 Apr 2020).

Package 1673/1823HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
STATegRa 1.22.0
David Gomez-Cabrero , NĂºria Planell
Snapshot Date: 2020-04-14 16:46:13 -0400 (Tue, 14 Apr 2020)
URL: https://git.bioconductor.org/packages/STATegRa
Branch: RELEASE_3_10
Last Commit: ffd403f
Last Changed Date: 2019-10-29 13:09:05 -0400 (Tue, 29 Oct 2019)
malbec1 Linux (Ubuntu 18.04.4 LTS) / x86_64  OK  OK  OK UNNEEDED, same version exists in internal repository
tokay1 Windows Server 2012 R2 Standard / x64  OK  OK [ OK ] OK UNNEEDED, same version exists in internal repository
merida1 OS X 10.11.6 El Capitan / x86_64  OK  OK  OK  OK UNNEEDED, same version exists in internal repository

Summary

Package: STATegRa
Version: 1.22.0
Command: C:\Users\biocbuild\bbs-3.10-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.10-bioc\R\library --no-vignettes --timings STATegRa_1.22.0.tar.gz
StartedAt: 2020-04-15 06:55:51 -0400 (Wed, 15 Apr 2020)
EndedAt: 2020-04-15 07:02:16 -0400 (Wed, 15 Apr 2020)
EllapsedTime: 385.2 seconds
RetCode: 0
Status:  OK  
CheckDir: STATegRa.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.10-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.10-bioc\R\library --no-vignettes --timings STATegRa_1.22.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.10-bioc/meat/STATegRa.Rcheck'
* using R version 3.6.3 (2020-02-29)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.22.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
  variable 'components'
modelSelection,list-numeric-character: no visible binding for global
  variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comps'
selectCommonComps,list-numeric: no visible binding for global variable
  'block'
selectCommonComps,list-numeric: no visible binding for global variable
  'comp'
selectCommonComps,list-numeric: no visible binding for global variable
  'ratio'
Undefined global functions or variables:
  VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... OK
Examples with CPU or elapsed time > 5s
        user system elapsed
plotRes 5.22   0.04    5.26
** running examples for arch 'x64' ... OK
Examples with CPU or elapsed time > 5s
        user system elapsed
plotRes 6.03   0.04    6.08
plotVAF 5.09   0.14    5.24
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
** running tests for arch 'x64' ...
  Running 'STATEgRa_Example.omicsCLUST.R'
  Running 'STATEgRa_Example.omicsPCA.R'
  Running 'STATegRa_Example.omicsNPC.R'
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.10-bioc/meat/STATegRa.Rcheck/00check.log'
for details.



Installation output

STATegRa.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec1.bioconductor.org/BBS/3.10/bioc/src/contrib/STATegRa_1.22.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.10-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.22.0.tar.gz && C:\Users\biocbuild\bbs-3.10-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.22.0.zip && rm STATegRa_1.22.0.tar.gz STATegRa_1.22.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 3179k  100 3179k    0     0  36.8M      0 --:--:-- --:--:-- --:--:-- 38.8M

install for i386

* installing *source* package 'STATegRa' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'STATegRa'
    finding HTML links ... done
    STATegRa-defunct                        html  
    STATegRa                                html  
    STATegRaUsersGuide                      html  
    STATegRa_data                           html  
    STATegRa_data_TCGA_BRCA                 html  
    bioDist                                 html  
    bioDistFeature                          html  
    bioDistFeaturePlot                      html  
    bioDistW                                html  
    bioDistWPlot                            html  
    bioDistclass                            html  
    bioMap                                  html  
    caClass-class                           html  
    combiningMappings                       html  
    createOmicsExpressionSet                html  
    getInitialData                          html  
    getLoadings                             html  
    getMethodInfo                           html  
    getPreprocessing                        html  
    getScores                               html  
    getVAF                                  html  
    holistOmics                             html  
    modelSelection                          html  
    finding level-2 HTML links ... done

    omicsCompAnalysis                       html  
    omicsNPC                                html  
    plotRes                                 html  
    plotVAF                                 html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.22.0.zip
* DONE (STATegRa)
* installing to library 'C:/Users/biocbuild/bbs-3.10-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked

Tests output

STATegRa.Rcheck/tests_i386/runTests.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Wed Apr 15 07:00:13 2020 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   3.59    0.15    3.78 

STATegRa.Rcheck/tests_x64/runTests.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2

Distinctive components
[[1]]
[1] 0

[[2]]
[1] 0

Common components
[1] 2

Distinctive components
[[1]]
[1] 1

[[2]]
[1] 1

Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2



RUNIT TEST PROTOCOL -- Wed Apr 15 07:02:11 2020 
*********************************************** 
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: In rownames(pData) == colnames(exprs) :
  longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num",  :
  Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
> 
> proc.time()
   user  system elapsed 
   2.87    0.14    3.03 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  35.29    1.04   36.32 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> #######   then the class is created.
> 
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
> 
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+                 metadata =  list(type_v1="Gene",type_v2="miRNA",
+                                  source_database="targetscan.Hs.eg.db",
+                                  data_extraction="July2014"),
+                 map=mapdata)
> 
> 
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> #####    the profile of the main features is computed through the surrogate features.
> 
> # Load Data
> data(STATegRa_S1)
>   #load("../data/STATegRa.S1.Rdata")
> 
> ## Create ExpressionSets
> #  source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
> 
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),     
+              reference = "Var1",
+              mapping = MAP.SYMBOL,
+              surrogateData = miRNA.ds,  ### miRNA data
+              referenceData = mRNA.ds,  ### mRNA data
+              maxitems=2,
+              selectionRule="sd",
+              expfac=NULL,
+              aggregation = "sum",
+              distance = "spearman",
+              noMappingDist = 0,
+              filtering = NULL,
+              name = "mRNAbymiRNA")
> 
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which, which.max, which.min

Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

> 
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+                  distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+                  map.name = "id",
+                  map.metadata = list(),
+                  params = list())
> 
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
> 
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
> 
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+                        bioDistList = bioDistList,
+                        weights=weights)
> length(bioDistWList)
[1] 4
> 
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
> 
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+                listDistW = bioDistWList,
+                method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures],  :
  Cannot compute exact p-value with ties
4: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
5: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
6: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
7: In plot.window(...) :
  relative range of values (   0 * EPS) is small (axis 2)
> 
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
> 
> ## IDH1
> 
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+                        listDistW = bioDistWList,
+                        threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
> 
> ## PDGFRA
> 
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> #                       listDistW = bioDistWList,
> #                       threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
> 
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
> 
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> #                         listDistW = bioDistWList,
> #                         threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  28.62    0.93   29.54 

STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  77.65    0.39   78.01 

STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
> 
> proc.time()
   user  system elapsed 
  71.78    0.17   71.95 

STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1    0.0781574252 -0.0431500404
sample2   -0.1192218294  0.0294090945
sample3   -0.0531412243 -0.0746839868
sample4    0.0292975262 -0.0005957258
sample5    0.0202091772  0.0110464138
sample6    0.1226089084  0.1053466149
sample7    0.1078928001 -0.0322477835
sample8    0.1782895461  0.1449365184
sample9    0.0468698144 -0.0455174403
sample10  -0.0036030457  0.0420112313
sample11  -0.0035566482 -0.0566292877
sample12   0.1006128881  0.0641380232
sample13  -0.1174408152  0.0907488723
sample14   0.0981203257  0.0617737199
sample15   0.0085334199 -0.0087015611
sample16   0.0783148729  0.1581293027
sample17  -0.1483609884  0.0638581964
sample18  -0.0963086306  0.0556638403
sample19  -0.0217244149 -0.0720084531
sample20  -0.0635636485 -0.0779654762
sample21  -0.0201840224  0.1566391774
sample22   0.0218268552 -0.0764106191
sample23   0.0852042108 -0.0032685958
sample24  -0.1287170223  0.1924547712
sample25  -0.0430574105 -0.0456563424
sample26  -0.1453896719  0.0541514002
sample27  -0.0197488995 -0.1185659150
sample28  -0.1025336181  0.0650686570
sample29   0.0706018352 -0.0682990215
sample30  -0.1295627685 -0.0066772655
sample31   0.1147449122  0.1232685133
sample32  -0.0374310979  0.0380175385
sample33   0.0599515826  0.0136864695
sample34  -0.0984200873  0.0375319466
sample35  -0.0543098417 -0.0378108612
sample36   0.1403625375 -0.0343760491
sample37   0.0228941705 -0.0732852107
sample38  -0.0222077401 -0.0962595892
sample39  -0.0941738471  0.0215199887
sample40   0.0643800971 -0.0687876612
sample41  -0.0327638140 -0.1232188175
sample42  -0.0500431851 -0.0292471815
sample43  -0.0184498899  0.0233009935
sample44   0.1487899133  0.1171359585
sample45  -0.1050774013  0.1123203825
sample46  -0.1151195859 -0.1094030016
sample47  -0.0962593797 -0.0288465487
sample48   0.0004837484 -0.0310274077
sample49   0.1135207937  0.1213974355
sample50  -0.0123553256 -0.1740742990
sample51   0.0550529947  0.1258885096
sample52   0.0499121318  0.0728543209
sample53   0.1119773693  0.1588011962
sample54  -0.0360055683  0.0228575282
sample55   0.0210418983  0.0006731082
sample56  -0.0434169156  0.0633125895
sample57   0.0197824752  0.1150712061
sample58   0.0030439864  0.0326096888
sample59   0.0500252998  0.0129414928
sample60   0.0184278635  0.0136080101
sample61   0.0150299426  0.0635023119
sample62  -0.0304764074 -0.0201322514
sample63   0.1102252565  0.1285977230
sample64   0.1552588140  0.0971167637
sample65  -0.0058503045  0.0207115995
sample66  -0.0025605288  0.0424321422
sample67   0.1546634714 -0.0661721904
sample68   0.0536369095 -0.0923686822
sample69   0.0640330270  0.0081982275
sample70   0.0163517594 -0.0663230224
sample71  -0.0102537693 -0.1345919653
sample72  -0.0654196206 -0.0196122773
sample73  -0.1048556253  0.0220935843
sample74   0.0123799417  0.0586113571
sample75   0.0392077854 -0.0209756127
sample76   0.0648953353 -0.0524764611
sample77   0.1172922122 -0.0201186158
sample78  -0.1463067898  0.0708475224
sample79   0.0265211277 -0.1603303263
sample80   0.0279737056 -0.0214207144
sample81   0.0079211460 -0.0738449042
sample82  -0.1544236554 -0.0361468698
sample83  -0.0494211627 -0.0050052864
sample84  -0.0259038448 -0.0346547786
sample85   0.1116484257 -0.0031501518
sample86  -0.1306483168 -0.0377217632
sample87  -0.0554778211 -0.0459749279
sample88  -0.0301623730  0.0382197199
sample89  -0.1016866737  0.0694032049
sample90   0.0086819808 -0.0201319944
sample91   0.1578625178 -0.2097829658
sample92   0.0170936967 -0.1655801713
sample93  -0.0979806887 -0.0121512755
sample94   0.0131484006 -0.0114932203
sample95   0.0315682628 -0.0758856728
sample96   0.0024125592 -0.0470133486
sample97   0.0634545379  0.0270333105
sample98  -0.0359374726 -0.0135489344
sample99  -0.1009163148  0.1124782789
sample100  0.0551753104  0.0246488994
sample101 -0.0080119012 -0.1627366985
sample102 -0.0046444057  0.0095638637
sample103 -0.0472523273 -0.0940393712
sample104  0.0198159555 -0.0591089231
sample105 -0.0400237768 -0.0160910336
sample106 -0.0923808340  0.0369018281
sample107 -0.1019374018  0.0224953617
sample108 -0.0877091660 -0.0128833557
sample109  0.0864824548 -0.0900935898
sample110 -0.1223115494 -0.0096084779
sample111  0.0257354696 -0.0936164340
sample112 -0.0765286631  0.0270346228
sample113  0.0258803359  0.0377499787
sample114  0.0021138821 -0.0882013779
sample115  0.0303460397 -0.0723579355
sample116  0.0780508612 -0.0685062376
sample117  0.0536898267 -0.0911903385
sample118  0.0666651222 -0.0236229858
sample119  0.1021871610 -0.2324934110
sample120  0.0750216562  0.0243380557
sample121 -0.0756936333  0.0942949686
sample122 -0.0259627943  0.0731990093
sample123 -0.1037846318 -0.0369197987
sample124  0.0611208032  0.0421726924
sample125 -0.0738472734  0.0066950471
sample126  0.0972916330  0.0762637455
sample127  0.0824697557 -0.0096637009
sample128 -0.1249407484  0.0929315141
sample129 -0.0734067671 -0.0434365014
sample130 -0.0003502081 -0.0309852443
sample131  0.0930182770  0.0155935687
sample132  0.0736222889  0.0733032329
sample133 -0.0498397975 -0.0462436610
sample134  0.1644873543  0.0720003781
sample135 -0.0752297286  0.0003815510
sample136  0.0227145594 -0.0495507583
sample137  0.0564717237 -0.0288918115
sample138  0.0255988170 -0.0610853844
sample139  0.0621217783  0.0235805523
sample140 -0.0604152691 -0.0435595862
sample141  0.0246743988  0.0532649570
sample142 -0.0409560194  0.0316281875
sample143 -0.0077355177 -0.0476895707
sample144  0.0173240801 -0.0156777539
sample145  0.0485474801  0.1202772015
sample146  0.0419645458 -0.0811283051
sample147 -0.0977308491 -0.0274843003
sample148  0.0368256290  0.0803980195
sample149 -0.0072865823 -0.1532984691
sample150  0.1020825291  0.0624772547
sample151  0.0305399128 -0.0289275614
sample152 -0.0533594772 -0.0638308088
sample153 -0.0891627137  0.1799583545
sample154 -0.0727557591 -0.0834162283
sample155 -0.0880668689 -0.0220821642
sample156 -0.0276561163 -0.0326626259
sample157 -0.1155032207  0.0183615208
sample158 -0.0281507569 -0.0104939729
sample159  0.0663235792  0.0443838537
sample160 -0.0302643906  0.0404264040
sample161  0.0114715675 -0.0591022975
sample162 -0.1337086944  0.1398135545
sample163  0.1330124643  0.1688781729
sample164 -0.0150336032  0.0028418033
sample165  0.0076520310 -0.0164127539
sample166  0.0367794492  0.0630664093
sample167  0.1111988825  0.0030057485
sample168 -0.0672981541  0.0446279864
sample169 -0.0413005024  0.0224392006
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1    0.0420516926  0.0867862963
sample2    0.0820827709 -0.0410978369
sample3   -0.0155897027 -0.0195182243
sample4    0.1001336910 -0.0410787064
sample5    0.0153465474 -0.0253259759
sample6   -0.0340329420 -0.0408223169
sample7   -0.0722578827  0.0002332543
sample8    0.0457495000 -0.0370016537
sample9    0.0086250630  0.0820184913
sample10   0.0423597308 -0.0083923490
sample11  -0.0022546771  0.0787766107
sample12  -0.0322107086  0.1479824746
sample13   0.0293886393 -0.0306748805
sample14  -0.0337484821 -0.0367506789
sample15  -0.0815538280  0.1275622808
sample16  -0.0508457221  0.0540604697
sample17  -0.0062598458  0.0041023684
sample18  -0.0705641458 -0.0351047470
sample19   0.0476844187 -0.0509598208
sample20  -0.0522960175  0.0715522141
sample21   0.0119121542 -0.0376093290
sample22  -0.0724390399 -0.0095624766
sample23   0.0992532290  0.0134288408
sample24   0.1595111859  0.0728661237
sample25   0.0920694758 -0.0749757578
sample26   0.0595538899  0.0848965770
sample27  -0.0826481822 -0.0086734995
sample28   0.0384786231  0.0440966672
sample29  -0.0777668704  0.1735308880
sample30  -0.1229471139 -0.0819005039
sample31  -0.0579850386 -0.0238644653
sample32  -0.0970394289 -0.0111425966
sample33  -0.1017588312 -0.0630442193
sample34  -0.0637923729  0.0377941921
sample35  -0.0789983699 -0.0229722868
sample36  -0.1224939532 -0.1274954427
sample37  -0.1798819631 -0.1673426652
sample38  -0.0466300780  0.0888161219
sample39   0.0168687336  0.0421533668
sample40  -0.1756390986 -0.1526641602
sample41  -0.0042366614  0.0004928936
sample42   0.0447850762 -0.0651505153
sample43  -0.0482309070 -0.0253529115
sample44   0.1986710340 -0.0545778748
sample45   0.0741832977  0.0054702888
sample46  -0.0478768334 -0.0007071722
sample47  -0.0608187371  0.0481622906
sample48   0.1381490455  0.0578287268
sample49   0.0530515769 -0.1405533158
sample50   0.0173806305  0.1602389768
sample51  -0.0462565464  0.0303473891
sample52  -0.0280067969  0.0280388431
sample53  -0.0667626666  0.0237702144
sample54  -0.0121834453 -0.0521354300
sample55  -0.0182396041  0.0221328499
sample56   0.0001253288  0.0030907296
sample57  -0.0316679794  0.0530190295
sample58  -0.0393919321 -0.0297798625
sample59  -0.1278291733 -0.0546527467
sample60  -0.1486986075  0.1069157136
sample61  -0.0793124867  0.0569796772
sample62  -0.1172800136 -0.0149198010
sample63   0.0028723009  0.1300519695
sample64  -0.0237367686  0.1073287716
sample65   0.0126534537  0.0589808363
sample66   0.0468193170 -0.0771072923
sample67  -0.1494263656 -0.0769859637
sample68  -0.0977958476 -0.0577350581
sample69  -0.0403087164  0.0156042262
sample70  -0.0221528403  0.0315441106
sample71   0.0546439144 -0.0272396520
sample72  -0.1107487189 -0.0537318925
sample73  -0.0906761467  0.0579966937
sample74  -0.0586557179  0.0121421837
sample75  -0.0390492411  0.0349282980
sample76   0.0022961694 -0.1676558748
sample77   0.0232096077 -0.2067302867
sample78   0.0929752527 -0.0434939909
sample79   0.1619501866 -0.0378114706
sample80  -0.0680364366  0.1424663776
sample81   0.0530786644 -0.0358350983
sample82  -0.0266820746 -0.0577444957
sample83  -0.1517234865 -0.0448553746
sample84   0.0570968215 -0.0273813434
sample85  -0.1086290454 -0.1228118902
sample86  -0.0833858570 -0.0442914617
sample87  -0.0022017380 -0.0943906799
sample88   0.0078222681 -0.1140506595
sample89  -0.0611059486 -0.0094584983
sample90  -0.0022927463 -0.0936253966
sample91  -0.0433582693  0.3205983166
sample92   0.1815340663 -0.0334680826
sample93  -0.0267629775  0.0614429143
sample94  -0.0181876755  0.0605090486
sample95   0.0720378410 -0.0013045859
sample96   0.0559716648 -0.0118791590
sample97   0.0217410617  0.0195414027
sample98  -0.0379176455  0.0588357264
sample99   0.0792423728 -0.0151274215
sample100 -0.0222117148 -0.0023321370
sample101  0.0387234858  0.1224226230
sample102  0.2094613694 -0.0516443439
sample103 -0.0138477864  0.0301052101
sample104  0.0807988755 -0.0162719172
sample105  0.0520493506 -0.1229665354
sample106  0.0192611984 -0.0185238293
sample107 -0.0319017296  0.0405123388
sample108  0.0140691718  0.0163421341
sample109  0.1831933287  0.0613006945
sample110  0.0292790935 -0.0199849181
sample111  0.1423255483  0.0327339868
sample112 -0.0426333710 -0.0029083302
sample113  0.0771903341  0.0268733308
sample114  0.0241644679 -0.0184080425
sample115  0.1959018175  0.0460129999
sample116  0.1394477665 -0.0530806267
sample117  0.1672364072 -0.1386536954
sample118  0.0448344808 -0.0117622077
sample119  0.0910394717  0.2217433269
sample120  0.0331391661 -0.0057274650
sample121 -0.0307577523  0.1392506573
sample122  0.0839778721 -0.0291994820
sample123 -0.0239649292 -0.0642163596
sample124  0.0909149489  0.0130419109
sample125  0.0065350424 -0.1092631849
sample126 -0.0935313601  0.1368284327
sample127 -0.0035387126  0.0292755657
sample128  0.0660293000  0.1018565983
sample129 -0.0693637130 -0.0695421430
sample130 -0.0008492358 -0.0669704296
sample131 -0.0431024561  0.0174065018
sample132  0.0637037981  0.0029374402
sample133  0.0289496145 -0.0390818898
sample134 -0.0446205746  0.0456334609
sample135 -0.0712336704  0.0521635229
sample136 -0.0596268900  0.0197299596
sample137 -0.0793150912 -0.0380627976
sample138  0.0973550257 -0.0454218576
sample139 -0.0539906383 -0.1534327177
sample140 -0.0850825046  0.0955814898
sample141  0.0192680022 -0.0554450200
sample142  0.0672260619 -0.0461321203
sample143  0.0303731494 -0.0519260306
sample144  0.0089365228  0.0145814891
sample145  0.0638765218  0.0122258051
sample146 -0.0585853389  0.0063083652
sample147 -0.0894132710 -0.1124615330
sample148  0.0216363802 -0.0615967290
sample149  0.0515425343 -0.0839903536
sample150 -0.0568285761 -0.0124468765
sample151  0.0789533259 -0.0261831461
sample152  0.0330756057  0.1306443527
sample153  0.1751925204  0.1497731274
sample154 -0.0421421452 -0.0037009950
sample155 -0.0680176540  0.0095711509
sample156 -0.0388909424  0.1057563134
sample157 -0.0314769645  0.0561367529
sample158 -0.0329620101  0.0353947456
sample159  0.0398414619 -0.1007373969
sample160 -0.0424940164  0.0108496295
sample161  0.0888372727 -0.0679700449
sample162  0.0027471618  0.1237843724
sample163  0.0126099717  0.0725434133
sample164  0.0566779392 -0.0458324404
sample165  0.0315336665 -0.0236362457
sample166  0.0612055889 -0.0425233331
sample167 -0.0142729886  0.0179308324
sample168  0.0169501771 -0.0769618004
sample169 -0.0675081106  0.0131505566
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1   -0.0012329625 -1.635717e-01
sample2   -0.0724350038 -6.021225e-03
sample3   -0.0188460454 -1.080036e-01
sample4    0.0390145323  3.114375e-04
sample5    0.1774811646 -2.996384e-02
sample6   -0.0451444423 -3.455857e-02
sample7   -0.0226466276 -7.020194e-03
sample8   -0.1033680199 -9.856738e-03
sample9    0.1350011738  8.979097e-02
sample10   0.1259887272 -5.097850e-02
sample11   0.0979788361  7.086533e-02
sample12  -0.0863019097 -8.620317e-02
sample13  -0.1381401110  1.828007e-01
sample14  -0.0615073865 -2.642802e-02
sample15   0.0381598923 -3.101666e-02
sample16  -0.0048776734  1.271871e-03
sample17  -0.0788480953 -1.547551e-02
sample18  -0.0884188784 -3.795486e-02
sample19   0.0703044436 -1.084004e-01
sample20  -0.0025585557  7.975871e-02
sample21   0.0941601679 -4.126736e-02
sample22  -0.0550273446 -7.806748e-02
sample23   0.0679495354 -4.102003e-02
sample24  -0.1310962724  1.649310e-01
sample25   0.0113585311 -4.426862e-02
sample26  -0.1402945892  2.016546e-02
sample27   0.0261561081  1.588389e-03
sample28  -0.0724198703  5.850596e-02
sample29  -0.0330058602  2.060781e-03
sample30  -0.0228752618 -2.015433e-02
sample31  -0.0635067949 -6.670332e-02
sample32   0.0685099613 -4.955274e-02
sample33  -0.0777765251 -1.272079e-01
sample34   0.0157842387 -3.024314e-02
sample35  -0.0529632809  1.500972e-01
sample36   0.0070900698  2.025307e-01
sample37  -0.0442420693  1.802088e-01
sample38  -0.0781511325 -3.676424e-02
sample39   0.0120331865 -3.388840e-02
sample40  -0.0473292161  1.471561e-01
sample41   0.0228189395 -2.673558e-02
sample42  -0.0245360228 -7.960866e-02
sample43   0.1036362792 -8.229577e-02
sample44  -0.1012228702  7.049459e-02
sample45   0.0013732080 -2.450905e-02
sample46  -0.0558510055  2.947342e-03
sample47  -0.0380481214  4.554171e-02
sample48   0.0784342138  4.888983e-02
sample49  -0.0605163925 -1.162351e-02
sample50   0.0530079263 -2.737937e-02
sample51   0.1514646524  5.678347e-02
sample52   0.1860935226  1.246717e-01
sample53  -0.0064177100 -2.700991e-02
sample54   0.0697038338 -2.308388e-02
sample55   0.1633577026  1.366441e-02
sample56   0.1011485103  4.682207e-02
sample57   0.1730374203  1.609603e-01
sample58  -0.0071384720 -1.666955e-02
sample59  -0.0030461738  3.005282e-02
sample60   0.0215835062  2.665877e-01
sample61   0.1510583607  1.002385e-01
sample62  -0.0925534003 -4.845845e-02
sample63  -0.0596311765 -4.137019e-02
sample64  -0.0449225788 -2.600565e-03
sample65   0.0939383772 -4.406908e-02
sample66   0.1063400779 -5.709990e-02
sample67  -0.0201590095  2.361727e-01
sample68   0.0037203151  2.418384e-02
sample69  -0.0645161212 -1.155622e-01
sample70  -0.1013440020 -1.351789e-01
sample71  -0.0016467868 -2.976844e-02
sample72   0.0328892969 -2.835861e-02
sample73   0.0275080008 -5.148187e-02
sample74   0.1341719674 -7.895280e-02
sample75   0.0951575650 -3.943186e-02
sample76  -0.0864721972  3.034990e-02
sample77  -0.1035749557 -2.545354e-02
sample78  -0.1575644098  4.939599e-02
sample79   0.0189137126  4.874678e-02
sample80   0.1384140560  4.262781e-05
sample81  -0.0118846440 -6.357932e-02
sample82  -0.1675308197  3.533910e-02
sample83  -0.0065673472 -7.812613e-02
sample84   0.1486891633 -3.109056e-02
sample85  -0.0532724471  7.417881e-02
sample86  -0.1138477384 -1.918204e-05
sample87   0.0432863968  6.080471e-02
sample88   0.0433450362  1.402491e-01
sample89   0.0331205757 -1.395400e-02
sample90  -0.0607412814 -8.610415e-02
sample91  -0.0566272676  1.303746e-01
sample92  -0.0359582454  1.061604e-01
sample93  -0.0433646375 -4.443635e-02
sample94  -0.0477291301 -1.059574e-01
sample95  -0.0249595746 -3.980526e-02
sample96   0.0035219034 -9.293928e-02
sample97  -0.0066048726 -1.527231e-01
sample98   0.0020366802 -5.579551e-02
sample99  -0.0886616045 -3.728220e-02
sample100 -0.1091259137 -3.560420e-02
sample101 -0.0739726483 -4.318003e-02
sample102  0.0574461249 -2.783908e-02
sample103  0.0142731001  9.705528e-03
sample104  0.0710395236  4.068351e-02
sample105  0.0980831368 -3.452951e-02
sample106 -0.0254259306  3.628986e-02
sample107 -0.0160653456 -9.173394e-02
sample108 -0.0200987653 -2.379692e-02
sample109 -0.0389780582  1.692360e-02
sample110 -0.0326304842  2.988110e-02
sample111  0.0676937621 -6.038212e-02
sample112  0.0167883415  5.336939e-03
sample113  0.0969217060 -2.757600e-02
sample114 -0.0026398347 -9.209159e-02
sample115 -0.0308047240  1.603825e-02
sample116 -0.1240307131  1.273000e-01
sample117  0.0334729137  5.392712e-02
sample118 -0.1037152904  6.252431e-02
sample119 -0.1064176649  1.196202e-01
sample120 -0.0771355063 -1.004932e-01
sample121 -0.0129350755  3.181978e-02
sample122  0.0847492341 -5.568322e-02
sample123 -0.0041336800  7.693168e-03
sample124 -0.0583457945 -8.396386e-02
sample125  0.0634844603 -5.232539e-02
sample126 -0.0662580964 -1.091733e-01
sample127 -0.0865024596 -1.094176e-01
sample128 -0.0627817392 -1.470958e-02
sample129 -0.0336276489 -4.007862e-02
sample130 -0.0293517747 -8.046118e-02
sample131 -0.0469197678 -2.209762e-03
sample132 -0.0241740627 -1.248598e-01
sample133  0.0907303214  1.466700e-02
sample134 -0.0350842089  7.539662e-02
sample135  0.0001333372  9.185363e-03
sample136 -0.0335876085 -9.860277e-02
sample137 -0.0640148942 -7.554473e-02
sample138  0.0060964880 -1.742762e-02
sample139 -0.0592084487  5.614968e-02
sample140  0.0427985883 -1.099554e-02
sample141  0.0618796408 -9.301036e-02
sample142  0.0898554498  3.573421e-02
sample143  0.0817389213  8.880524e-02
sample144  0.0787754787 -3.821392e-02
sample145  0.1085821616  1.569477e-01
sample146 -0.0589557974 -4.373364e-02
sample147 -0.0495330493  7.277174e-03
sample148  0.1161592813  9.079114e-03
sample149 -0.0121579464  7.788371e-02
sample150 -0.0314512556  3.520212e-02
sample151  0.0575382206 -1.945351e-02
sample152 -0.0494542098  7.025536e-02
sample153 -0.0941332651  2.153298e-01
sample154 -0.0335932045  2.078725e-02
sample155  0.0690457614 -2.780412e-02
sample156  0.1039901605 -6.292527e-02
sample157 -0.0408645799  8.065518e-03
sample158  0.1018105290  7.816866e-03
sample159 -0.0281730513 -1.207204e-02
sample160  0.1643052995  2.978109e-03
sample161  0.0374329276  8.524611e-02
sample162 -0.0804535310  8.349760e-02
sample163 -0.0743227935 -1.406220e-02
sample164  0.1208806039 -2.139458e-02
sample165  0.1608115925  2.025192e-02
sample166 -0.0425944600 -2.660711e-02
sample167 -0.0226849479 -4.464283e-02
sample168 -0.0180735573 -7.465977e-04
sample169  0.0190778975  2.645401e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  15.06    0.51   15.57 

STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout


R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
> 
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+     tmp <- ggplot_gtable(ggplot_build(a.gplot))
+     leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+     legend <- tmp$grobs[[leg]]
+     return(legend)}
> 
> #########################
> ## PART 1. Load data
> 
> ## Load data
> data(STATegRa_S3)
> 
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA"     "g_legend"  
> 
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> 
> #########################
> ## PART 2.  Model Selection
> 
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
> 
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2

Distinctive components
[[1]]
[1] 2

[[2]]
[1] 2

> 
> 
> #########################
> ## PART 3. Component Analysis
> 
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                              scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+                               scale=TRUE,weight=TRUE)
> 
> ## 3.2 Exploring scores structures
> 
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
                      1             2
sample1    0.0781574277  0.0431500457
sample2   -0.1192218302 -0.0294090937
sample3   -0.0531412231  0.0746839903
sample4    0.0292975270  0.0005957332
sample5    0.0202091799 -0.0110464009
sample6    0.1226089077 -0.1053466165
sample7    0.1078927998  0.0322477794
sample8    0.1782895445 -0.1449365216
sample9    0.0468698153  0.0455174421
sample10  -0.0036030434 -0.0420112200
sample11  -0.0035566475  0.0566292880
sample12   0.1006128882 -0.0641380309
sample13  -0.1174408196 -0.0907488854
sample14   0.0981203249 -0.0617737228
sample15   0.0085334208  0.0087015574
sample16   0.0783148724 -0.1581293069
sample17  -0.1483609894 -0.0638582004
sample18  -0.0963086318 -0.0556638452
sample19  -0.0217244124  0.0720084652
sample20  -0.0635636494  0.0779654687
sample21  -0.0201840211 -0.1566391685
sample22   0.0218268554  0.0764106166
sample23   0.0852042126  0.0032686046
sample24  -0.1287170259 -0.1924547815
sample25  -0.0430574095  0.0456563509
sample26  -0.1453896738 -0.0541514092
sample27  -0.0197488992  0.1185659136
sample28  -0.1025336198 -0.0650686633
sample29   0.0706018351  0.0682990108
sample30  -0.1295627691  0.0066772632
sample31   0.1147449116 -0.1232685161
sample32  -0.0374310968 -0.0380175357
sample33   0.0599515827 -0.0136864709
sample34  -0.0984200870 -0.0375319478
sample35  -0.0543098444  0.0378108498
sample36   0.1403625345  0.0343760402
sample37   0.0228941669  0.0732851990
sample38  -0.0222077404  0.0962595816
sample39  -0.0941738464 -0.0215199870
sample40   0.0643800939  0.0687876503
sample41  -0.0327638131  0.1232188198
sample42  -0.0500431844  0.0292471872
sample43  -0.0184498878 -0.0233009851
sample44   0.1487899113 -0.1171359583
sample45  -0.1050774011 -0.1123203784
sample46  -0.1151195865  0.1094029967
sample47  -0.0962593808  0.0288465410
sample48   0.0004837494  0.0310274138
sample49   0.1135207925 -0.1213974324
sample50  -0.0123553237  0.1740742989
sample51   0.0550529955 -0.1258885060
sample52   0.0499121324 -0.0728543173
sample53   0.1119773690 -0.1588011991
sample54  -0.0360055673 -0.0228575219
sample55   0.0210419002 -0.0006731007
sample56  -0.0434169150 -0.0633125855
sample57   0.0197824752 -0.1150712055
sample58   0.0030439863 -0.0326096891
sample59   0.0500252988 -0.0129414976
sample60   0.0184278602 -0.0136080289
sample61   0.0150299430 -0.0635023121
sample62  -0.0304764084  0.0201322440
sample63   0.1102252562 -0.1285977291
sample64   0.1552588133 -0.0971167710
sample65  -0.0058503026 -0.0207115936
sample66  -0.0025605269 -0.0424321294
sample67   0.1546634677  0.0661721758
sample68   0.0536369090  0.0923686793
sample69   0.0640330275 -0.0081982287
sample70   0.0163517599  0.0663230202
sample71  -0.0102537685  0.1345919694
sample72  -0.0654196202  0.0196122780
sample73  -0.1048556245 -0.0220935857
sample74   0.0123799441 -0.0586113487
sample75   0.0392077872  0.0209756172
sample76   0.0648953335  0.0524764601
sample77   0.1172922108  0.0201186179
sample78  -0.1463067924 -0.0708475283
sample79   0.0265211282  0.1603303327
sample80   0.0279737076  0.0214207153
sample81   0.0079211470  0.0738449092
sample82  -0.1544236581  0.0361468598
sample83  -0.0494211624  0.0050052849
sample84  -0.0259038423  0.0346547917
sample85   0.1116484234  0.0031501451
sample86  -0.1306483186  0.0377217551
sample87  -0.0554778214  0.0459749310
sample88  -0.0301623745 -0.0382197191
sample89  -0.1016866735 -0.0694032042
sample90   0.0086819810  0.0201319972
sample91   0.1578625167  0.2097829449
sample92   0.0170936959  0.1655801728
sample93  -0.0979806886  0.0121512721
sample94   0.0131484015  0.0114932192
sample95   0.0315682635  0.0758856757
sample96   0.0024125607  0.0470133552
sample97   0.0634545398 -0.0270333046
sample98  -0.0359374719  0.0135489336
sample99  -0.1009163156 -0.1124782787
sample100  0.0551753093 -0.0246489052
sample101 -0.0080119007  0.1627366936
sample102 -0.0046444041 -0.0095638495
sample103 -0.0472523269  0.0940393703
sample104  0.0198159563  0.0591089291
sample105 -0.0400237751  0.0160910468
sample106 -0.0923808349 -0.0369018295
sample107 -0.1019374009 -0.0224953611
sample108 -0.0877091659  0.0128833558
sample109  0.0864824550  0.0900935917
sample110 -0.1223115502  0.0096084768
sample111  0.0257354720  0.0936164448
sample112 -0.0765286632 -0.0270346234
sample113  0.0258803377 -0.0377499698
sample114  0.0021138834  0.0882013830
sample115  0.0303460400  0.0723579390
sample116  0.0780508585  0.0685062320
sample117  0.0536898269  0.0911903489
sample118  0.0666651203  0.0236229791
sample119  0.1021871596  0.2324933961
sample120  0.0750216565 -0.0243380548
sample121 -0.0756936339 -0.0942949760
sample122 -0.0259627925 -0.0731989978
sample123 -0.1037846321  0.0369197996
sample124  0.0611208038 -0.0421726894
sample125 -0.0738472722 -0.0066950373
sample126  0.0972916333 -0.0762637531
sample127  0.0824697560  0.0096636990
sample128 -0.1249407489 -0.0929315175
sample129 -0.0734067673  0.0434365008
sample130 -0.0003502076  0.0309852479
sample131  0.0930182763 -0.0155935738
sample132  0.0736222902 -0.0733032270
sample133 -0.0498397964  0.0462436682
sample134  0.1644873526 -0.0720003868
sample135 -0.0752297288 -0.0003815556
sample136  0.0227145602  0.0495507574
sample137  0.0564717236  0.0288918088
sample138  0.0255988177  0.0610853906
sample139  0.0621217762 -0.0235805555
sample140 -0.0604152684  0.0435595830
sample141  0.0246744005 -0.0532649472
sample142 -0.0409560187 -0.0316281796
sample143 -0.0077355176  0.0476895747
sample144  0.0173240817  0.0156777599
sample145  0.0485474794 -0.1202771997
sample146  0.0419645457  0.0811283009
sample147 -0.0977308503  0.0274842975
sample148  0.0368256301 -0.0803980104
sample149 -0.0072865830  0.1532984699
sample150  0.1020825279 -0.0624772600
sample151  0.0305399141  0.0289275693
sample152 -0.0533594781  0.0638308003
sample153 -0.0891627172 -0.1799583665
sample154 -0.0727557597  0.0834162242
sample155 -0.0880668678  0.0220821667
sample156 -0.0276561140  0.0326626298
sample157 -0.1155032214 -0.0183615262
sample158 -0.0281507557  0.0104939762
sample159  0.0663235788 -0.0443838503
sample160 -0.0302643888 -0.0404263964
sample161  0.0114715672  0.0591023017
sample162 -0.1337086966 -0.1398135661
sample163  0.1330124632 -0.1688781788
sample164 -0.0150336013 -0.0028417917
sample165  0.0076520329  0.0164127644
sample166  0.0367794489 -0.0630664071
sample167  0.1111988827 -0.0030057494
sample168 -0.0672981546 -0.0446279841
sample169 -0.0413005028 -0.0224392034
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
                      1             2
sample1    0.0420516904  0.0867862972
sample2    0.0820827725 -0.0410978404
sample3   -0.0155897078 -0.0195182207
sample4    0.1001336886 -0.0410787098
sample5    0.0153465424 -0.0253259762
sample6   -0.0340329395 -0.0408223193
sample7   -0.0722578839  0.0002332575
sample8    0.0457495058 -0.0370016605
sample9    0.0086250627  0.0820184921
sample10   0.0423597284 -0.0083923512
sample11  -0.0022546773  0.0787766123
sample12  -0.0322107012  0.1479824738
sample13   0.0293886488 -0.0306748856
sample14  -0.0337484804 -0.0367506799
sample15  -0.0815538255  0.1275622841
sample16  -0.0508457143  0.0540604662
sample17  -0.0062598413  0.0041023668
sample18  -0.0705641434 -0.0351047461
sample19   0.0476844105 -0.0509598192
sample20  -0.0522960162  0.0715522180
sample21   0.0119121561 -0.0376093338
sample22  -0.0724390436 -0.0095624714
sample23   0.0992532267  0.0134288377
sample24   0.1595112023  0.0728661111
sample25   0.0920694705 -0.0749757591
sample26   0.0595538988  0.0848965731
sample27  -0.0826481876 -0.0086734929
sample28   0.0384786302  0.0440966635
sample29  -0.0777668665  0.1735308926
sample30  -0.1229471165 -0.0819004992
sample31  -0.0579850350 -0.0238644671
sample32  -0.0970394302 -0.0111425939
sample33  -0.1017588339 -0.0630442157
sample34  -0.0637923708  0.0377941935
sample35  -0.0789983678 -0.0229722839
sample36  -0.1224939555 -0.1274954391
sample37  -0.1798819671 -0.1673426581
sample38  -0.0466300777  0.0888161267
sample39   0.0168687353  0.0421533661
sample40  -0.1756391027 -0.1526641532
sample41  -0.0042366671  0.0004928980
sample42   0.0447850719 -0.0651505153
sample43  -0.0482309108 -0.0253529098
sample44   0.1986710398 -0.0545778863
sample45   0.0741833020  0.0054702831
sample46  -0.0478768360 -0.0007071670
sample47  -0.0608187345  0.0481622935
sample48   0.1381490456  0.0578287229
sample49   0.0530515775 -0.1405533218
sample50   0.0173806276  0.1602389820
sample51  -0.0462565429  0.0303473865
sample52  -0.0280067949  0.0280388413
sample53  -0.0667626604  0.0237702115
sample54  -0.0121834481 -0.0521354299
sample55  -0.0182396067  0.0221328507
sample56   0.0001253302  0.0030907276
sample57  -0.0316679739  0.0530190262
sample58  -0.0393919320 -0.0297798621
sample59  -0.1278291742 -0.0546527430
sample60  -0.1486985985  0.1069157165
sample61  -0.0793124837  0.0569796775
sample62  -0.1172800137 -0.0149197962
sample63   0.0028723104  0.1300519652
sample64  -0.0237367607  0.1073287689
sample65   0.0126534536  0.0589808357
sample66   0.0468193126 -0.0771072946
sample67  -0.1494263661 -0.0769859585
sample68  -0.0977958529 -0.0577350521
sample69  -0.0403087166  0.0156042278
sample70  -0.0221528423  0.0315441141
sample71   0.0546439078 -0.0272396494
sample72  -0.1107487226 -0.0537318877
sample73  -0.0906761452  0.0579966968
sample74  -0.0586557198  0.0121421846
sample75  -0.0390492437  0.0349283004
sample76   0.0022961639 -0.1676558737
sample77   0.0232096013 -0.2067302872
sample78   0.0929752589 -0.0434939967
sample79   0.1619501796 -0.0378114715
sample80  -0.0680364357  0.1424663808
sample81   0.0530786593 -0.0358350974
sample82  -0.0266820731 -0.0577444939
sample83  -0.1517234895 -0.0448553687
sample84   0.0570968154 -0.0273813437
sample85  -0.1086290474 -0.1228118873
sample86  -0.0833858570 -0.0442914576
sample87  -0.0022017425 -0.0943906786
sample88   0.0078222676 -0.1140506617
sample89  -0.0611059470 -0.0094584980
sample90  -0.0022927507 -0.0936253955
sample91  -0.0433582631  0.3205983233
sample92   0.1815340617 -0.0334680844
sample93  -0.0267629755  0.0614429160
sample94  -0.0181876750  0.0605090502
sample95   0.0720378377 -0.0013045858
sample96   0.0559716607 -0.0118791588
sample97   0.0217410603  0.0195414020
sample98  -0.0379176451  0.0588357286
sample99   0.0792423781 -0.0151274275
sample100 -0.0222117125 -0.0023321372
sample101  0.0387234845  0.1224226269
sample102  0.2094613662 -0.0516443510
sample103 -0.0138477890  0.0301052136
sample104  0.0807988718 -0.0162719182
sample105  0.0520493431 -0.1229665361
sample106  0.0192612007 -0.0185238312
sample107 -0.0319017285  0.0405123400
sample108  0.0140691722  0.0163421343
sample109  0.1831933282  0.0613006907
sample110  0.0292790942 -0.0199849188
sample111  0.1423255431  0.0327339854
sample112 -0.0426333700 -0.0029083294
sample113  0.0771903337  0.0268733273
sample114  0.0241644621 -0.0184080399
sample115  0.1959018172  0.0460129952
sample116  0.1394477671 -0.0530806307
sample117  0.1672363991 -0.1386536986
sample118  0.0448344828 -0.0117622093
sample119  0.0910394747  0.2217433299
sample120  0.0331391663 -0.0057274665
sample121 -0.0307577428  0.1392506553
sample122  0.0839778710 -0.0291994866
sample123 -0.0239649322 -0.0642163574
sample124  0.0909149504  0.0130419067
sample125  0.0065350367 -0.1092631847
sample126 -0.0935313535  0.1368284339
sample127 -0.0035387125  0.0292755664
sample128  0.0660293085  0.1018565934
sample129 -0.0693637169 -0.0695421389
sample130 -0.0008492402 -0.0669704282
sample131 -0.0431024542  0.0174065024
sample132  0.0637037988  0.0029374363
sample133  0.0289496099 -0.0390818891
sample134 -0.0446205685  0.0456334592
sample135 -0.0712336682  0.0521635254
sample136 -0.0596268925  0.0197299637
sample137 -0.0793150939 -0.0380627938
sample138  0.0973550212 -0.0454218589
sample139 -0.0539906404 -0.1534327172
sample140 -0.0850825040  0.0955814944
sample141  0.0192679991 -0.0554450216
sample142  0.0672260604 -0.0461321235
sample143  0.0303731458 -0.0519260305
sample144  0.0089365202  0.0145814897
sample145  0.0638765274  0.0122257982
sample146 -0.0585853415  0.0063083698
sample147 -0.0894132743 -0.1124615290
sample148  0.0216363787 -0.0615967322
sample149  0.0515425274 -0.0839903511
sample150 -0.0568285730 -0.0124468771
sample151  0.0789533222 -0.0261831477
sample152  0.0330756104  0.1306443531
sample153  0.1751925391  0.1497731143
sample154 -0.0421421472 -0.0037009910
sample155 -0.0680176563  0.0095711544
sample156 -0.0388909435  0.1057563165
sample157 -0.0314769604  0.0561367536
sample158 -0.0329620113  0.0353947473
sample159  0.0398414604 -0.1007373998
sample160 -0.0424940179  0.0108496301
sample161  0.0888372689 -0.0679700466
sample162  0.0027471752  0.1237843675
sample163  0.0126099816  0.0725434071
sample164  0.0566779347 -0.0458324420
sample165  0.0315336619 -0.0236362461
sample166  0.0612055901 -0.0425233372
sample167 -0.0142729886  0.0179308328
sample168  0.0169501768 -0.0769618023
sample169 -0.0675081091  0.0131505582
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
                      1             2
sample1    0.0012329599  1.635717e-01
sample2    0.0724349985  6.021232e-03
sample3    0.0188460458  1.080036e-01
sample4   -0.0390145342 -3.114369e-04
sample5   -0.1774811664  2.996383e-02
sample6    0.0451444372  3.455857e-02
sample7    0.0226466323  7.020191e-03
sample8    0.1033680123  9.856746e-03
sample9   -0.1350011676 -8.979098e-02
sample10  -0.1259887323  5.097850e-02
sample11  -0.0979788303 -7.086533e-02
sample12   0.0863019054  8.620317e-02
sample13   0.1381401096 -1.828007e-01
sample14   0.0615073839  2.642803e-02
sample15  -0.0381598907  3.101666e-02
sample16   0.0048776664 -1.271867e-03
sample17   0.0788480893  1.547552e-02
sample18   0.0884188741  3.795487e-02
sample19  -0.0703044444  1.084004e-01
sample20   0.0025585634 -7.975872e-02
sample21  -0.0941601790  4.126736e-02
sample22   0.0550273483  7.806747e-02
sample23  -0.0679495376  4.102003e-02
sample24   0.1310962617 -1.649310e-01
sample25  -0.0113585327  4.426862e-02
sample26   0.1402945837 -2.016546e-02
sample27  -0.0261560996 -1.588396e-03
sample28   0.0724198664 -5.850595e-02
sample29   0.0330058673 -2.060786e-03
sample30   0.0228752624  2.015433e-02
sample31   0.0635067882  6.670333e-02
sample32  -0.0685099636  4.955274e-02
sample33   0.0777765229  1.272079e-01
sample34  -0.0157842417  3.024314e-02
sample35   0.0529632891 -1.500972e-01
sample36  -0.0070900568 -2.025307e-01
sample37   0.0442420834 -1.802088e-01
sample38   0.0781511378  3.676424e-02
sample39  -0.0120331904  3.388840e-02
sample40   0.0473292293 -1.471561e-01
sample41  -0.0228189336  2.673558e-02
sample42   0.0245360201  7.960866e-02
sample43  -0.1036362826  8.229577e-02
sample44   0.1012228631 -7.049458e-02
sample45  -0.0013732184  2.450906e-02
sample46   0.0558510115 -2.947344e-03
sample47   0.0380481248 -4.554171e-02
sample48  -0.0784342133 -4.888983e-02
sample49   0.0605163850  1.162351e-02
sample50  -0.0530079172  2.737936e-02
sample51  -0.1514646560 -5.678348e-02
sample52  -0.1860935214 -1.246717e-01
sample53   0.0064177028  2.700991e-02
sample54  -0.0697038362  2.308388e-02
sample55  -0.1633577014 -1.366442e-02
sample56  -0.1011485130 -4.682207e-02
sample57  -0.1730374206 -1.609603e-01
sample58   0.0071384704  1.666955e-02
sample59   0.0030461774 -3.005282e-02
sample60  -0.0215834944 -2.665877e-01
sample61  -0.1510583590 -1.002385e-01
sample62   0.0925534020  4.845845e-02
sample63   0.0596311692  4.137020e-02
sample64   0.0449225758  2.600568e-03
sample65  -0.0939383801  4.406908e-02
sample66  -0.1063400835  5.709990e-02
sample67   0.0201590263 -2.361727e-01
sample68  -0.0037203062 -2.418384e-02
sample69   0.0645161186  1.155622e-01
sample70   0.1013440022  1.351789e-01
sample71   0.0016467923  2.976844e-02
sample72  -0.0328892953  2.835860e-02
sample73  -0.0275080031  5.148187e-02
sample74  -0.1341719720  7.895279e-02
sample75  -0.0951575636  3.943185e-02
sample76   0.0864722017 -3.034990e-02
sample77   0.1035749566  2.545354e-02
sample78   0.1575644033 -4.939598e-02
sample79  -0.0189137050 -4.874679e-02
sample80  -0.1384140525 -4.263596e-05
sample81   0.0118846451  6.357932e-02
sample82   0.1675308214 -3.533910e-02
sample83   0.0065673475  7.812613e-02
sample84  -0.1486891639  3.109056e-02
sample85   0.0532724533 -7.417881e-02
sample86   0.1138477407  1.918455e-05
sample87  -0.0432863930 -6.080472e-02
sample88  -0.0433450346 -1.402491e-01
sample89  -0.0331205802  1.395400e-02
sample90   0.0607412796  8.610415e-02
sample91   0.0566272879 -1.303746e-01
sample92   0.0359582548 -1.061604e-01
sample93   0.0433646362  4.443636e-02
sample94   0.0477291279  1.059574e-01
sample95   0.0249595765  3.980526e-02
sample96  -0.0035219050  9.293928e-02
sample97   0.0066048664  1.527231e-01
sample98  -0.0020366808  5.579551e-02
sample99   0.0886615936  3.728221e-02
sample100  0.1091259123  3.560420e-02
sample101  0.0739726556  4.318002e-02
sample102 -0.0574461311  2.783908e-02
sample103 -0.0142730946 -9.705532e-03
sample104 -0.0710395203 -4.068351e-02
sample105 -0.0980831389  3.452951e-02
sample106  0.0254259279 -3.628985e-02
sample107  0.0160653407  9.173394e-02
sample108  0.0200987639  2.379692e-02
sample109  0.0389780613 -1.692360e-02
sample110  0.0326304835 -2.988110e-02
sample111 -0.0676937614  6.038211e-02
sample112 -0.0167883429 -5.336938e-03
sample113 -0.0969217105  2.757600e-02
sample114  0.0026398363  9.209158e-02
sample115  0.0308047250 -1.603825e-02
sample116  0.1240307191 -1.273000e-01
sample117 -0.0334729099 -5.392712e-02
sample118  0.1037152938 -6.252430e-02
sample119  0.1064176822 -1.196202e-01
sample120  0.0771355018  1.004932e-01
sample121  0.0129350711 -3.181978e-02
sample122 -0.0847492425  5.568322e-02
sample123  0.0041336814 -7.693168e-03
sample124  0.0583457881  8.396386e-02
sample125 -0.0634844638  5.232539e-02
sample126  0.0662580919  1.091733e-01
sample127  0.0865024577  1.094176e-01
sample128  0.0627817305  1.470959e-02
sample129  0.0336276505  4.007861e-02
sample130  0.0293517737  8.046118e-02
sample131  0.0469197691  2.209762e-03
sample132  0.0241740539  1.248598e-01
sample133 -0.0907303196 -1.466700e-02
sample134  0.0350842104 -7.539662e-02
sample135 -0.0001333362 -9.185364e-03
sample136  0.0335876097  9.860277e-02
sample137  0.0640148958  7.554473e-02
sample138 -0.0060964869  1.742762e-02
sample139  0.0592084509 -5.614968e-02
sample140 -0.0427985848  1.099554e-02
sample141 -0.0618796472  9.301036e-02
sample142 -0.0898554526 -3.573421e-02
sample143 -0.0817389165 -8.880524e-02
sample144 -0.0787754790  3.821391e-02
sample145 -0.1085821642 -1.569477e-01
sample146  0.0589558025  4.373364e-02
sample147  0.0495330516 -7.277174e-03
sample148 -0.1161592858 -9.079114e-03
sample149  0.0121579565 -7.788371e-02
sample150  0.0314512557 -3.520212e-02
sample151 -0.0575382209  1.945351e-02
sample152  0.0494542148 -7.025536e-02
sample153  0.0941332571 -2.153298e-01
sample154  0.0335932100 -2.078725e-02
sample155 -0.0690457607  2.780411e-02
sample156 -0.1039901599  6.292526e-02
sample157  0.0408645784 -8.065515e-03
sample158 -0.1018105277 -7.816870e-03
sample159  0.0281730480  1.207204e-02
sample160 -0.1643053012 -2.978113e-03
sample161 -0.0374329232 -8.524611e-02
sample162  0.0804535241 -8.349759e-02
sample163  0.0743227848  1.406221e-02
sample164 -0.1208806063  2.139458e-02
sample165 -0.1608115915 -2.025193e-02
sample166  0.0425944544  2.660711e-02
sample167  0.0226849480  4.464282e-02
sample168  0.0180735532  7.466018e-04
sample169 -0.0190778969 -2.645401e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
                   [,1]          [,2]
sample1   -0.0572060227 -1.729087e-02
sample2    0.0875245208  1.112588e-02
sample3    0.0403482602 -3.168994e-02
sample4   -0.0218345996  4.052760e-06
sample5   -0.0150905011  4.795041e-03
sample6   -0.0924362933  4.511003e-02
sample7   -0.0793066751 -1.243823e-02
sample8   -0.1342997187  6.215220e-02
sample9   -0.0338886944 -1.854401e-02
sample10   0.0020547173  1.749421e-02
sample11   0.0037275602 -2.364116e-02
sample12  -0.0753094533  2.772698e-02
sample13   0.0856160091  3.679963e-02
sample14  -0.0737457307  2.668452e-02
sample15  -0.0062111746 -3.554864e-03
sample16  -0.0602355268  6.675115e-02
sample17   0.1086768843  2.524534e-02
sample18   0.0702999472  2.231671e-02
sample19   0.0173785882 -3.024846e-02
sample20   0.0484173812 -3.310904e-02
sample21   0.0124657042  6.517144e-02
sample22  -0.0140989936 -3.159137e-02
sample23  -0.0627028403 -5.393710e-04
sample24   0.0919972100  7.909297e-02
sample25   0.0326998483 -1.945206e-02
sample26   0.1064741246  2.120849e-02
sample27   0.0166058995 -4.964993e-02
sample28   0.0743504770  2.614211e-02
sample29  -0.0511008491 -2.782647e-02
sample30   0.0962250842 -3.974893e-03
sample31  -0.0869563008  5.250819e-02
sample32   0.0271858919  1.552005e-02
sample33  -0.0448364581  6.243160e-03
sample34   0.0718415218  1.469396e-02
sample35   0.0403086451 -1.632629e-02
sample36  -0.1036402827 -1.304320e-02
sample37  -0.0159385744 -3.036525e-02
sample38   0.0182198369 -4.034805e-02
sample39   0.0690363619  8.058350e-03
sample40  -0.0467312750 -2.810325e-02
sample41   0.0263674438 -5.171216e-02
sample42   0.0374578960 -1.268634e-02
sample43   0.0132336869  9.536642e-03
sample44  -0.1119154428  5.028683e-02
sample45   0.0759639367  4.587903e-02
sample46   0.0871885519 -4.670385e-02
sample47   0.0721490571 -1.288540e-02
sample48   0.0005086144 -1.290565e-02
sample49  -0.0858177028  5.173760e-02
sample50   0.0118992665 -7.276215e-02
sample51  -0.0426446855  5.306205e-02
sample52  -0.0381605826  3.086785e-02
sample53  -0.0855757630  6.730043e-02
sample54   0.0261723092  9.184260e-03
sample55  -0.0156418304  4.682404e-04
sample56   0.0307831193  2.597550e-02
sample57  -0.0157242103  4.829381e-02
sample58  -0.0031174404  1.359898e-02
sample59  -0.0373001859  5.868397e-03
sample60  -0.0142609099  5.831654e-03
sample61  -0.0122255144  2.663579e-02
sample62   0.0228002942 -8.692265e-03
sample63  -0.0833127581  5.473229e-02
sample64  -0.1166548159  4.196500e-02
sample65   0.0038808902  8.568590e-03
sample66   0.0011561811  1.766612e-02
sample67  -0.1129311062 -2.608702e-02
sample68  -0.0382526429 -3.804045e-02
sample69  -0.0476502440  4.003241e-03
sample70  -0.0110329882 -2.752719e-02
sample71   0.0096850282 -5.627056e-02
sample72   0.0487124704 -8.800131e-03
sample73   0.0773058132  8.239864e-03
sample74  -0.0102488176  2.454957e-02
sample75  -0.0286613976 -8.387293e-03
sample76  -0.0472655595 -2.129315e-02
sample77  -0.0865043074 -7.296820e-03
sample78   0.1070293698  2.818346e-02
sample79  -0.0165060681 -6.659721e-02
sample80  -0.0206765949 -8.712112e-03
sample81  -0.0050943615 -3.079175e-02
sample82   0.1153622361 -1.647054e-02
sample83   0.0367979217 -2.538114e-03
sample84   0.0199463070 -1.468961e-02
sample85  -0.0827122185 -2.709824e-04
sample86   0.0969487314 -1.699897e-02
sample87   0.0421957457 -1.965953e-02
sample88   0.0215934743  1.566050e-02
sample89   0.0751559502  2.811652e-02
sample90  -0.0057328000 -8.283795e-03
sample91  -0.1134005268 -8.603522e-02
sample92  -0.0101689918 -6.894992e-02
sample93   0.0725967502 -6.003176e-03
sample94  -0.0096878852 -4.693081e-03
sample95  -0.0223502239 -3.139636e-02
sample96  -0.0013232863 -1.963604e-02
sample97  -0.0476541710  1.183660e-02
sample98   0.0269546160 -5.978398e-03
sample99   0.0728179461  4.597884e-02
sample100 -0.0413398038  1.079347e-02
sample101  0.0087536994 -6.796076e-02
sample102  0.0032509529  3.932612e-03
sample103  0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105  0.0294940465 -7.140722e-03
sample106  0.0686472054  1.462895e-02
sample107  0.0748635927  8.401339e-03
sample108  0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110  0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112  0.0570870472  1.066018e-02
sample113 -0.0200110554  1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586  1.089843e-02
sample121  0.0542443861  3.861344e-02
sample122  0.0178575357  3.027138e-02
sample123  0.0775020581 -1.636852e-02
sample124 -0.0460701050  1.814758e-02
sample125  0.0543846585  2.075898e-03
sample126 -0.0729417144  3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128  0.0908136899  3.758801e-02
sample129  0.0552445878 -1.879062e-02
sample130  0.0007128089 -1.294308e-02
sample131 -0.0693311345  7.357082e-03
sample132 -0.0556565156  3.126995e-02
sample133  0.0375870104 -1.977240e-02
sample134 -0.1229130924  3.159495e-02
sample135  0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201  1.040683e-02
sample140  0.0452288969 -1.876279e-02
sample141 -0.0189142561  2.247042e-02
sample142  0.0297545566  1.280524e-02
sample143  0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491  5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147  0.0726083535 -1.239968e-02
sample148 -0.0284795794  3.389732e-02
sample149  0.0082261455 -6.399305e-02
sample150 -0.0765013197  2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152  0.0403422737 -2.714879e-02
sample153  0.0629117719  7.425085e-02
sample154  0.0551622927 -3.548984e-02
sample155  0.0654439133 -1.005306e-02
sample156  0.0209310714 -1.390213e-02
sample157  0.0851522597  6.577150e-03
sample158  0.0208354599 -4.663078e-03
sample159 -0.0498794349  1.913257e-02
sample160  0.0216074437  1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162  0.0963663017  5.705881e-02
sample163 -0.1009542191  7.174224e-02
sample164  0.0109881996  1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357  2.673084e-02
sample167 -0.0825048036  2.278863e-03
sample168  0.0486147429  1.793843e-02
sample169  0.0302506727  8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
                   [,1]          [,2]
sample1   -0.0621842115 -1.364509e-02
sample2    0.0944623785  9.720892e-03
sample3    0.0406196267 -2.236338e-02
sample4   -0.0229316496 -3.932487e-04
sample5   -0.0157330047  3.231033e-03
sample6   -0.0945794025  3.120720e-02
sample7   -0.0854427118 -1.052880e-02
sample8   -0.1376625920  4.286608e-02
sample9   -0.0377115311 -1.415134e-02
sample10   0.0035244506  1.280825e-02
sample11   0.0016639987 -1.717895e-02
sample12  -0.0781403168  1.884368e-02
sample13   0.0938400516  2.838858e-02
sample14  -0.0759839772  1.810989e-02
sample15  -0.0068340837 -2.705361e-03
sample16  -0.0590150849  4.757848e-02
sample17   0.1178805097  2.040526e-02
sample18   0.0767858320  1.756604e-02
sample19   0.0157112113 -2.172867e-02
sample20   0.0485318300 -2.327033e-02
sample21   0.0185928176  4.777095e-02
sample22  -0.0191358702 -2.329775e-02
sample23  -0.0672994194 -1.535656e-03
sample24   0.1047476642  5.935707e-02
sample25   0.0329844953 -1.358036e-02
sample26   0.1154952052  1.741529e-02
sample27   0.0133849853 -3.590922e-02
sample28   0.0821554039  2.042376e-02
sample29  -0.0567643690 -2.123848e-02
sample30   0.1016073931 -1.134728e-03
sample31  -0.0880396372  3.670548e-02
sample32   0.0300363338  1.182406e-02
sample33  -0.0467252272  3.739254e-03
sample34   0.0783666394  1.203777e-02
sample35   0.0424227097 -1.118559e-02
sample36  -0.1107646166 -1.143464e-02
sample37  -0.0191667664 -2.246060e-02
sample38   0.0155968095 -2.909621e-02
sample39   0.0746847148  7.148218e-03
sample40  -0.0517028178 -2.137267e-02
sample41   0.0234979494 -3.723018e-02
sample42   0.0388797356 -8.557228e-03
sample43   0.0149555568  7.210002e-03
sample44  -0.1150305613  3.461805e-02
sample45   0.0846146236  3.486020e-02
sample46   0.0884426404 -3.246853e-02
sample47   0.0748644971 -8.083045e-03
sample48  -0.0012033198 -9.403647e-03
sample49  -0.0872662737  3.616245e-02
sample50   0.0066941314 -5.284863e-02
sample51  -0.0411777630  3.791830e-02
sample52  -0.0379355780  2.180834e-02
sample53  -0.0851639886  4.751761e-02
sample54   0.0288006248  7.184424e-03
sample55  -0.0164920835  5.919925e-05
sample56   0.0355115616  1.951043e-02
sample57  -0.0141146068  3.492409e-02
sample58  -0.0015636132  9.862883e-03
sample59  -0.0390656483  3.590929e-03
sample60  -0.0139454780  3.963030e-03
sample61  -0.0106410274  1.919705e-02
sample62   0.0236748439 -5.922677e-03
sample63  -0.0846790877  3.839102e-02
sample64  -0.1202581015  2.846469e-02
sample65   0.0050548584  6.328644e-03
sample66   0.0028013072  1.291807e-02
sample67  -0.1231623009 -2.112565e-02
sample68  -0.0437782161 -2.845072e-02
sample69  -0.0501199692  2.053469e-03
sample70  -0.0140278645 -2.027157e-02
sample71   0.0057489505 -4.085977e-02
sample72   0.0511212704 -5.522408e-03
sample73   0.0828141409  7.431582e-03
sample74  -0.0085959456  1.772951e-02
sample75  -0.0312180394 -6.636869e-03
sample76  -0.0519051781 -1.640191e-02
sample77  -0.0925924762 -6.907800e-03
sample78   0.1163971046  2.251122e-02
sample79  -0.0240906926 -4.887766e-02
sample80  -0.0221327065 -6.730703e-03
sample81  -0.0072114968 -2.254399e-02
sample82   0.1204416674 -9.907422e-03
sample83   0.0386739485 -1.171663e-03
sample84   0.0195988488 -1.033806e-02
sample85  -0.0877680171 -1.725057e-03
sample86   0.1023541048 -1.062501e-02
sample87   0.0425213089 -1.356865e-02
sample88   0.0244788514  1.180820e-02
sample89   0.0804276691  2.188588e-02
sample90  -0.0074639871 -6.140721e-03
sample91  -0.1278832404 -6.485140e-02
sample92  -0.0162199697 -5.048358e-02
sample93   0.0769344893 -3.045135e-03
sample94  -0.0104345587 -3.593172e-03
sample95  -0.0260058453 -2.330475e-02
sample96  -0.0025018700 -1.433516e-02
sample97  -0.0492358305  7.774183e-03
sample98   0.0279220220 -3.862141e-03
sample99   0.0813921923  3.487339e-02
sample100 -0.0428797405  7.112807e-03
sample101  0.0032855240 -4.940743e-02
sample102  0.0038439317  2.938008e-03
sample103  0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105  0.0314853405 -4.656633e-03
sample106  0.0726456731  1.192390e-02
sample107  0.0807342975  7.508627e-03
sample108  0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110  0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112  0.0599954082  8.820317e-03
sample113 -0.0195006577  1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131  6.937326e-03
sample121  0.0613899126  2.915307e-02
sample122  0.0218424338  2.241775e-02
sample123  0.0809008460 -1.051759e-02
sample124 -0.0472109313  1.239887e-02
sample125  0.0583180947  2.521167e-03
sample126 -0.0753941872  2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128  0.1000212216  2.908091e-02
sample129  0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877  4.091672e-03
sample132 -0.0566219024  2.179861e-02
sample133  0.0384172955 -1.372840e-02
sample134 -0.1280862736  2.077912e-02
sample135  0.0592633273  6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861  6.729304e-03
sample140  0.0468926306 -1.285498e-02
sample141 -0.0186248693  1.605439e-02
sample142  0.0328031246  9.887746e-03
sample143  0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310  3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147  0.0765025670 -7.714769e-03
sample148 -0.0276016641  2.420589e-02
sample149  0.0027545308 -4.653007e-02
sample150 -0.0792296010  1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152  0.0409796547 -1.907063e-02
sample153  0.0734301757  5.528780e-02
sample154  0.0557740684 -2.487723e-02
sample155  0.0689436560 -6.127635e-03
sample156  0.0212272938 -9.747423e-03
sample157  0.0911931194  6.355708e-03
sample158  0.0220840645 -3.016357e-03
sample159 -0.0513244242  1.304175e-02
sample160  0.0246213576  1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162  0.1078802043  4.337260e-02
sample163 -0.1017965082  5.047171e-02
sample164  0.0119430799  9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180  1.899222e-02
sample167 -0.0872832229  1.516582e-04
sample168  0.0540714512  1.397701e-02
sample169  0.0328432652  7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
                   [,1]          [,2]
sample1    0.0133684846  2.195848e-02
sample2    0.0254157197 -1.058416e-02
sample3   -0.0049551479 -4.840017e-03
sample4    0.0310390570 -1.063929e-02
sample5    0.0046941318 -6.488426e-03
sample6   -0.0107406753 -1.026702e-02
sample7   -0.0225157631  2.624712e-04
sample8    0.0141320952 -9.505821e-03
sample9    0.0029681280  2.078210e-02
sample10   0.0131729174 -2.275042e-03
sample11  -0.0004164298  1.994019e-02
sample12  -0.0095211620  3.759883e-02
sample13   0.0091018604 -7.953956e-03
sample14  -0.0106557524 -9.181659e-03
sample15  -0.0249924121  3.262724e-02
sample16  -0.0156216400  1.375700e-02
sample17  -0.0019382446  1.073994e-03
sample18  -0.0221072481 -8.703592e-03
sample19   0.0146917619 -1.311712e-02
sample20  -0.0160353760  1.826290e-02
sample21   0.0035947899 -9.616341e-03
sample22  -0.0225060762 -2.532589e-03
sample23   0.0310000683  3.033060e-03
sample24   0.0499544372  1.809450e-02
sample25   0.0284442301 -1.932558e-02
sample26   0.0188220043  2.146985e-02
sample27  -0.0257763219 -1.999228e-03
sample28   0.0120888648  1.125834e-02
sample29  -0.0236482520  4.426726e-02
sample30  -0.0385486305 -2.055935e-02
sample31  -0.0181539336 -5.877838e-03
sample32  -0.0302630460 -2.607192e-03
sample33  -0.0319565715 -1.562628e-02
sample34  -0.0197970124  9.906813e-03
sample35  -0.0247412713 -5.434440e-03
sample36  -0.0386259060 -3.190394e-02
sample37  -0.0566199273 -4.192574e-02
sample38  -0.0142060273  2.259644e-02
sample39   0.0053589035  1.076485e-02
sample40  -0.0552546493 -3.819896e-02
sample41  -0.0013089975  9.278818e-05
sample42   0.0137252142 -1.664652e-02
sample43  -0.0151259626 -6.290953e-03
sample44   0.0617391754 -1.442883e-02
sample45   0.0231410886  1.163143e-03
sample46  -0.0148898209 -1.384176e-04
sample47  -0.0187252536  1.221690e-02
sample48   0.0432839432  1.416671e-02
sample49   0.0160818605 -3.588745e-02
sample50   0.0059333545  4.067003e-02
sample51  -0.0142914866  7.776270e-03
sample52  -0.0086339952  7.208917e-03
sample53  -0.0207386980  6.272432e-03
sample54  -0.0039856719 -1.316934e-02
sample55  -0.0056217017  5.692315e-03
sample56   0.0000123292  8.978290e-04
sample57  -0.0095805555  1.324253e-02
sample58  -0.0124160295 -7.326376e-03
sample59  -0.0400195442 -1.349736e-02
sample60  -0.0460063358  2.770091e-02
sample61  -0.0245266456  1.470710e-02
sample62  -0.0366022783 -3.437352e-03
sample63   0.0013742171  3.288796e-02
sample64  -0.0070599859  2.739588e-02
sample65   0.0041201911  1.498268e-02
sample66   0.0143173351 -1.968812e-02
sample67  -0.0467477531 -1.929938e-02
sample68  -0.0306751978 -1.436184e-02
sample69  -0.0125317217  4.130407e-03
sample70  -0.0068071487  8.080857e-03
sample71   0.0169170264 -7.027348e-03
sample72  -0.0346909749 -1.333770e-02
sample73  -0.0280506153  1.493843e-02
sample74  -0.0182611498  3.294697e-03
sample75  -0.0120563964  8.974612e-03
sample76   0.0001437236 -4.253184e-02
sample77   0.0065330299 -5.252886e-02
sample78   0.0288278141 -1.127782e-02
sample79   0.0503961481 -1.023318e-02
sample80  -0.0207693429  3.648391e-02
sample81   0.0163562768 -9.074596e-03
sample82  -0.0084317129 -1.478976e-02
sample83  -0.0474097918 -1.103126e-02
sample84   0.0177181395 -7.191197e-03
sample85  -0.0342718548 -3.082360e-02
sample86  -0.0261671791 -1.089491e-02
sample87  -0.0009486358 -2.411514e-02
sample88   0.0020528931 -2.894615e-02
sample89  -0.0189361111 -2.638639e-03
sample90  -0.0009863658 -2.390075e-02
sample91  -0.0124352695  8.153234e-02
sample92   0.0564264106 -8.909537e-03
sample93  -0.0081461774  1.570851e-02
sample94  -0.0054896581  1.547251e-02
sample95   0.0224073150 -4.374348e-04
sample96   0.0173528924 -3.050441e-03
sample97   0.0067948115  5.008237e-03
sample98  -0.0116030825  1.498764e-02
sample99   0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101  0.0124923691  3.091503e-02
sample102  0.0650835386 -1.367400e-02
sample103 -0.0042741828  7.855985e-03
sample104  0.0250591040 -4.171938e-03
sample105  0.0157516368 -3.121990e-02
sample106  0.0060593853 -5.101693e-03
sample107 -0.0098329626  1.044506e-02
sample108  0.0044269853  4.142036e-03
sample109  0.0572473486  1.517542e-02
sample110  0.0090474827 -5.119868e-03
sample111  0.0444263015  7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113  0.0241047399  6.706740e-03
sample114  0.0074558775 -4.728652e-03
sample115  0.0611851433  1.117210e-02
sample116  0.0432646951 -1.380556e-02
sample117  0.0516750066 -3.575617e-02
sample118  0.0139942100 -3.279138e-03
sample119  0.0291722987  5.587946e-02
sample120  0.0103515853 -1.690016e-03
sample121 -0.0091396331  3.552116e-02
sample122  0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124  0.0283466326  3.127845e-03
sample125  0.0016472378 -2.770692e-02
sample126 -0.0286529417  3.489336e-02
sample127 -0.0010224500  7.483214e-03
sample128  0.0209049296  2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968  4.637390e-03
sample132  0.0198526786  5.723983e-04
sample133  0.0088812957 -9.988115e-03
sample134 -0.0137484514  1.172591e-02
sample135 -0.0220314568  1.347465e-02
sample136 -0.0185173353  5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138  0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762  2.456863e-02
sample141  0.0058369763 -1.420854e-02
sample142  0.0207886071 -1.188764e-02
sample143  0.0092832598 -1.324238e-02
sample144  0.0028442140  3.627979e-03
sample145  0.0199749569  2.862202e-03
sample146 -0.0182236697  1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148  0.0065435868 -1.572917e-02
sample149  0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151  0.0245166984 -6.888241e-03
sample152  0.0107259913  3.314630e-02
sample153  0.0550963965  3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574  2.642246e-03
sample156 -0.0117803505  2.698265e-02
sample157 -0.0096167165  1.433840e-02
sample158 -0.0101754772  9.137620e-03
sample159  0.0120662931 -2.565236e-02
sample160 -0.0132238202  2.916023e-03
sample161  0.0274491966 -1.748284e-02
sample162  0.0012482909  3.152261e-02
sample163  0.0042031315  1.830701e-02
sample164  0.0174896157 -1.175915e-02
sample165  0.0097517662 -6.119019e-03
sample166  0.0190134679 -1.121582e-02
sample167 -0.0044140836  4.665585e-03
sample168  0.0049689168 -1.941822e-02
sample169 -0.0209802098  3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
                   [,1]          [,2]
sample1   -0.0515543627 -0.0305856787
sample2   -0.0144993256  0.0236342950
sample3   -0.0371833108 -0.0140263348
sample4    0.0068945388 -0.0132539692
sample5    0.0215035333 -0.0663338101
sample6   -0.0187055152  0.0088773016
sample7   -0.0061521552  0.0064029054
sample8   -0.0210874459  0.0334652901
sample9    0.0516865043 -0.0291142799
sample10   0.0059440366 -0.0527217447
sample11   0.0393010793 -0.0200624712
sample12  -0.0420837100  0.0131331362
sample13   0.0333252565  0.0818552509
sample14  -0.0190062644  0.0160202175
sample15  -0.0030968049 -0.0189230681
sample16  -0.0004452158  0.0018880102
sample17  -0.0185848615  0.0240170131
sample18  -0.0273093598  0.0230213640
sample19  -0.0217761111 -0.0445894441
sample20   0.0245820821  0.0159812738
sample21   0.0034527644 -0.0400016054
sample22  -0.0340789054  0.0039289109
sample23  -0.0010344929 -0.0310161212
sample24   0.0289468503  0.0760962436
sample25  -0.0119098496 -0.0122798760
sample26  -0.0181001057  0.0517892852
sample27   0.0050465417 -0.0086515844
sample28   0.0057491502  0.0358830107
sample29  -0.0051104246  0.0116605117
sample30  -0.0103085904  0.0039678538
sample31  -0.0319929858  0.0090606113
sample32  -0.0036232521 -0.0328202010
sample33  -0.0534742153  0.0024751837
sample34  -0.0067495749 -0.0111000311
sample35   0.0378745721  0.0465929296
sample36   0.0647886800  0.0359987924
sample37   0.0488441236  0.0492906912
sample38  -0.0251514062  0.0197110110
sample39  -0.0085428066 -0.0105117852
sample40   0.0379324087  0.0440810741
sample41  -0.0044199152 -0.0128820644
sample42  -0.0292553573 -0.0067045265
sample43  -0.0077829155 -0.0510178219
sample44   0.0045122248  0.0479660309
sample45  -0.0074444298 -0.0051116726
sample46  -0.0088025512  0.0196186661
sample47   0.0076696301  0.0215947965
sample48   0.0290108585 -0.0175568376
sample49  -0.0141754858  0.0184717099
sample50   0.0006282201 -0.0233054373
sample51   0.0441995177 -0.0410022921
sample52   0.0715329391 -0.0399499475
sample53  -0.0095954087 -0.0029140909
sample54   0.0048933768 -0.0281884386
sample55   0.0327325487 -0.0532290012
sample56   0.0323068984 -0.0256595538
sample57   0.0806603122 -0.0286748097
sample58  -0.0064792049 -0.0006945349
sample59   0.0088958941  0.0067389649
sample60   0.0874124612  0.0431964341
sample61   0.0577604571 -0.0326112099
sample62  -0.0313318464  0.0224391756
sample63  -0.0233625220  0.0125110562
sample64  -0.0086426068  0.0148770341
sample65   0.0025256193 -0.0404466327
sample66   0.0006014071 -0.0471576264
sample67   0.0706087042  0.0516228406
sample68   0.0082301011  0.0033109509
sample69  -0.0475076743  0.0001452708
sample70  -0.0600773716  0.0089986962
sample71  -0.0096321627 -0.0050761187
sample72  -0.0031773546 -0.0166221542
sample73  -0.0113700517 -0.0191726684
sample74  -0.0014179662 -0.0608101325
sample75   0.0041911740 -0.0399981269
sample76  -0.0055326449  0.0353114263
sample77  -0.0260214459  0.0305731380
sample78  -0.0119267436  0.0632236007
sample79   0.0186017239  0.0027402910
sample80   0.0241047889 -0.0472697181
sample81  -0.0220288317 -0.0079577210
sample82  -0.0180751258  0.0639051029
sample83  -0.0256671713 -0.0125898269
sample84   0.0161392598 -0.0567222449
sample85   0.0139988188  0.0322763454
sample86  -0.0198382995  0.0389225776
sample87   0.0266270281 -0.0032979996
sample88   0.0515677078  0.0117902495
sample89   0.0014022125 -0.0140510488
sample90  -0.0375949749  0.0044004551
sample91   0.0310397965  0.0440610926
sample92   0.0270570567  0.0324380452
sample93  -0.0215009202  0.0063993941
sample94  -0.0415702912 -0.0037692077
sample95  -0.0168416047  0.0010019120
sample96  -0.0285582661 -0.0187991000
sample97  -0.0490843868 -0.0266760748
sample98  -0.0171579033 -0.0112897471
sample99  -0.0271316525  0.0232395583
sample100 -0.0301789816  0.0305498693
sample101 -0.0264371151  0.0170723968
sample102  0.0012767734 -0.0248949597
sample103  0.0055214687 -0.0030040587
sample104  0.0251346074 -0.0165212671
sample105  0.0062424215 -0.0400309901
sample106  0.0069768684  0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679  0.0023637162
sample109 -0.0014762845  0.0165583675
sample110  0.0036971063  0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112  0.0046098120 -0.0048009350
sample113  0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453  0.0135805368
sample116  0.0183575759  0.0665377581
sample117  0.0227640036 -0.0012287760
sample118  0.0015695248  0.0472617382
sample119  0.0190084932  0.0590034062
sample120 -0.0449645755  0.0072755697
sample121  0.0077307184  0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123  0.0016959300  0.0028593594
sample124 -0.0365091615  0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408  0.0019165544
sample127 -0.0494064872  0.0088209044
sample128 -0.0155454766  0.0186819802
sample129 -0.0184340400  0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422  0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133  0.0204029276 -0.0282209049
sample134  0.0175513332  0.0262883962
sample135  0.0029009925  0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323  0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139  0.0073103935  0.0308956174
sample140  0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142  0.0268670676 -0.0239229634
sample143  0.0421049126 -0.0110888235
sample144  0.0017253664 -0.0341766012
sample145  0.0681741320 -0.0073526377
sample146 -0.0239965222  0.0118396767
sample147 -0.0063453522  0.0183130585
sample148  0.0230825251 -0.0379753037
sample149  0.0223298673  0.0188909118
sample150  0.0055709108  0.0174179009
sample151  0.0039177786 -0.0233533275
sample152  0.0134325667  0.0302344591
sample153  0.0511990309  0.0730230140
sample154  0.0006698324  0.0154177486
sample155  0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599  0.0154934573
sample158  0.0201775524 -0.0332982124
sample159 -0.0086909001  0.0073496711
sample160  0.0295437331 -0.0555734536
sample161  0.0332754288  0.0033779619
sample162  0.0121954537  0.0433540412
sample163 -0.0173490933  0.0227219128
sample164  0.0143374783 -0.0453542590
sample165  0.0343612593 -0.0511194536
sample166 -0.0157536004  0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919  0.0060747155
sample169  0.0116231468 -0.0015112800
> 
> ## 3.3 Plotting VAF
> 
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
> 
> # JIVE plotVAF
> plotVAF(jiveRes)
> 
> 
> #########################
> ## PART 4. Plot Results
> 
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+              combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+              background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+              axisSize=NULL,titleSize=NULL)
> 
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> 
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+              combined=TRUE,block=NULL,color="classname",shape=NULL,
+              labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+              labelSize=NULL,axisSize=NULL,titleSize=NULL)
> 
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Combined plot of scores for common and distinctive part. DISCO  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              legend,heights=c(6/7,1/7))
> 
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> # Combined plot for loadings from common and distinctive part  (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="expr",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,
+               labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+               labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+         combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+         background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+         axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter:  Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+               combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+               background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+               axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+                          p2+theme(legend.position="none"),nrow=1),
+              heights=c(6/7,1/7))
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  12.42    0.35   12.76 

Example timings

STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide000
STATegRa_data0.30.00.3
STATegRa_data_TCGA_BRCA0.000.020.02
bioDist0.510.010.53
bioDistFeature0.370.030.41
bioDistFeaturePlot0.440.040.47
bioDistW0.390.010.40
bioDistWPlot0.380.032.88
bioMap000
combiningMappings0.020.000.02
createOmicsExpressionSet0.170.000.17
getInitialData0.580.130.70
getLoadings0.590.120.72
getMethodInfo0.610.030.64
getPreprocessing1.020.321.33
getScores0.560.110.67
getVAF0.580.140.72
holistOmics000
modelSelection2.060.282.35
omicsCompAnalysis4.420.124.54
omicsNPC0.000.020.02
plotRes5.220.045.26
plotVAF4.740.044.77

STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings

nameusersystemelapsed
STATegRaUsersGuide0.020.000.02
STATegRa_data0.300.000.29
STATegRa_data_TCGA_BRCA000
bioDist0.530.040.58
bioDistFeature0.570.050.61
bioDistFeaturePlot0.560.020.57
bioDistW0.540.010.55
bioDistWPlot0.560.030.59
bioMap000
combiningMappings0.030.000.03
createOmicsExpressionSet0.160.000.16
getInitialData0.730.080.81
getLoadings0.690.100.78
getMethodInfo0.830.140.97
getPreprocessing1.210.211.44
getScores0.990.151.12
getVAF0.700.090.80
holistOmics000
modelSelection2.330.532.86
omicsCompAnalysis4.360.134.48
omicsNPC000
plotRes6.030.046.08
plotVAF5.090.145.24