Back to the "Multiple platform build/check report"
Package 84/172 | OS | Arch | BUILD | CHECK | BUILD BIN |
limma2.6.2Gordon Smyth | Linux (SUSE 9.2) | x86_64 | OK | OK | |
Linux (SUSE 9.2) | i686 | OK | [ OK ] | ||
Solaris 2.9 | sparc | OK | OK | ||
Linux (SUSE 10.0) | x86_64 | OK | OK | ||
Windows Server 2003 | x86_64 | OK | OK | OK |
Package: limma |
Version: 2.6.2 |
Command: /loc/biocbuild/1.8d/R/bin/R CMD check limma_2.6.2.tar.gz |
RetCode: 0 |
Time: 256.6 seconds |
Status: OK |
CheckDir: limma.Rcheck |
Warnings: 0 |
* checking for working latex ... OK * using log directory '/extra/loc/biocbuild/1.8d/Rpacks/limma.Rcheck' * using Version 2.3.1 (2006-06-01) * checking for file 'limma/DESCRIPTION' ... OK * this is package 'limma' version '2.6.2' * checking package dependencies ... OK * checking if this is a source package ... OK * checking whether package 'limma' can be installed ... OK * checking package directory ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for syntax errors ... OK * checking R files for library.dynam ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking Rd files ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * creating limma-Ex.R ... OK * checking examples ... OK * checking tests ... make[1]: Entering directory `/extra/loc/biocbuild/1.8d/Rpacks/limma.Rcheck/tests' Running 'limma-Tests.R' Comparing 'limma-Tests.Rout' to 'limma-Tests.Rout.save' ...2,926d1 < < > library(limma) < > < > set.seed(0); u <- runif(100) < > < > ### splitName < > < > x <- c("ab;cd;efg","abc;def","z","") < > splitName(x) < $Name < [1] "ab;cd" "abc" "z" "" < < $Annotation < [1] "efg" "def" "" "" < < > < > ### removeext < > < > removeExt(c("slide1.spot","slide.2.spot")) < [1] "slide1" "slide.2" < > removeExt(c("slide1.spot","slide")) < [1] "slide1.spot" "slide" < > < > ### printorder < > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4) < $printorder < [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 < [19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 < [37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1 < [55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19 < [73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37 < [91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7 < [109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25 < [127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43 < [145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13 < [163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31 < [181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49 < [199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 < [217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 < [235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55 < [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73 < [271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91 < [289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61 < [307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79 < [325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49 < [343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67 < [361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85 < [379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103 < [397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 < [415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 < [433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109 < [451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127 < [469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97 < [487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115 < [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133 < [523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103 < [541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121 < [559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139 < [577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 < [595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 < [613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145 < [631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163 < [649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181 < [667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151 < [685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169 < [703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187 < [721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157 < [739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175 < [757] 186 185 184 183 182 181 192 191 190 189 188 187 < < $plate < [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < < $plate.r < [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 < [26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 < [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 < [76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 < [101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 < [151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 < [201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 < [226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 < [251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 < [276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 < [301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 < [326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 < [351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 < [376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 < [401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 < [426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 < [451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 < [476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 < [501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 < [526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 < [551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 < [576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 < [601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15 < [626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 < [651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14 < [676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 < [701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 < [726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 < [751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 < < $plate.c < [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 < [26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 < [51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 < [76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 < [101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 < [126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 < [151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 < [176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 < [201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 < [226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 < [251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 < [276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 < [301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 < [326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 < [351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 < [376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 < [401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 < [426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 < [451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 < [476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 < [501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 < [526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 < [551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 < [576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 < [601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 < [626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 < [651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 < [676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 < [701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 < [726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 < [751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 < < $plateposition < [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05" < [10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07" < [19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14" < [28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16" < [37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23" < [46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01" < [55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08" < [64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10" < [73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17" < [82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19" < [91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02" < [100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04" < [109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11" < [118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13" < [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20" < [136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22" < [145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05" < [154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07" < [163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14" < [172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16" < [181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23" < [190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01" < [199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08" < [208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10" < [217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17" < [226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19" < [235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02" < [244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04" < [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11" < [262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13" < [271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20" < [280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22" < [289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05" < [298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07" < [307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14" < [316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16" < [325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23" < [334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01" < [343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08" < [352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10" < [361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17" < [370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19" < [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02" < [388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04" < [397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11" < [406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13" < [415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20" < [424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22" < [433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05" < [442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07" < [451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14" < [460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16" < [469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23" < [478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01" < [487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08" < [496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10" < [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17" < [514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19" < [523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02" < [532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04" < [541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11" < [550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13" < [559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20" < [568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22" < [577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05" < [586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07" < [595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14" < [604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16" < [613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23" < [622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01" < [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08" < [640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10" < [649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17" < [658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19" < [667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02" < [676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04" < [685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11" < [694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13" < [703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20" < [712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22" < [721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05" < [730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07" < [739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14" < [748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16" < [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23" < [766] "p1M23" "p1M22" "p1M22" < < > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6)) < $printorder < [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 < [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 < [51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 < [76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 < [101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 < [126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 < [151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 < [176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 < [201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 < [226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 < [251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 < [276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 < [301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 < [326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 < [351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 < [376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 < [401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 < [426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 < [451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 < [476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 < [501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 < [526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 < [551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 < [576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 < [601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 < [626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 < [651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 < [676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 < [701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 < [726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 < [751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 < < $plate < [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 < [38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 < [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 < [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 < [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 < [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 < [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 < [445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 < [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 < [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 < [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < [667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 < [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < [741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 < < $plate.r < [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 < [26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 < [51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 < [76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 < [101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 < [126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 < [151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 < [176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 < [201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 < [226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 < [251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 < [276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 < [301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 < [326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 < [351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 < [376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 < [401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 < [426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 < [451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 < [476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 < [501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 < [526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 < [551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 < [576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 < [601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 < [626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 < [651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 < [676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 < [701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 < [726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 < [751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 < < $plate.c < [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 < [26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 < [51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 < [76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 < [101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 < [126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 < [151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 < [176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6 < [201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 < [226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 < [251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 < [276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 < [301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 < [326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 < [351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 < [376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 < [401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 < [426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 < [451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 < [476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 < [501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 < [526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 < [551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 < [576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 < [601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 < [626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 < [651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 < [676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 < [701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 < [726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 < [751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 < < $plateposition < [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09" < [10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21" < [19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09" < [28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21" < [37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09" < [46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21" < [55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09" < [64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21" < [73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09" < [82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21" < [91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09" < [100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21" < [109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09" < [118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21" < [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09" < [136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21" < [145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09" < [154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21" < [163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09" < [172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21" < [181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09" < [190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22" < [199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10" < [208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22" < [217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10" < [226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22" < [235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10" < [244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22" < [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10" < [262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22" < [271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10" < [280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22" < [289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10" < [298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22" < [307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10" < [316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22" < [325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10" < [334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22" < [343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10" < [352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22" < [361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10" < [370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22" < [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11" < [388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23" < [397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11" < [406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23" < [415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11" < [424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23" < [433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11" < [442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23" < [451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11" < [460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23" < [469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11" < [478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23" < [487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11" < [496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23" < [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11" < [514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23" < [523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11" < [532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23" < [541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11" < [550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23" < [559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11" < [568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23" < [577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12" < [586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24" < [595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12" < [604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24" < [613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12" < [622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24" < [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12" < [640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24" < [649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12" < [658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24" < [667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12" < [676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24" < [685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12" < [694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24" < [703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12" < [712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24" < [721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12" < [730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24" < [739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12" < [748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24" < [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12" < [766] "p2M16" "p2M20" "p2M24" < < > < > ### merge.rglist < > < > R <- G <- matrix(11:14,4,2) < > rownames(R) <- rownames(G) <- c("a","a","b","c") < > RG1 <- new("RGList",list(R=R,G=G)) < > R <- G <- matrix(21:24,4,2) < > rownames(R) <- rownames(G) <- c("b","a","a","c") < > RG2 <- new("RGList",list(R=R,G=G)) < > merge(RG1,RG2) < An object of class "RGList" < $R < [,1] [,2] [,3] [,4] < a 11 11 22 22 < a 12 12 23 23 < b 13 13 21 21 < c 14 14 24 24 < < $G < [,1] [,2] [,3] [,4] < a 11 11 22 22 < a 12 12 23 23 < b 13 13 21 21 < c 14 14 24 24 < < > merge(RG2,RG1) < An object of class "RGList" < $R < [,1] [,2] [,3] [,4] < b 21 21 13 13 < a 22 22 11 11 < a 23 23 12 12 < c 24 24 14 14 < < $G < [,1] [,2] [,3] [,4] < b 21 21 13 13 < a 22 22 11 11 < a 23 23 12 12 < c 24 24 14 14 < < > < > ### background correction < > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2))) < > backgroundCorrect(RG) < An object of class "RGList" < $R < [1] -1 0 1 2 < < $G < [1] -1 0 1 2 < < > backgroundCorrect(RG, method="half") < An object of class "RGList" < $R < [1] 0.5 0.5 1.0 2.0 < < $G < [1] 0.5 0.5 1.0 2.0 < < > backgroundCorrect(RG, method="minimum") < An object of class "RGList" < $R < [,1] < [1,] 0.5 < [2,] 0.5 < [3,] 1.0 < [4,] 2.0 < < $G < [,1] < [1,] 0.5 < [2,] 0.5 < [3,] 1.0 < [4,] 2.0 < < > backgroundCorrect(RG, offset=5) < An object of class "RGList" < $R < [1] 4 5 6 7 < < $G < [1] 4 5 6 7 < < > < > ### normalizeWithinArrays < > < > library(sma) < > data(MouseArray) < > MA <- normalizeWithinArrays(mouse.data, mouse.setup, method="robustspline") < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.21539109 -0.79670669 -0.55011008 0.14243756 -0.3933328 0.86741957 < [2,] 0.06449435 0.16873653 0.26020426 0.92440874 0.6640048 1.30672583 < [3,] -0.23149571 -0.66662065 -0.68092134 -0.09651125 -0.4205728 -0.31124721 < [4,] -0.20090146 -0.09709476 -0.28354313 0.32830186 0.1916112 -0.09738907 < [5,] -0.86822005 -0.13192148 -0.08634807 -0.01017014 0.2763200 -0.22570480 < > MA <- normalizeWithinArrays(mouse.data, mouse.setup) < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.22006681 -0.85229101 -0.61528102 0.07080387 -0.4017245 0.8790516 < [2,] 0.06720908 0.11711457 0.21083609 0.99616190 0.6494259 1.3351120 < [3,] -0.23069447 -0.71229077 -0.72631373 -0.12375213 -0.4262350 -0.3237170 < [4,] -0.17262990 -0.06186499 -0.28347377 0.27201473 0.2028371 -0.1018497 < [5,] -0.83900000 -0.09643457 -0.08877846 -0.06550247 0.2807478 -0.2229941 < > < > ### normalizeBetweenArrays < > < > MA <- normalizeBetweenArrays(MA,method="scale") < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.22060913 -0.97047013 -0.7132995 0.05299212 -0.4035381 0.8835727 < [2,] 0.06737471 0.13335374 0.2444237 0.74556284 0.6523577 1.3419787 < [3,] -0.23126298 -0.81105738 -0.8420205 -0.09262048 -0.4281592 -0.3253819 < [4,] -0.17305532 -0.07044322 -0.3286331 0.20358545 0.2037528 -0.1023735 < [5,] -0.84106756 -0.10980624 -0.1029215 -0.04902437 0.2820152 -0.2241410 < > MA$A[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] 11.332980 11.198841 11.337353 9.693899 11.196822 10.506374 < [2,] 11.245664 11.074098 11.051345 10.931562 11.273305 10.008818 < [3,] 10.113995 10.923628 12.322088 9.875351 11.096463 10.829522 < [4,] 8.390963 9.019036 8.720987 9.774672 8.826249 9.113240 < [5,] 8.684837 9.017042 8.406961 9.477079 8.739632 8.557627 < > MA <- normalizeBetweenArrays(MA,method="quantile") < > MA$M[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] -0.31703694 -0.9938725 -0.5791881 0.03617137 -0.3769488 0.9820991 < [2,] 0.03923233 0.1066559 0.2312904 0.76612052 0.6368203 1.4728996 < [3,] -0.27566044 -0.8580353 -0.7504079 -0.08854074 -0.4200884 -0.2960210 < [4,] -0.11946685 -0.1095793 -0.2985336 0.15876207 0.2612499 -0.1006169 < [5,] -0.67628732 -0.1634459 -0.0938785 -0.05338925 0.3477450 -0.2227479 < > MA$A[1:5,] < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] 11.478807 11.311915 11.142829 9.749722 11.137385 10.56415 < [2,] 11.369349 11.191410 10.896307 10.893490 11.205219 10.04138 < [3,] 10.124225 11.010219 12.026393 9.906701 11.045121 10.91363 < [4,] 8.521087 8.771148 8.810923 9.817860 8.681051 9.06633 < [5,] 8.772261 8.766051 8.538890 9.580934 8.567045 8.55471 < > < > ### unwrapdups < > < > M <- matrix(1:12,6,2) < > unwrapdups(M,ndups=1) < [,1] [,2] < [1,] 1 7 < [2,] 2 8 < [3,] 3 9 < [4,] 4 10 < [5,] 5 11 < [6,] 6 12 < > unwrapdups(M,ndups=2) < [,1] [,2] [,3] [,4] < [1,] 1 2 7 8 < [2,] 3 4 9 10 < [3,] 5 6 11 12 < > unwrapdups(M,ndups=3) < [,1] [,2] [,3] [,4] [,5] [,6] < [1,] 1 2 3 7 8 9 < [2,] 4 5 6 10 11 12 < > unwrapdups(M,ndups=2,spacing=3) < [,1] [,2] [,3] [,4] < [1,] 1 4 7 10 < [2,] 2 5 8 11 < [3,] 3 6 9 12 < > < > ### trigammaInverse < > < > trigammaInverse(c(1e-6,NA,5,1e6)) < [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03 < > < > ### lm.series, contrasts.fit, ebayes < > < > M <- matrix(rnorm(10*6,sd=0.3),10,6) < > M[1,1:3] <- M[1,1:3] + 2 < > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1)) < > fit <- lm.series(M,design=design) < > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1)) < > fit2 <- contrasts.fit(fit,contrasts=contrast.matrix) < > eb <- ebayes(fit2) < > < > eb$t < First3 Last3 Last3-First3 < [1,] 13.01360810 0.8094614 -8.62963489 < [2,] -0.08220793 -0.2496031 -0.11836624 < [3,] 0.53689924 0.1037124 -0.30630936 < [4,] -0.64950290 -0.6643004 -0.01046340 < [5,] -0.12967606 -0.6044961 -0.33574846 < [6,] 1.00443329 0.1749033 -0.58656627 < [7,] -0.41799559 -0.3567558 0.04330306 < [8,] 0.04763415 1.7686344 1.21693097 < [9,] -1.82026162 0.6205108 1.72588671 < [10,] -1.66163020 2.0938216 2.65550546 < > eb$s2.prior < [1] 0.07549435 < > eb$s2.post < [1] 0.07549435 0.07549435 0.07549435 0.07549435 0.07549435 0.07549435 < [7] 0.07549435 0.07549435 0.07549435 0.07549435 < > eb$df.prior < [1] Inf < > eb$lods < First3 Last3 Last3-First3 < [1,] 76.894615 -4.836703 29.863710 < [2,] -7.551544 -5.007910 -7.137158 < [3,] -7.411171 -5.022793 -7.097495 < [4,] -7.344554 -4.898476 -7.144066 < [5,] -7.546529 -4.920386 -7.088102 < [6,] -7.051826 -5.017066 -6.973142 < [7,] -7.467789 -4.989149 -7.143189 < [8,] -7.553783 -4.122674 -6.408184 < [9,] -5.902688 -4.914721 -5.663877 < [10,] -6.178115 -3.760000 -3.639805 < > eb$p.value < First3 Last3 Last3-First3 < [1,] 1.023910e-38 0.41824980 6.154813e-18 < [2,] 9.344814e-01 0.80289433 9.057775e-01 < [3,] 5.913372e-01 0.91739759 7.593691e-01 < [4,] 5.160134e-01 0.50649808 9.916516e-01 < [5,] 8.968227e-01 0.54551387 7.370606e-01 < [6,] 3.151698e-01 0.86115561 5.574950e-01 < [7,] 6.759503e-01 0.72127462 9.654600e-01 < [8,] 9.620078e-01 0.07695490 2.236305e-01 < [9,] 6.871917e-02 0.53492156 8.436780e-02 < [10,] 9.658694e-02 0.03627587 7.918965e-03 < > eb$var.prior < [1] 123.7528665 0.4556155 108.4630118 < > < > ### toptable < > < > toptable(fit) < M t P.Value adj.P.Val B < 1 2.064402265 13.01360810 1.023910e-38 1.023910e-37 76.894615 < 9 -0.288755599 -1.82026162 6.871917e-02 3.219565e-01 -5.902688 < 10 -0.263591244 -1.66163020 9.658694e-02 3.219565e-01 -6.178115 < 6 0.159337391 1.00443329 3.151698e-01 7.879245e-01 -7.051826 < 4 -0.103033320 -0.64950290 5.160134e-01 9.620078e-01 -7.344554 < 3 0.085170539 0.53689924 5.913372e-01 9.620078e-01 -7.411171 < 7 -0.066308362 -0.41799559 6.759503e-01 9.620078e-01 -7.467789 < 5 -0.020571048 -0.12967606 8.968227e-01 9.620078e-01 -7.546529 < 2 -0.013040982 -0.08220793 9.344814e-01 9.620078e-01 -7.551544 < 8 0.007556402 0.04763415 9.620078e-01 9.620078e-01 -7.553783 < > < > ### duplicateCorrelation < > < > cor.out <- duplicateCorrelation(M) < < Attaching package: 'statmod' < < < The following object(s) are masked from package:limma : < < matvec vecmat < < > cor.out$consensus.correlation < [1] -0.1300222 < > cor.out$atanh.correlations < [1] -0.3496702 -0.3528761 0.1320187 -0.7957172 0.7124326 < > < > ### gls.series < > < > fit <- gls.series(M,design,correlation=cor.out$cor) < > fit$coefficients < First3Arrays Last3Arrays < [1,] 1.02568064 0.04440632 < [2,] -0.00893139 -0.04446419 < [3,] 0.06938317 -0.03407404 < [4,] -0.02937598 0.11198606 < [5,] -0.27617342 0.21529287 < > fit$stdev.unscaled < First3Arrays Last3Arrays < [1,] 0.3807838 0.3807838 < [2,] 0.3807838 0.3807838 < [3,] 0.3807838 0.3807838 < [4,] 0.3807838 0.3807838 < [5,] 0.3807838 0.3807838 < > fit$sigma < [1] 0.7880432 0.2880540 0.1997484 0.2750895 0.2621346 < > fit$df.residual < [1] 10 10 10 10 10 < > < > ### mrlm < > < > fit <- mrlm(M,design) < > fit$coef < [,1] [,2] < [1,] 2.064402265 0.23453509 < [2,] -0.013040982 -0.15267834 < [3,] -0.030835828 0.01645232 < [4,] -0.103033320 -0.10538070 < [5,] -0.020571048 -0.09589370 < [6,] 0.159337391 0.02774563 < [7,] -0.066308362 -0.05659364 < [8,] 0.007556402 0.38166839 < [9,] -0.288755599 0.09843418 < [10,] -0.263591244 0.33215155 < > fit$stdev.unscaled < [,1] [,2] < [1,] 0.5773503 0.7315593 < [2,] 0.5773503 0.6511403 < [3,] 0.6269590 0.5773503 < [4,] 0.5773503 0.5773503 < [5,] 0.5773503 0.5773503 < [6,] 0.5773503 0.5773503 < [7,] 0.5773503 0.5773503 < [8,] 0.5773503 0.6527609 < [9,] 0.5773503 0.5773503 < [10,] 0.5773503 0.5773503 < > fit$sigma < [1] 0.0755165 0.1410025 0.3087025 0.1390960 0.3289335 0.1719261 0.4295126 < [8] 0.1197697 0.3906706 0.2267115 < > fit$df.residual < [1] 4 4 4 4 4 4 4 4 4 4 < > < > # Similar to Mette Langaas 19 May 2004 < > set.seed(123) < > narrays <- 9 < > ngenes <- 5 < > mu <- 0 < > alpha <- 2 < > beta <- -2 < > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays) < > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1)) < > dimnames(X) <- list(1:9,c("mu","alpha","beta")) < > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3] < > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon < > ymat[5,1:2] <- NA < > fit <- lmFit(ymat,design=X) < > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1)) < > dimnames(test.contr) <- list(1:3,c("alpha-beta","mu+alpha","mu+beta")) < > fit2 <- contrasts.fit(fit,contrasts=test.contr) < > eBayes(fit2) < An object of class "MArrayLM" < $coefficients < alpha-beta mu+alpha mu+beta < [1,] 3.537333 1.677465 -1.859868 < [2,] 4.355578 2.372554 -1.983024 < [3,] 3.197645 1.053584 -2.144061 < [4,] 2.697734 1.611443 -1.086291 < [5,] 3.502304 2.051995 -1.450309 < < $stdev.unscaled < alpha-beta mu+alpha mu+beta < [1,] 0.8164966 0.5773503 0.5773503 < [2,] 0.8164966 0.5773503 0.5773503 < [3,] 0.8164966 0.5773503 0.5773503 < [4,] 0.8164966 0.5773503 0.5773503 < [5,] 1.1547005 0.8368633 0.8368633 < < $sigma < [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509 < < $df.residual < [1] 6 6 6 6 4 < < $cov.coefficients < alpha-beta mu+alpha mu+beta < alpha-beta 0.6666667 3.333333e-01 -3.333333e-01 < mu+alpha 0.3333333 3.333333e-01 -1.821460e-17 < mu+beta -0.3333333 -1.821460e-17 3.333333e-01 < < $method < [1] "ls" < < $design < mu alpha beta < 1 1 0 0 < 2 1 0 0 < 3 1 0 0 < 4 1 1 0 < 5 1 1 0 < 6 1 1 0 < 7 1 0 1 < 8 1 0 1 < 9 1 0 1 < < $Amean < [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593 < < $contrasts < alpha-beta mu+alpha mu+beta < 1 0 1 1 < 2 1 1 0 < 3 -1 0 1 < < $df.prior < [1] 9.306153 < < $s2.prior < [1] 0.923179 < < $var.prior < [1] 17.33142 17.33142 12.26855 < < $proportion < [1] 0.01 < < $s2.post < [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980 < < $t < alpha-beta mu+alpha mu+beta < [1,] 3.847656 2.580411 -2.860996 < [2,] 6.637308 5.113018 -4.273553 < [3,] 3.692066 1.720376 -3.500994 < [4,] 3.464003 2.926234 -1.972606 < [5,] 3.175181 2.566881 -1.814221 < < $p.value < alpha-beta mu+alpha mu+beta < [1,] 1.529450e-03 0.0206493481 0.0117123495 < [2,] 7.144893e-06 0.0001195844 0.0006385076 < [3,] 2.109270e-03 0.1055117477 0.0031325769 < [4,] 3.381970e-03 0.0102514264 0.0668844448 < [5,] 7.124839e-03 0.0230888584 0.0922478630 < < $lods < alpha-beta mu+alpha mu+beta < [1,] -1.013417 -3.702133 -3.0332393 < [2,] 3.981496 1.283349 -0.2615911 < [3,] -1.315036 -5.168621 -1.7864101 < [4,] -1.757103 -3.043209 -4.6191869 < [5,] -2.257358 -3.478267 -4.5683738 < < $F < [1] 7.421911 22.203107 7.608327 6.227010 5.060579 < < $F.p.value < [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02 < < > < > ### uniquegenelist < > < > uniquegenelist(letters[1:8],ndups=2) < [1] "a" "c" "e" "g" < > uniquegenelist(letters[1:8],ndups=2,spacing=2) < [1] "a" "b" "e" "f" < > < > ### classifyTests < > < > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE) < > classifyTestsF(tstat) < TestResults matrix < [,1] [,2] [,3] < [1,] 0 1 0 < [2,] 0 0 0 < [3,] -1 -1 1 < [4,] 0 0 0 < > FStat(tstat) < [1] 8.333333 2.083333 4.000000 1.000000 < attr(,"df1") < [1] 3 < attr(,"df2") < [1] Inf < > classifyTestsT(tstat) < TestResults matrix < [,1] [,2] [,3] < [1,] 0 1 0 < [2,] 0 0 0 < [3,] 0 0 0 < [4,] 0 0 0 < > classifyTestsP(tstat) < TestResults matrix < [,1] [,2] [,3] < [1,] 0 1 0 < [2,] 0 1 0 < [3,] 0 0 0 < [4,] 0 0 0 < > OK make[1]: Leaving directory `/extra/loc/biocbuild/1.8d/Rpacks/limma.Rcheck/tests' OK * checking package vignettes in 'inst/doc' ... OK * creating limma-manual.tex ... OK * checking limma-manual.tex ... OK
limma.Rcheck/00install.out:
* Installing *source* package 'limma' ... ** R ** inst ** preparing package for lazy loading ** help >>> Building/Updating help pages for package 'limma' Formats: text html latex example 01Introduction text html latex 02classes text html latex 03reading text html latex 04Background text html latex 05Normalization text html latex 06linearmodels text html latex 07SingleChannel text html latex 08Tests text html latex 09Diagnostics text html latex 10Other text html latex LargeDataObject text html latex example PrintLayout text html latex example TestResults text html latex example anova-method text html latex arrayWeights text html latex example arrayWeightsQuick text html latex example asMatrixWeights text html latex example asdataframe text html latex asmalist text html latex asmatrix text html latex auROC text html latex example avedups text html latex backgroundcorrect text html latex example blockDiag text html latex example bwss text html latex bwss.matrix text html latex cbind text html latex example changelog text html latex channel2M text html latex example classifytests text html latex example contrasts.fit text html latex example controlStatus text html latex example convest text html latex example decideTests text html latex dim text html latex example dimnames text html latex dnormexp text html latex dupcor text html latex example ebayes text html latex example exprset2 text html latex fitfdist text html latex fitted.MArrayLM text html latex geneSetTest text html latex example getColClasses text html latex example getSpacing text html latex example getlayout text html latex example gls.series text html latex gridspotrc text html latex heatdiagram text html latex example helpMethods text html latex example imageplot text html latex example imageplot3by2 text html latex intraspotCorrelation text html latex example isfullrank text html latex example isnumeric text html latex example kooperberg text html latex example limmaUsersGuide text html latex example lm.series text html latex lmFit text html latex example lmscFit text html latex example loessfit text html latex example m.spot text html latex ma3x3 text html latex example makeContrasts text html latex example makeunique text html latex example malist text html latex marraylm text html latex matvec text html latex example mdplot text html latex merge text html latex example modelMatrix text html latex example modifyWeights text html latex example mrlm text html latex normalizeMedianAbsValues text html latex example normalizeRobustSpline text html latex example normalizeWithinArrays text html latex example normalizebetweenarrays text html latex example normalizeprintorder text html latex example normalizequantiles text html latex normexp text html latex normexpfit text html latex example normexpsignal text html latex example plotDensities text html latex example plotFB text html latex plotma text html latex example plotma3by2 text html latex plotprinttiploess text html latex poolvar text html latex example printHead text html latex printorder text html latex example protectMetachar text html latex example qqt text html latex example qualwt text html latex example read.maimages text html latex example read.matrix text html latex read.series text html latex readGPRHeader text html latex readImaGeneHeader text html latex example readSpotTypes text html latex readTargets text html latex readgal text html latex example removeext text html latex example residuals.MArrayLM text html latex rg.genepix text html latex rg.quantarray text html latex rg.series.spot text html latex rg.spot text html latex rglist text html latex splitName text html latex example squeezeVar text html latex example subsetting text html latex example summary text html latex targetsA2C text html latex example tmixture text html latex toptable text html latex example trigammainverse text html latex example trimWhiteSpace text html latex example uniquegenelist text html latex example unwrapdups text html latex example venn text html latex example volcanoplot text html latex example weightedmedian text html latex example writefit text html latex wtVariables text html latex example zscore text html latex example ** building package indices ... * DONE (limma)