plotgardener
is a coordinate-based, genomic visualization package for R. Using grid
graphics, plotgardener
empowers users to programmatically and flexibly generate multi-panel figures. Tailored for genomics for a variety of genomic assemblies, plotgardener
allows users to visualize large, complex genomic datasets while providing exquisite control over the arrangement of plots.
plotgardener
functions can be grouped into the following categories:
Functions for creating plotgardener
page layouts, drawing, showing, and hiding guides, as well as placing plots on the page. See The plotgardener Page
Functions for quickly reading in large biological datasets. See Reading Data for plotgardener
Contains genomic plotting functions, functions for placing ggplots
and base
plots, as well as functions for drawing simple shapes. See Plotting Multi-omic Data
Enables users to add annotations to their plots, such as legends, axes, and scales. See Plot Annotations
Functions that display plotgardener
properties or operate on other plotgardener
functions, or constructors for plotgardener
objects. See plotgardener Meta Functions
This vignette provides a quick start guide for utilizing plotgardener
. For in-depth demonstrations of plotgardener
’s key features, see the additional articles. For detailed usage of each function, see the function-specific reference examples with ?function()
(e.g. ?plotPairs()
).
All the data included in this vignette can be found in the supplementary package plotgardenerData
.
plotgardener
plotting functions contain 4 types of arguments:
Data reading argument (data
)
Genomic locus arguments (chrom
, chromstart
, chromend
, assembly
)
Placement arguments (x
, y
, width
, height
, just
, default.units
, …) that define where each plot resides on a page
Attribute arguments that affect the data being plotted or the style of the plot (norm
, fill
, fontcolor
, …) that vary between functions
The quickest way to plot data is to omit the placement arguments. This will generate a plotgardener
plot that fills up the entire graphics window and cannot be annotated. These plots are only meant to be used for quick genomic data inspection and not as final plotgardener
plots. The only arguments that are required are the data arguments and locus arguments. The examples below show how to quickly plot different types of genomic data with plot defaults and included data types. To use your own data, replace the data
argument with either a path to the file or an R object as described above.
## Load plotgardener
library(plotgardener)
## Load hg19 genomic annotation packages
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
## Load example GWAS data
library(plotgardenerData)
data("hg19_insulin_GWAS")
## Quick plot GWAS data
plotManhattan(
data = hg19_insulin_GWAS,
assembly = "hg19",
fill = c("steel blue", "grey"),
ymax = 1.1, cex = 0.20
)
plotgardener
pageTo build complex, multi-panel plotgardener
figures with annotations, we must:
plotgardener
coordinate page with pageCreate()
.x
, y
, width
, height
, just
, default.units
) in plotting functions and save the output of the plotting function.data("IMR90_HiC_10kb")
hicPlot <- plotHicSquare(
data = IMR90_HiC_10kb,
chrom = "chr21", chromstart = 28000000, chromend = 30300000,
assembly = "hg19",
x = 0.25, y = 0.25, width = 2.5, height = 2.5, default.units = "inches"
)
plotgardener
plot objects by passing them into the plot
argument of annotation functions.annoHeatmapLegend(
plot = hicPlot,
x = 2.85, y = 0.25, width = 0.1, height = 1.25, default.units = "inches"
)
annoGenomeLabel(
plot = hicPlot,
x = 0.25, y = 2.75, width = 2.5, height = 0.25, default.units = "inches"
)
For more information about how to place plots and annotations on a plotgardener
page, check out the section Working with plot objects.
When a plotgardener
plot is ready to be saved and exported, we can first remove all page guides that were made with pageCreate()
:
We can then either use the Export toggle in the RStudio plot panel, or save the plot within our R code as follows:
pdf(width = 3.25, height = 3.25)
pageCreate(width = 3.25, height = 3.25, default.units = "inches")
data("IMR90_HiC_10kb")
hicPlot <- plotHicSquare(
data = IMR90_HiC_10kb,
chrom = "chr21", chromstart = 28000000, chromend = 30300000,
assembly = "hg19",
x = 0.25, y = 0.25, width = 2.5, height = 2.5, default.units = "inches"
)
annoHeatmapLegend(
plot = hicPlot,
x = 2.85, y = 0.25, width = 0.1, height = 1.25, default.units = "inches"
)
annoGenomeLabel(
plot = hicPlot,
x = 0.25, y = 2.75, width = 2.5, height = 0.25, default.units = "inches"
)
pageGuideHide()
dev.off()
For more detailed usage and examples, please refer to the other available vignettes.
We still have many ideas to add for a second version of plotgardener
including, but not limited to: grammar of graphics style plot arguments and plot building, templates, themes, and multi-plotting functions. If you have suggestions for ways we can improve plotgardener
, please let us know!
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 grid stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] org.Hs.eg.db_3.14.0
## [2] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [3] GenomicFeatures_1.46.5
## [4] AnnotationDbi_1.56.2
## [5] Biobase_2.54.0
## [6] GenomicRanges_1.46.1
## [7] GenomeInfoDb_1.30.1
## [8] IRanges_2.28.0
## [9] S4Vectors_0.32.3
## [10] BiocGenerics_0.40.0
## [11] plotgardenerData_1.0.0
## [12] plotgardener_1.0.17
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 matrixStats_0.61.0
## [3] bit64_4.0.5 filelock_1.0.2
## [5] RColorBrewer_1.1-2 progress_1.2.2
## [7] httr_1.4.2 tools_4.1.2
## [9] bslib_0.3.1 utf8_1.2.2
## [11] R6_2.5.1 DBI_1.1.2
## [13] colorspace_2.0-3 prettyunits_1.1.1
## [15] tidyselect_1.1.2 bit_4.0.4
## [17] curl_4.3.2 compiler_4.1.2
## [19] cli_3.2.0 xml2_1.3.3
## [21] DelayedArray_0.20.0 rtracklayer_1.54.0
## [23] sass_0.4.0 scales_1.1.1
## [25] rappdirs_0.3.3 stringr_1.4.0
## [27] digest_0.6.29 Rsamtools_2.10.0
## [29] yulab.utils_0.0.4 rmarkdown_2.13
## [31] XVector_0.34.0 pkgconfig_2.0.3
## [33] htmltools_0.5.2 MatrixGenerics_1.6.0
## [35] dbplyr_2.1.1 fastmap_1.1.0
## [37] highr_0.9 rlang_1.0.2
## [39] RSQLite_2.2.10 gridGraphics_0.5-1
## [41] jquerylib_0.1.4 BiocIO_1.4.0
## [43] generics_0.1.2 jsonlite_1.8.0
## [45] BiocParallel_1.28.3 dplyr_1.0.8
## [47] RCurl_1.98-1.6 magrittr_2.0.2
## [49] ggplotify_0.1.0 GenomeInfoDbData_1.2.7
## [51] Matrix_1.4-0 Rcpp_1.0.8.2
## [53] munsell_0.5.0 fansi_1.0.2
## [55] lifecycle_1.0.1 stringi_1.7.6
## [57] yaml_2.3.5 SummarizedExperiment_1.24.0
## [59] zlibbioc_1.40.0 BiocFileCache_2.2.1
## [61] blob_1.2.2 parallel_4.1.2
## [63] crayon_1.5.0 lattice_0.20-45
## [65] Biostrings_2.62.0 hms_1.1.1
## [67] KEGGREST_1.34.0 knitr_1.37
## [69] pillar_1.7.0 rjson_0.2.21
## [71] biomaRt_2.50.3 strawr_0.0.9
## [73] XML_3.99-0.9 glue_1.6.2
## [75] evaluate_0.15 data.table_1.14.2
## [77] vctrs_0.3.8 png_0.1-7
## [79] gtable_0.3.0 purrr_0.3.4
## [81] assertthat_0.2.1 cachem_1.0.6
## [83] ggplot2_3.3.5 xfun_0.30
## [85] restfulr_0.0.13 tibble_3.1.6
## [87] GenomicAlignments_1.30.0 plyranges_1.14.0
## [89] memoise_2.0.1 ellipsis_0.3.2