Back to Multiple platform build/check report for BioC 3.9
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

CHECK report for seq2pathway on tokay2

This page was generated on 2019-04-09 12:22:34 -0400 (Tue, 09 Apr 2019).

Package 1459/1703HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
seq2pathway 1.15.0
Xinan Yang with contribution from Zhezhen Wang
Snapshot Date: 2019-04-08 17:01:18 -0400 (Mon, 08 Apr 2019)
URL: https://git.bioconductor.org/packages/seq2pathway
Branch: master
Last Commit: 22e9924
Last Changed Date: 2019-04-07 15:28:41 -0400 (Sun, 07 Apr 2019)
malbec2 Linux (Ubuntu 18.04.2 LTS) / x86_64  OK  OK  ERROR 
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ ERROR ] OK 
celaya2 OS X 10.11.6 El Capitan / x86_64  OK  OK  ERROR  OK 
merida2 OS X 10.11.6 El Capitan / x86_64  OK  OK  ERROR  OK 

Summary

Package: seq2pathway
Version: 1.15.0
Command: C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:seq2pathway.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings seq2pathway_1.15.0.tar.gz
StartedAt: 2019-04-09 05:51:00 -0400 (Tue, 09 Apr 2019)
EndedAt: 2019-04-09 05:57:48 -0400 (Tue, 09 Apr 2019)
EllapsedTime: 408.0 seconds
RetCode: 1
Status:  ERROR  
CheckDir: seq2pathway.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:seq2pathway.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings seq2pathway_1.15.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.9-bioc/meat/seq2pathway.Rcheck'
* using R Under development (unstable) (2019-03-09 r76216)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'seq2pathway/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'seq2pathway' version '1.15.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'seq2pathway' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
FAIME_EmpiricalP: no visible global function definition for 'data'
FAIME_EmpiricalP: no visible binding for global variable
  'gencode_coding'
FisherTest_GO_BP_MF_CC: no visible global function definition for
  'data'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_BP_list'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_MF_list'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_CC_list'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'Des_BP_list'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'Des_MF_list'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'Des_CC_list'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_GENCODE_df_hg_v20'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_GENCODE_df_hg_v19'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_GENCODE_df_mm_vM4'
FisherTest_GO_BP_MF_CC: no visible binding for global variable
  'GO_GENCODE_df_mm_vM1'
FisherTest_GO_BP_MF_CC: no visible global function definition for
  'fisher.test'
FisherTest_GO_BP_MF_CC: no visible global function definition for
  'p.adjust'
FisherTest_MsigDB: no visible global function definition for 'data'
FisherTest_MsigDB: no visible binding for global variable
  'Msig_GENCODE_df_hg_v20'
FisherTest_MsigDB: no visible binding for global variable
  'Msig_GENCODE_df_hg_v19'
FisherTest_MsigDB: no visible binding for global variable
  'Msig_GENCODE_df_mm_vM4'
FisherTest_MsigDB: no visible binding for global variable
  'Msig_GENCODE_df_mm_vM1'
FisherTest_MsigDB: no visible global function definition for
  'fisher.test'
FisherTest_MsigDB: no visible global function definition for 'p.adjust'
KSrank: no visible global function definition for 'ks.test'
KSrank_EmpiricalP: no visible global function definition for 'data'
KSrank_EmpiricalP: no visible binding for global variable
  'gencode_coding'
KSrank_EmpiricalP: no visible global function definition for 'ks.test'
Normalize_F: no visible global function definition for 'head'
cumulativerank_EmpiricalP: no visible global function definition for
  'data'
cumulativerank_EmpiricalP: no visible binding for global variable
  'gencode_coding'
gene2pathway_test: no visible global function definition for 'data'
gene2pathway_test: no visible binding for global variable 'GO_BP_list'
gene2pathway_test: no visible binding for global variable 'GO_MF_list'
gene2pathway_test: no visible binding for global variable 'GO_CC_list'
gene2pathway_test: no visible binding for global variable 'Des_BP_list'
gene2pathway_test: no visible binding for global variable 'Des_CC_list'
gene2pathway_test: no visible binding for global variable 'Des_MF_list'
plotTop10: no visible binding for global variable 'Fisher_odds'
plotTop10: no visible binding for global variable 'FDR'
plotTop10: no visible global function definition for 'barplot'
plotTop10: no visible global function definition for 'lines'
plotTop10: no visible global function definition for 'text'
plotTop10: no visible global function definition for 'abline'
rungene2pathway_EmpiricalP: no visible global function definition for
  'txtProgressBar'
rungene2pathway_EmpiricalP: no visible global function definition for
  'setTxtProgressBar'
runseq2gene: no visible global function definition for 'write.table'
runseq2gene: no visible global function definition for 'read.table'
runseq2pathway: no visible global function definition for 'data'
runseq2pathway: no visible binding for global variable 'GO_BP_list'
runseq2pathway: no visible binding for global variable 'GO_MF_list'
runseq2pathway: no visible binding for global variable 'GO_CC_list'
runseq2pathway: no visible binding for global variable 'Des_BP_list'
runseq2pathway: no visible binding for global variable 'Des_CC_list'
runseq2pathway: no visible binding for global variable 'Des_MF_list'
runseq2pathway: no visible global function definition for 'write.table'
runseq2pathway: no visible global function definition for 'read.table'
Undefined global functions or variables:
  Des_BP_list Des_CC_list Des_MF_list FDR Fisher_odds GO_BP_list
  GO_CC_list GO_GENCODE_df_hg_v19 GO_GENCODE_df_hg_v20
  GO_GENCODE_df_mm_vM1 GO_GENCODE_df_mm_vM4 GO_MF_list
  Msig_GENCODE_df_hg_v19 Msig_GENCODE_df_hg_v20 Msig_GENCODE_df_mm_vM1
  Msig_GENCODE_df_mm_vM4 abline barplot data fisher.test gencode_coding
  head ks.test lines p.adjust read.table setTxtProgressBar text
  txtProgressBar write.table
Consider adding
  importFrom("graphics", "abline", "barplot", "lines", "text")
  importFrom("stats", "fisher.test", "ks.test", "p.adjust")
  importFrom("utils", "data", "head", "read.table", "setTxtProgressBar",
             "txtProgressBar", "write.table")
to your NAMESPACE file.
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from documentation object 'plotTop10':
plotTop10
  Code: function(res, fdr = 0.05, or = 2, myfileID = NULL)
  Docs: function(res, fdr = 0.01, or = 1.5)
  Argument names in code not in docs:
    myfileID
  Mismatches in argument default values:
    Name: 'fdr' Code: 0.05 Docs: 0.01
    Name: 'or' Code: 2 Docs: 1.5

* checking Rd \usage sections ... WARNING
Documented arguments not in \usage in documentation object 'plotTop10':
  'myfileID'

Functions with \usage entries need to have the appropriate \alias
entries, and all their arguments documented.
The \usage entries must correspond to syntactically valid R code.
See chapter 'Writing R documentation files' in the 'Writing R
Extensions' manual.
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking installed files from 'inst/doc' ... OK
* checking files in 'vignettes' ... OK
* checking examples ...
** running examples for arch 'i386' ... ERROR
Running examples in 'seq2pathway-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: runseq2pathway
> ### Title: An function to perform the runseq2pathway algorithm(s).
> ### Aliases: runseq2pathway
> ### Keywords: methods
> 
> ### ** Examples
> 
> 	data(Chipseq_Peak_demo)
> 	require(seq2pathway.data)
Loading required package: seq2pathway.data
> 	data(MsigDB_C5, package="seq2pathway.data")
>   #generate a demo GSA.genesets object
> 	demoDB <- MsigDB_C5
> 	x=10
> 	for(i in 1:3) demoDB[[i]]<-MsigDB_C5[[i]][1:x]
>        res3=runseq2pathway(inputfile=Chipseq_Peak_demo,
+ 		genome="hg19", search_radius=100, promoter_radius=50, promoter_radius2=0,
+ 		FAIMETest=TRUE, FisherTest=FALSE,  
+ 		DataBase=demoDB, min_Intersect_Count=1)	
[1] "python process start: 2019-04-09 05:55:04.956000"
[2] "Load Reference"                                  
[3] "Check Reference files"                           
[4] "fixed reference done: 2019-04-09 05:55:41.910000"
[5] "Start Annotation"                                
[6] "Finish Annotation"                               
[7] "python process end: 2019-04-09 05:55:41.910000"  
[1] "Start test.............."
Warning: 5 or fewer samples, this method of probe collapse is unreliable...
...Running anyway, but we suggest trying another method (for example, *mean*).
[1] "Peak_Gene_Collapse....... done"
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
seq2pathway
 --- call from context --- 
runseq2pathway(inputfile = Chipseq_Peak_demo, genome = "hg19", 
    search_radius = 100, promoter_radius = 50, promoter_radius2 = 0, 
    FAIMETest = TRUE, FisherTest = FALSE, DataBase = demoDB, 
    min_Intersect_Count = 1)
 --- call from argument --- 
if (DataBase %in% c("GOterm", "BP", "CC", "MF")) {
    if (DataBase %in% c("GOterm", "BP")) {
        GO_BP_FAIME <- rungene2pathway(dat = dat_CP, gsmap = GO_BP_list, 
            alpha = alpha, logCheck = logCheck, method = "FAIME", 
            na.rm = na.rm)
        GO_BP_FAIME_N <- Normalize_F(input = GO_BP_FAIME)
        GO_BP_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
            gsmap = GO_BP_list, alpha = alpha, logCheck = logCheck, 
            method = "FAIME", B = B, na.rm = na.rm)
        GO_BP_N_P <- merge(GO_BP_FAIME_N, GO_BP_FAIME_Pvalue, 
            by = "row.names", all = TRUE)
        rownames(GO_BP_N_P) <- GO_BP_N_P$Row.names
        GO_BP_N_P <- GO_BP_N_P[, -1]
        for (i in 1:nrow(GO_BP_N_P)) {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(GO_BP_list[names(GO_BP_list) == 
                rownames(GO_BP_N_P)[i]])))
            GO_BP_N_P$Intersect_Count[i] <- length(intsect)
            GO_BP_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
            GO_BP_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                intsect, c(1)]), collapse = " ")
            rm(intsect)
            GO_BP_N_P$Des[i] <- as.character(Des_BP_list[which(names(Des_BP_list) == 
                rownames(GO_BP_N_P)[i])])
        }
        GO_BP_N_P <- GO_BP_N_P[GO_BP_N_P$Intersect_Count >= min_Intersect_Count, 
            ]
        GO_BP_N_P <- GO_BP_N_P[, c(ncol(GO_BP_N_P), 1:(ncol(GO_BP_N_P) - 
            1))]
        n.list = n.list + 1
        gene2pathway_result[[n.list]] <- GO_BP_N_P
        names(gene2pathway_result)[n.list] <- c("GO_BP")
    }
    if (DataBase %in% c("GOterm", "MF")) {
        GO_MF_FAIME <- rungene2pathway(dat = dat_CP, gsmap = GO_MF_list, 
            alpha = alpha, logCheck = logCheck, method = "FAIME", 
            na.rm = na.rm)
        GO_MF_FAIME_N <- Normalize_F(input = GO_MF_FAIME)
        GO_MF_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
            gsmap = GO_MF_list, alpha = alpha, logCheck = logCheck, 
            method = "FAIME", B = B, na.rm = na.rm)
        GO_MF_N_P <- merge(GO_MF_FAIME_N, GO_MF_FAIME_Pvalue, 
            by = "row.names", all = TRUE)
        rownames(GO_MF_N_P) <- GO_MF_N_P$Row.names
        GO_MF_N_P <- GO_MF_N_P[, -1]
        for (i in 1:nrow(GO_MF_N_P)) {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(GO_MF_list[names(GO_MF_list) == 
                rownames(GO_MF_N_P)[i]])))
            GO_MF_N_P$Intersect_Count[i] <- length(intsect)
            GO_MF_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
            GO_MF_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                intsect, c(1)]), collapse = " ")
            rm(intsect)
            GO_MF_N_P$Des[i] <- as.character(Des_MF_list[which(names(Des_MF_list) == 
                rownames(GO_MF_N_P)[i])])
        }
        GO_MF_N_P <- GO_MF_N_P[GO_MF_N_P$Intersect_Count >= min_Intersect_Count, 
            ]
        GO_MF_N_P <- GO_MF_N_P[, c(ncol(GO_MF_N_P), 1:(ncol(GO_MF_N_P) - 
            1))]
        n.list = n.list + 1
        gene2pathway_result[[n.list]] <- GO_MF_N_P
        names(gene2pathway_result)[n.list] <- c("GO_MF")
    }
    if (DataBase %in% c("GOterm", "CC")) {
        GO_CC_FAIME <- rungene2pathway(dat = dat_CP, gsmap = GO_CC_list, 
            alpha = alpha, logCheck = logCheck, method = "FAIME", 
            na.rm = na.rm)
        GO_CC_FAIME_N <- Normalize_F(input = GO_CC_FAIME)
        GO_CC_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
            gsmap = GO_CC_list, alpha = alpha, logCheck = logCheck, 
            method = "FAIME", B = B, na.rm = na.rm)
        GO_CC_N_P <- merge(GO_CC_FAIME_N, GO_CC_FAIME_Pvalue, 
            by = "row.names", all = TRUE)
        rownames(GO_CC_N_P) <- GO_CC_N_P$Row.names
        GO_CC_N_P <- GO_CC_N_P[, -1]
        for (i in 1:nrow(GO_CC_N_P)) {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(GO_CC_list[names(GO_CC_list) == 
                rownames(GO_CC_N_P)[i]])))
            GO_CC_N_P$Intersect_Count[i] <- length(intsect)
            GO_CC_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
            GO_CC_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                intsect, c(1)]), collapse = " ")
            rm(intsect)
            GO_CC_N_P$Des[i] <- as.character(Des_CC_list[which(names(Des_CC_list) == 
                rownames(GO_CC_N_P)[i])])
        }
        GO_CC_N_P <- GO_CC_N_P[GO_CC_N_P$Intersect_Count >= min_Intersect_Count, 
            ]
        GO_CC_N_P <- GO_CC_N_P[, c(ncol(GO_CC_N_P), 1:(ncol(GO_CC_N_P) - 
            1))]
        n.list = n.list + 1
        gene2pathway_result[[n.list]] <- GO_CC_N_P
        names(gene2pathway_result)[n.list] <- c("GO_CC")
    }
} else {
    dat_FAIME <- rungene2pathway(dat = dat_CP, gsmap = DataBase, 
        alpha = alpha, logCheck = logCheck, method = "FAIME", 
        na.rm = na.rm)
    N_FAIME <- Normalize_F(input = dat_FAIME)
    dat_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
        gsmap = DataBase, alpha = alpha, logCheck = logCheck, 
        method = "FAIME", B = B, na.rm = na.rm)
    N_FAIME <- as.matrix(N_FAIME)
    dat_FAIME_Pvalue <- as.matrix(dat_FAIME_Pvalue)
    DB_N_P <- cbind(N_FAIME, as.matrix(dat_FAIME_Pvalue[match(rownames(N_FAIME), 
        rownames(dat_FAIME_Pvalue)), ]))
    colnames(DB_N_P) <- c("score2pathscore_Normalized", "score2pathscore_Pvalue")
    DB_N_P <- as.data.frame(DB_N_P)
    for (i in 1:nrow(DB_N_P)) {
        if (class(DataBase) == "GSA.genesets") {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(DataBase$genesets[which(DataBase$geneset.names == 
                rownames(DB_N_P)[i])])))
        }
        else if (class(DataBase) == "list") {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(DataBase[names(DataBase) == 
                rownames(DB_N_P)[i]])))
        }
        DB_N_P$Intersect_Count[i] <- length(intsect)
        DB_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
        DB_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
            intsect, c(1)]), collapse = " ")
        rm(intsect)
        if (class(DataBase) == "GSA.genesets") {
            DB_N_P$Des[i] <- as.character(DataBase$geneset.descriptions[which(DataBase$geneset.names == 
                rownames(DB_N_P)[i])])
        }
    }
    DB_N_P <- DB_N_P[DB_N_P$Intersect_Count >= min_Intersect_Count, 
        ]
    gene2pathway_result <- DB_N_P[, c(ncol(DB_N_P), 1:(ncol(DB_N_P) - 
        1))]
}
 --- R stacktrace ---
where 1: runseq2pathway(inputfile = Chipseq_Peak_demo, genome = "hg19", 
    search_radius = 100, promoter_radius = 50, promoter_radius2 = 0, 
    FAIMETest = TRUE, FisherTest = FALSE, DataBase = demoDB, 
    min_Intersect_Count = 1)

 --- value of length: 3 type: logical ---
[1] FALSE FALSE FALSE
 --- function from context --- 
function (inputfile, search_radius = 150000, promoter_radius = 200, 
    promoter_radius2 = 100, genome = c("hg38", "hg19", "mm10", 
        "mm9"), adjacent = FALSE, SNP = FALSE, PromoterStop = FALSE, 
    NearestTwoDirection = TRUE, UTR3 = FALSE, DataBase = c("GOterm"), 
    FAIMETest = FALSE, FisherTest = TRUE, collapsemethod = c("MaxMean", 
        "function", "ME", "maxRowVariance", "MinMean", "absMinMean", 
        "absMaxMean", "Average"), alpha = 5, logCheck = FALSE, 
    B = 100, na.rm = FALSE, min_Intersect_Count = 5) 
{
    options(warn = -1)
    if (missing(inputfile)) {
        stop("please give the input file")
    }
    if (!class(inputfile) %in% c("data.frame", "GRanges")) {
        stop("please check the format of input file")
    }
    if (missing(DataBase)) {
        DataBase = "GOterm"
    }
    if (missing(FAIMETest)) {
        FAIMETest = FALSE
    }
    if (missing(FisherTest)) {
        FisherTest = TRUE
    }
    if (missing(genome)) {
        genome = "hg19"
    }
    if (missing(search_radius)) {
        search_radius = 150000
    }
    if (missing(promoter_radius)) {
        promoter_radius = 200
    }
    if (missing(promoter_radius2)) {
        promoter_radius2 = 100
    }
    if (missing(SNP)) {
        SNP = "False"
    }
    if (missing(adjacent)) {
        adjacent = "False"
    }
    if (missing(PromoterStop)) {
        PromoterStop = "False"
    }
    if (missing(NearestTwoDirection)) {
        NearestTwoDirection = "True"
    }
    if (missing(UTR3)) {
        UTR3 = "False"
    }
    if (missing(collapsemethod)) {
        collapsemethod = "MaxMean"
    }
    if (missing(B)) {
        B = 100
    }
    if (missing(alpha)) {
        alpha = 5
    }
    if (missing(logCheck)) {
        logCheck = FALSE
    }
    if (missing(na.rm)) {
        na.rm = FALSE
    }
    if (missing(min_Intersect_Count)) {
        min_Intersect_Count = 5
    }
    if (SNP %in% c("T", "TRUE", "True", TRUE)) {
        SNP = "True"
    }
    if (SNP %in% c("F", "FALSE", "False", FALSE)) {
        SNP = "False"
    }
    if (PromoterStop %in% c("T", "TRUE", "True", TRUE)) {
        PromoterStop = "True"
    }
    if (PromoterStop %in% c("F", "FALSE", "False", FALSE)) {
        PromoterStop = "False"
    }
    if (NearestTwoDirection %in% c("T", "TRUE", "True", TRUE)) {
        NearestTwoDirection = "True"
    }
    if (NearestTwoDirection %in% c("F", "FALSE", "False", FALSE)) {
        NearestTwoDirection = "False"
    }
    if (UTR3 %in% c("T", "TRUE", "True", TRUE)) {
        UTR3 = "True"
    }
    if (UTR3 %in% c("F", "FALSE", "False", FALSE)) {
        UTR3 = "False"
    }
    if (adjacent %in% c("T", "TRUE", "True", TRUE)) {
        adjacent = "True"
    }
    if (adjacent %in% c("F", "FALSE", "False", FALSE)) {
        adjacent = "False"
    }
    if (adjacent == "True") {
        search_radius = 0
    }
    if (length(genome > 1)) 
        genome = genome[1]
    if (!collapsemethod %in% c("MaxMean", "function", "ME", "maxRowVariance", 
        "MinMean", "absMinMean", "absMaxMean", "Average")) {
        stop("please check the collapsemethod")
    }
    data(GO_BP_list, package = "seq2pathway.data")
    data(GO_MF_list, package = "seq2pathway.data")
    data(GO_CC_list, package = "seq2pathway.data")
    data(Des_BP_list, package = "seq2pathway.data")
    data(Des_CC_list, package = "seq2pathway.data")
    data(Des_MF_list, package = "seq2pathway.data")
    seq2gene_result <- runseq2gene(inputfile = inputfile, search_radius = search_radius, 
        promoter_radius = promoter_radius, promoter_radius2 = promoter_radius2, 
        genome = genome, adjacent = adjacent, SNP = SNP, PromoterStop = PromoterStop, 
        NearestTwoDirection = NearestTwoDirection, UTR3 = UTR3)
    seq2gene_result_fornext <- seq2gene_result[[2]]
    seq2gene_result_fornext <- seq2gene_result_fornext[, c(1, 
        13)]
    genename <- unique(seq2gene_result_fornext[, 2])
    print("Start test..............")
    if (FisherTest == TRUE) {
        if (DataBase %in% c("GOterm", "BP", "MF", "CC")) {
            FS_test <- FisherTest_GO_BP_MF_CC(gs = as.vector(genename), 
                genome = genome, min_Intersect_Count = min_Intersect_Count, 
                Ontology = DataBase)
        }
        else {
            FS_test <- FisherTest_MsigDB(gsmap = DataBase, gs = as.vector(genename), 
                genome = genome, min_Intersect_Count = min_Intersect_Count)
        }
    }
    if (FAIMETest == TRUE) {
        tmpinfile = tempfile()
        if (class(inputfile) == "data.frame") {
            if (ncol(inputfile) < 5) {
                stop("please check the format of the input data, some column is missing")
            }
            write.table(inputfile, file = tmpinfile, sep = "\t", 
                quote = FALSE, row.names = FALSE)
        }
        if (class(inputfile) == "GRanges") {
            test <- as.data.frame(inputfile)
            if (ncol(test) < 7) {
                stop("please check the format of the input data, some column is missing")
            }
            if (ncol(test) >= 7) {
                write.table(test[, c(6, 1, 2, 3, 7)], file = tmpinfile, 
                  sep = "\t", quote = FALSE, row.names = FALSE)
            }
        }
        peak_fornext <- read.table(file = tmpinfile, header = TRUE, 
            sep = "\t")
        if (ncol(peak_fornext) < 5) 
            stop("Please check input file format, some required column is missing.")
        peak_fornext <- peak_fornext[, c(1, 5)]
        peak_anno_score <- merge(seq2gene_result_fornext, peak_fornext, 
            by = names(seq2gene_result_fornext)[1], all = TRUE)
        dat_collapsed <- Peak_Gene_Collapse(input = peak_anno_score, 
            collapsemethod = collapsemethod)
        dat_CP <- data.frame(dat_collapsed[, c(2:ncol(dat_collapsed))])
        rownames(dat_CP) <- rownames(dat_collapsed)
        colnames(dat_CP) <- colnames(dat_collapsed)[2:ncol(dat_collapsed)]
        dat_collapsed$gene <- as.vector(toupper(rownames(dat_collapsed)))
        gene2pathway_result <- list()
        n.list = 0
        if (DataBase %in% c("GOterm", "BP", "CC", "MF")) {
            if (DataBase %in% c("GOterm", "BP")) {
                GO_BP_FAIME <- rungene2pathway(dat = dat_CP, 
                  gsmap = GO_BP_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", na.rm = na.rm)
                GO_BP_FAIME_N <- Normalize_F(input = GO_BP_FAIME)
                GO_BP_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                  gsmap = GO_BP_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", B = B, na.rm = na.rm)
                GO_BP_N_P <- merge(GO_BP_FAIME_N, GO_BP_FAIME_Pvalue, 
                  by = "row.names", all = TRUE)
                rownames(GO_BP_N_P) <- GO_BP_N_P$Row.names
                GO_BP_N_P <- GO_BP_N_P[, -1]
                for (i in 1:nrow(GO_BP_N_P)) {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(GO_BP_list[names(GO_BP_list) == 
                      rownames(GO_BP_N_P)[i]])))
                  GO_BP_N_P$Intersect_Count[i] <- length(intsect)
                  GO_BP_N_P$Intersect_gene[i] <- paste(intsect, 
                    collapse = " ")
                  GO_BP_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                    intsect, c(1)]), collapse = " ")
                  rm(intsect)
                  GO_BP_N_P$Des[i] <- as.character(Des_BP_list[which(names(Des_BP_list) == 
                    rownames(GO_BP_N_P)[i])])
                }
                GO_BP_N_P <- GO_BP_N_P[GO_BP_N_P$Intersect_Count >= 
                  min_Intersect_Count, ]
                GO_BP_N_P <- GO_BP_N_P[, c(ncol(GO_BP_N_P), 1:(ncol(GO_BP_N_P) - 
                  1))]
                n.list = n.list + 1
                gene2pathway_result[[n.list]] <- GO_BP_N_P
                names(gene2pathway_result)[n.list] <- c("GO_BP")
            }
            if (DataBase %in% c("GOterm", "MF")) {
                GO_MF_FAIME <- rungene2pathway(dat = dat_CP, 
                  gsmap = GO_MF_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", na.rm = na.rm)
                GO_MF_FAIME_N <- Normalize_F(input = GO_MF_FAIME)
                GO_MF_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                  gsmap = GO_MF_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", B = B, na.rm = na.rm)
                GO_MF_N_P <- merge(GO_MF_FAIME_N, GO_MF_FAIME_Pvalue, 
                  by = "row.names", all = TRUE)
                rownames(GO_MF_N_P) <- GO_MF_N_P$Row.names
                GO_MF_N_P <- GO_MF_N_P[, -1]
                for (i in 1:nrow(GO_MF_N_P)) {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(GO_MF_list[names(GO_MF_list) == 
                      rownames(GO_MF_N_P)[i]])))
                  GO_MF_N_P$Intersect_Count[i] <- length(intsect)
                  GO_MF_N_P$Intersect_gene[i] <- paste(intsect, 
                    collapse = " ")
                  GO_MF_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                    intsect, c(1)]), collapse = " ")
                  rm(intsect)
                  GO_MF_N_P$Des[i] <- as.character(Des_MF_list[which(names(Des_MF_list) == 
                    rownames(GO_MF_N_P)[i])])
                }
                GO_MF_N_P <- GO_MF_N_P[GO_MF_N_P$Intersect_Count >= 
                  min_Intersect_Count, ]
                GO_MF_N_P <- GO_MF_N_P[, c(ncol(GO_MF_N_P), 1:(ncol(GO_MF_N_P) - 
                  1))]
                n.list = n.list + 1
                gene2pathway_result[[n.list]] <- GO_MF_N_P
                names(gene2pathway_result)[n.list] <- c("GO_MF")
            }
            if (DataBase %in% c("GOterm", "CC")) {
                GO_CC_FAIME <- rungene2pathway(dat = dat_CP, 
                  gsmap = GO_CC_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", na.rm = na.rm)
                GO_CC_FAIME_N <- Normalize_F(input = GO_CC_FAIME)
                GO_CC_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                  gsmap = GO_CC_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", B = B, na.rm = na.rm)
                GO_CC_N_P <- merge(GO_CC_FAIME_N, GO_CC_FAIME_Pvalue, 
                  by = "row.names", all = TRUE)
                rownames(GO_CC_N_P) <- GO_CC_N_P$Row.names
                GO_CC_N_P <- GO_CC_N_P[, -1]
                for (i in 1:nrow(GO_CC_N_P)) {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(GO_CC_list[names(GO_CC_list) == 
                      rownames(GO_CC_N_P)[i]])))
                  GO_CC_N_P$Intersect_Count[i] <- length(intsect)
                  GO_CC_N_P$Intersect_gene[i] <- paste(intsect, 
                    collapse = " ")
                  GO_CC_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                    intsect, c(1)]), collapse = " ")
                  rm(intsect)
                  GO_CC_N_P$Des[i] <- as.character(Des_CC_list[which(names(Des_CC_list) == 
                    rownames(GO_CC_N_P)[i])])
                }
                GO_CC_N_P <- GO_CC_N_P[GO_CC_N_P$Intersect_Count >= 
                  min_Intersect_Count, ]
                GO_CC_N_P <- GO_CC_N_P[, c(ncol(GO_CC_N_P), 1:(ncol(GO_CC_N_P) - 
                  1))]
                n.list = n.list + 1
                gene2pathway_result[[n.list]] <- GO_CC_N_P
                names(gene2pathway_result)[n.list] <- c("GO_CC")
            }
        }
        else {
            dat_FAIME <- rungene2pathway(dat = dat_CP, gsmap = DataBase, 
                alpha = alpha, logCheck = logCheck, method = "FAIME", 
                na.rm = na.rm)
            N_FAIME <- Normalize_F(input = dat_FAIME)
            dat_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                gsmap = DataBase, alpha = alpha, logCheck = logCheck, 
                method = "FAIME", B = B, na.rm = na.rm)
            N_FAIME <- as.matrix(N_FAIME)
            dat_FAIME_Pvalue <- as.matrix(dat_FAIME_Pvalue)
            DB_N_P <- cbind(N_FAIME, as.matrix(dat_FAIME_Pvalue[match(rownames(N_FAIME), 
                rownames(dat_FAIME_Pvalue)), ]))
            colnames(DB_N_P) <- c("score2pathscore_Normalized", 
                "score2pathscore_Pvalue")
            DB_N_P <- as.data.frame(DB_N_P)
            for (i in 1:nrow(DB_N_P)) {
                if (class(DataBase) == "GSA.genesets") {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(DataBase$genesets[which(DataBase$geneset.names == 
                      rownames(DB_N_P)[i])])))
                }
                else if (class(DataBase) == "list") {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(DataBase[names(DataBase) == 
                      rownames(DB_N_P)[i]])))
                }
                DB_N_P$Intersect_Count[i] <- length(intsect)
                DB_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
                DB_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                  intsect, c(1)]), collapse = " ")
                rm(intsect)
                if (class(DataBase) == "GSA.genesets") {
                  DB_N_P$Des[i] <- as.character(DataBase$geneset.descriptions[which(DataBase$geneset.names == 
                    rownames(DB_N_P)[i])])
                }
            }
            DB_N_P <- DB_N_P[DB_N_P$Intersect_Count >= min_Intersect_Count, 
                ]
            gene2pathway_result <- DB_N_P[, c(ncol(DB_N_P), 1:(ncol(DB_N_P) - 
                1))]
        }
        print("gene2pathway analysis is done")
    }
    if (exists("gene2pathway_result") & exists("FS_test")) {
        TotalResult <- list()
        TotalResult[[1]] <- seq2gene_result
        names(TotalResult)[1] <- "seq2gene_result"
        TotalResult[[2]] <- gene2pathway_result
        names(TotalResult)[2] <- "gene2pathway_result.FAIME"
        TotalResult[[3]] <- FS_test
        names(TotalResult)[3] <- "gene2pathway_result.FET"
        TotalResult[[4]] <- dat_CP
        names(TotalResult)[4] <- "gene_collapse"
    }
    else if (exists("gene2pathway_result") & exists("FS_test") == 
        FALSE) {
        TotalResult <- list()
        TotalResult[[1]] <- seq2gene_result
        names(TotalResult)[1] <- "seq2gene_result"
        TotalResult[[2]] <- gene2pathway_result
        names(TotalResult)[2] <- "gene2pathway_result.FAIME"
        TotalResult[[3]] <- dat_CP
        names(TotalResult)[3] <- "gene_collapse"
    }
    else if (exists("gene2pathway_result") == FALSE & exists("FS_test")) {
        TotalResult <- list()
        TotalResult[[1]] <- seq2gene_result
        names(TotalResult)[1] <- "seq2gene_result"
        TotalResult[[2]] <- FS_test
        names(TotalResult)[2] <- "gene2pathway_result.FET"
    }
    return(TotalResult)
}
<bytecode: 0x0cc602d8>
<environment: namespace:seq2pathway>
 --- function search by body ---
Function runseq2pathway in namespace seq2pathway has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

** running examples for arch 'x64' ... ERROR
Running examples in 'seq2pathway-Ex.R' failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: runseq2pathway
> ### Title: An function to perform the runseq2pathway algorithm(s).
> ### Aliases: runseq2pathway
> ### Keywords: methods
> 
> ### ** Examples
> 
> 	data(Chipseq_Peak_demo)
> 	require(seq2pathway.data)
Loading required package: seq2pathway.data
> 	data(MsigDB_C5, package="seq2pathway.data")
>   #generate a demo GSA.genesets object
> 	demoDB <- MsigDB_C5
> 	x=10
> 	for(i in 1:3) demoDB[[i]]<-MsigDB_C5[[i]][1:x]
>        res3=runseq2pathway(inputfile=Chipseq_Peak_demo,
+ 		genome="hg19", search_radius=100, promoter_radius=50, promoter_radius2=0,
+ 		FAIMETest=TRUE, FisherTest=FALSE,  
+ 		DataBase=demoDB, min_Intersect_Count=1)	
[1] "python process start: 2019-04-09 05:57:11.989000"
[2] "Load Reference"                                  
[3] "Check Reference files"                           
[4] "fixed reference done: 2019-04-09 05:57:39.973000"
[5] "Start Annotation"                                
[6] "Finish Annotation"                               
[7] "python process end: 2019-04-09 05:57:39.973000"  
[1] "Start test.............."
Warning: 5 or fewer samples, this method of probe collapse is unreliable...
...Running anyway, but we suggest trying another method (for example, *mean*).
[1] "Peak_Gene_Collapse....... done"
 ----------- FAILURE REPORT -------------- 
 --- failure: the condition has length > 1 ---
 --- srcref --- 
: 
 --- package (from environment) --- 
seq2pathway
 --- call from context --- 
runseq2pathway(inputfile = Chipseq_Peak_demo, genome = "hg19", 
    search_radius = 100, promoter_radius = 50, promoter_radius2 = 0, 
    FAIMETest = TRUE, FisherTest = FALSE, DataBase = demoDB, 
    min_Intersect_Count = 1)
 --- call from argument --- 
if (DataBase %in% c("GOterm", "BP", "CC", "MF")) {
    if (DataBase %in% c("GOterm", "BP")) {
        GO_BP_FAIME <- rungene2pathway(dat = dat_CP, gsmap = GO_BP_list, 
            alpha = alpha, logCheck = logCheck, method = "FAIME", 
            na.rm = na.rm)
        GO_BP_FAIME_N <- Normalize_F(input = GO_BP_FAIME)
        GO_BP_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
            gsmap = GO_BP_list, alpha = alpha, logCheck = logCheck, 
            method = "FAIME", B = B, na.rm = na.rm)
        GO_BP_N_P <- merge(GO_BP_FAIME_N, GO_BP_FAIME_Pvalue, 
            by = "row.names", all = TRUE)
        rownames(GO_BP_N_P) <- GO_BP_N_P$Row.names
        GO_BP_N_P <- GO_BP_N_P[, -1]
        for (i in 1:nrow(GO_BP_N_P)) {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(GO_BP_list[names(GO_BP_list) == 
                rownames(GO_BP_N_P)[i]])))
            GO_BP_N_P$Intersect_Count[i] <- length(intsect)
            GO_BP_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
            GO_BP_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                intsect, c(1)]), collapse = " ")
            rm(intsect)
            GO_BP_N_P$Des[i] <- as.character(Des_BP_list[which(names(Des_BP_list) == 
                rownames(GO_BP_N_P)[i])])
        }
        GO_BP_N_P <- GO_BP_N_P[GO_BP_N_P$Intersect_Count >= min_Intersect_Count, 
            ]
        GO_BP_N_P <- GO_BP_N_P[, c(ncol(GO_BP_N_P), 1:(ncol(GO_BP_N_P) - 
            1))]
        n.list = n.list + 1
        gene2pathway_result[[n.list]] <- GO_BP_N_P
        names(gene2pathway_result)[n.list] <- c("GO_BP")
    }
    if (DataBase %in% c("GOterm", "MF")) {
        GO_MF_FAIME <- rungene2pathway(dat = dat_CP, gsmap = GO_MF_list, 
            alpha = alpha, logCheck = logCheck, method = "FAIME", 
            na.rm = na.rm)
        GO_MF_FAIME_N <- Normalize_F(input = GO_MF_FAIME)
        GO_MF_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
            gsmap = GO_MF_list, alpha = alpha, logCheck = logCheck, 
            method = "FAIME", B = B, na.rm = na.rm)
        GO_MF_N_P <- merge(GO_MF_FAIME_N, GO_MF_FAIME_Pvalue, 
            by = "row.names", all = TRUE)
        rownames(GO_MF_N_P) <- GO_MF_N_P$Row.names
        GO_MF_N_P <- GO_MF_N_P[, -1]
        for (i in 1:nrow(GO_MF_N_P)) {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(GO_MF_list[names(GO_MF_list) == 
                rownames(GO_MF_N_P)[i]])))
            GO_MF_N_P$Intersect_Count[i] <- length(intsect)
            GO_MF_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
            GO_MF_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                intsect, c(1)]), collapse = " ")
            rm(intsect)
            GO_MF_N_P$Des[i] <- as.character(Des_MF_list[which(names(Des_MF_list) == 
                rownames(GO_MF_N_P)[i])])
        }
        GO_MF_N_P <- GO_MF_N_P[GO_MF_N_P$Intersect_Count >= min_Intersect_Count, 
            ]
        GO_MF_N_P <- GO_MF_N_P[, c(ncol(GO_MF_N_P), 1:(ncol(GO_MF_N_P) - 
            1))]
        n.list = n.list + 1
        gene2pathway_result[[n.list]] <- GO_MF_N_P
        names(gene2pathway_result)[n.list] <- c("GO_MF")
    }
    if (DataBase %in% c("GOterm", "CC")) {
        GO_CC_FAIME <- rungene2pathway(dat = dat_CP, gsmap = GO_CC_list, 
            alpha = alpha, logCheck = logCheck, method = "FAIME", 
            na.rm = na.rm)
        GO_CC_FAIME_N <- Normalize_F(input = GO_CC_FAIME)
        GO_CC_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
            gsmap = GO_CC_list, alpha = alpha, logCheck = logCheck, 
            method = "FAIME", B = B, na.rm = na.rm)
        GO_CC_N_P <- merge(GO_CC_FAIME_N, GO_CC_FAIME_Pvalue, 
            by = "row.names", all = TRUE)
        rownames(GO_CC_N_P) <- GO_CC_N_P$Row.names
        GO_CC_N_P <- GO_CC_N_P[, -1]
        for (i in 1:nrow(GO_CC_N_P)) {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(GO_CC_list[names(GO_CC_list) == 
                rownames(GO_CC_N_P)[i]])))
            GO_CC_N_P$Intersect_Count[i] <- length(intsect)
            GO_CC_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
            GO_CC_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                intsect, c(1)]), collapse = " ")
            rm(intsect)
            GO_CC_N_P$Des[i] <- as.character(Des_CC_list[which(names(Des_CC_list) == 
                rownames(GO_CC_N_P)[i])])
        }
        GO_CC_N_P <- GO_CC_N_P[GO_CC_N_P$Intersect_Count >= min_Intersect_Count, 
            ]
        GO_CC_N_P <- GO_CC_N_P[, c(ncol(GO_CC_N_P), 1:(ncol(GO_CC_N_P) - 
            1))]
        n.list = n.list + 1
        gene2pathway_result[[n.list]] <- GO_CC_N_P
        names(gene2pathway_result)[n.list] <- c("GO_CC")
    }
} else {
    dat_FAIME <- rungene2pathway(dat = dat_CP, gsmap = DataBase, 
        alpha = alpha, logCheck = logCheck, method = "FAIME", 
        na.rm = na.rm)
    N_FAIME <- Normalize_F(input = dat_FAIME)
    dat_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
        gsmap = DataBase, alpha = alpha, logCheck = logCheck, 
        method = "FAIME", B = B, na.rm = na.rm)
    N_FAIME <- as.matrix(N_FAIME)
    dat_FAIME_Pvalue <- as.matrix(dat_FAIME_Pvalue)
    DB_N_P <- cbind(N_FAIME, as.matrix(dat_FAIME_Pvalue[match(rownames(N_FAIME), 
        rownames(dat_FAIME_Pvalue)), ]))
    colnames(DB_N_P) <- c("score2pathscore_Normalized", "score2pathscore_Pvalue")
    DB_N_P <- as.data.frame(DB_N_P)
    for (i in 1:nrow(DB_N_P)) {
        if (class(DataBase) == "GSA.genesets") {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(DataBase$genesets[which(DataBase$geneset.names == 
                rownames(DB_N_P)[i])])))
        }
        else if (class(DataBase) == "list") {
            intsect <- intersect(toupper(rownames(dat_CP)), toupper(unlist(DataBase[names(DataBase) == 
                rownames(DB_N_P)[i]])))
        }
        DB_N_P$Intersect_Count[i] <- length(intsect)
        DB_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
        DB_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
            intsect, c(1)]), collapse = " ")
        rm(intsect)
        if (class(DataBase) == "GSA.genesets") {
            DB_N_P$Des[i] <- as.character(DataBase$geneset.descriptions[which(DataBase$geneset.names == 
                rownames(DB_N_P)[i])])
        }
    }
    DB_N_P <- DB_N_P[DB_N_P$Intersect_Count >= min_Intersect_Count, 
        ]
    gene2pathway_result <- DB_N_P[, c(ncol(DB_N_P), 1:(ncol(DB_N_P) - 
        1))]
}
 --- R stacktrace ---
where 1: runseq2pathway(inputfile = Chipseq_Peak_demo, genome = "hg19", 
    search_radius = 100, promoter_radius = 50, promoter_radius2 = 0, 
    FAIMETest = TRUE, FisherTest = FALSE, DataBase = demoDB, 
    min_Intersect_Count = 1)

 --- value of length: 3 type: logical ---
[1] FALSE FALSE FALSE
 --- function from context --- 
function (inputfile, search_radius = 150000, promoter_radius = 200, 
    promoter_radius2 = 100, genome = c("hg38", "hg19", "mm10", 
        "mm9"), adjacent = FALSE, SNP = FALSE, PromoterStop = FALSE, 
    NearestTwoDirection = TRUE, UTR3 = FALSE, DataBase = c("GOterm"), 
    FAIMETest = FALSE, FisherTest = TRUE, collapsemethod = c("MaxMean", 
        "function", "ME", "maxRowVariance", "MinMean", "absMinMean", 
        "absMaxMean", "Average"), alpha = 5, logCheck = FALSE, 
    B = 100, na.rm = FALSE, min_Intersect_Count = 5) 
{
    options(warn = -1)
    if (missing(inputfile)) {
        stop("please give the input file")
    }
    if (!class(inputfile) %in% c("data.frame", "GRanges")) {
        stop("please check the format of input file")
    }
    if (missing(DataBase)) {
        DataBase = "GOterm"
    }
    if (missing(FAIMETest)) {
        FAIMETest = FALSE
    }
    if (missing(FisherTest)) {
        FisherTest = TRUE
    }
    if (missing(genome)) {
        genome = "hg19"
    }
    if (missing(search_radius)) {
        search_radius = 150000
    }
    if (missing(promoter_radius)) {
        promoter_radius = 200
    }
    if (missing(promoter_radius2)) {
        promoter_radius2 = 100
    }
    if (missing(SNP)) {
        SNP = "False"
    }
    if (missing(adjacent)) {
        adjacent = "False"
    }
    if (missing(PromoterStop)) {
        PromoterStop = "False"
    }
    if (missing(NearestTwoDirection)) {
        NearestTwoDirection = "True"
    }
    if (missing(UTR3)) {
        UTR3 = "False"
    }
    if (missing(collapsemethod)) {
        collapsemethod = "MaxMean"
    }
    if (missing(B)) {
        B = 100
    }
    if (missing(alpha)) {
        alpha = 5
    }
    if (missing(logCheck)) {
        logCheck = FALSE
    }
    if (missing(na.rm)) {
        na.rm = FALSE
    }
    if (missing(min_Intersect_Count)) {
        min_Intersect_Count = 5
    }
    if (SNP %in% c("T", "TRUE", "True", TRUE)) {
        SNP = "True"
    }
    if (SNP %in% c("F", "FALSE", "False", FALSE)) {
        SNP = "False"
    }
    if (PromoterStop %in% c("T", "TRUE", "True", TRUE)) {
        PromoterStop = "True"
    }
    if (PromoterStop %in% c("F", "FALSE", "False", FALSE)) {
        PromoterStop = "False"
    }
    if (NearestTwoDirection %in% c("T", "TRUE", "True", TRUE)) {
        NearestTwoDirection = "True"
    }
    if (NearestTwoDirection %in% c("F", "FALSE", "False", FALSE)) {
        NearestTwoDirection = "False"
    }
    if (UTR3 %in% c("T", "TRUE", "True", TRUE)) {
        UTR3 = "True"
    }
    if (UTR3 %in% c("F", "FALSE", "False", FALSE)) {
        UTR3 = "False"
    }
    if (adjacent %in% c("T", "TRUE", "True", TRUE)) {
        adjacent = "True"
    }
    if (adjacent %in% c("F", "FALSE", "False", FALSE)) {
        adjacent = "False"
    }
    if (adjacent == "True") {
        search_radius = 0
    }
    if (length(genome > 1)) 
        genome = genome[1]
    if (!collapsemethod %in% c("MaxMean", "function", "ME", "maxRowVariance", 
        "MinMean", "absMinMean", "absMaxMean", "Average")) {
        stop("please check the collapsemethod")
    }
    data(GO_BP_list, package = "seq2pathway.data")
    data(GO_MF_list, package = "seq2pathway.data")
    data(GO_CC_list, package = "seq2pathway.data")
    data(Des_BP_list, package = "seq2pathway.data")
    data(Des_CC_list, package = "seq2pathway.data")
    data(Des_MF_list, package = "seq2pathway.data")
    seq2gene_result <- runseq2gene(inputfile = inputfile, search_radius = search_radius, 
        promoter_radius = promoter_radius, promoter_radius2 = promoter_radius2, 
        genome = genome, adjacent = adjacent, SNP = SNP, PromoterStop = PromoterStop, 
        NearestTwoDirection = NearestTwoDirection, UTR3 = UTR3)
    seq2gene_result_fornext <- seq2gene_result[[2]]
    seq2gene_result_fornext <- seq2gene_result_fornext[, c(1, 
        13)]
    genename <- unique(seq2gene_result_fornext[, 2])
    print("Start test..............")
    if (FisherTest == TRUE) {
        if (DataBase %in% c("GOterm", "BP", "MF", "CC")) {
            FS_test <- FisherTest_GO_BP_MF_CC(gs = as.vector(genename), 
                genome = genome, min_Intersect_Count = min_Intersect_Count, 
                Ontology = DataBase)
        }
        else {
            FS_test <- FisherTest_MsigDB(gsmap = DataBase, gs = as.vector(genename), 
                genome = genome, min_Intersect_Count = min_Intersect_Count)
        }
    }
    if (FAIMETest == TRUE) {
        tmpinfile = tempfile()
        if (class(inputfile) == "data.frame") {
            if (ncol(inputfile) < 5) {
                stop("please check the format of the input data, some column is missing")
            }
            write.table(inputfile, file = tmpinfile, sep = "\t", 
                quote = FALSE, row.names = FALSE)
        }
        if (class(inputfile) == "GRanges") {
            test <- as.data.frame(inputfile)
            if (ncol(test) < 7) {
                stop("please check the format of the input data, some column is missing")
            }
            if (ncol(test) >= 7) {
                write.table(test[, c(6, 1, 2, 3, 7)], file = tmpinfile, 
                  sep = "\t", quote = FALSE, row.names = FALSE)
            }
        }
        peak_fornext <- read.table(file = tmpinfile, header = TRUE, 
            sep = "\t")
        if (ncol(peak_fornext) < 5) 
            stop("Please check input file format, some required column is missing.")
        peak_fornext <- peak_fornext[, c(1, 5)]
        peak_anno_score <- merge(seq2gene_result_fornext, peak_fornext, 
            by = names(seq2gene_result_fornext)[1], all = TRUE)
        dat_collapsed <- Peak_Gene_Collapse(input = peak_anno_score, 
            collapsemethod = collapsemethod)
        dat_CP <- data.frame(dat_collapsed[, c(2:ncol(dat_collapsed))])
        rownames(dat_CP) <- rownames(dat_collapsed)
        colnames(dat_CP) <- colnames(dat_collapsed)[2:ncol(dat_collapsed)]
        dat_collapsed$gene <- as.vector(toupper(rownames(dat_collapsed)))
        gene2pathway_result <- list()
        n.list = 0
        if (DataBase %in% c("GOterm", "BP", "CC", "MF")) {
            if (DataBase %in% c("GOterm", "BP")) {
                GO_BP_FAIME <- rungene2pathway(dat = dat_CP, 
                  gsmap = GO_BP_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", na.rm = na.rm)
                GO_BP_FAIME_N <- Normalize_F(input = GO_BP_FAIME)
                GO_BP_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                  gsmap = GO_BP_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", B = B, na.rm = na.rm)
                GO_BP_N_P <- merge(GO_BP_FAIME_N, GO_BP_FAIME_Pvalue, 
                  by = "row.names", all = TRUE)
                rownames(GO_BP_N_P) <- GO_BP_N_P$Row.names
                GO_BP_N_P <- GO_BP_N_P[, -1]
                for (i in 1:nrow(GO_BP_N_P)) {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(GO_BP_list[names(GO_BP_list) == 
                      rownames(GO_BP_N_P)[i]])))
                  GO_BP_N_P$Intersect_Count[i] <- length(intsect)
                  GO_BP_N_P$Intersect_gene[i] <- paste(intsect, 
                    collapse = " ")
                  GO_BP_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                    intsect, c(1)]), collapse = " ")
                  rm(intsect)
                  GO_BP_N_P$Des[i] <- as.character(Des_BP_list[which(names(Des_BP_list) == 
                    rownames(GO_BP_N_P)[i])])
                }
                GO_BP_N_P <- GO_BP_N_P[GO_BP_N_P$Intersect_Count >= 
                  min_Intersect_Count, ]
                GO_BP_N_P <- GO_BP_N_P[, c(ncol(GO_BP_N_P), 1:(ncol(GO_BP_N_P) - 
                  1))]
                n.list = n.list + 1
                gene2pathway_result[[n.list]] <- GO_BP_N_P
                names(gene2pathway_result)[n.list] <- c("GO_BP")
            }
            if (DataBase %in% c("GOterm", "MF")) {
                GO_MF_FAIME <- rungene2pathway(dat = dat_CP, 
                  gsmap = GO_MF_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", na.rm = na.rm)
                GO_MF_FAIME_N <- Normalize_F(input = GO_MF_FAIME)
                GO_MF_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                  gsmap = GO_MF_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", B = B, na.rm = na.rm)
                GO_MF_N_P <- merge(GO_MF_FAIME_N, GO_MF_FAIME_Pvalue, 
                  by = "row.names", all = TRUE)
                rownames(GO_MF_N_P) <- GO_MF_N_P$Row.names
                GO_MF_N_P <- GO_MF_N_P[, -1]
                for (i in 1:nrow(GO_MF_N_P)) {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(GO_MF_list[names(GO_MF_list) == 
                      rownames(GO_MF_N_P)[i]])))
                  GO_MF_N_P$Intersect_Count[i] <- length(intsect)
                  GO_MF_N_P$Intersect_gene[i] <- paste(intsect, 
                    collapse = " ")
                  GO_MF_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                    intsect, c(1)]), collapse = " ")
                  rm(intsect)
                  GO_MF_N_P$Des[i] <- as.character(Des_MF_list[which(names(Des_MF_list) == 
                    rownames(GO_MF_N_P)[i])])
                }
                GO_MF_N_P <- GO_MF_N_P[GO_MF_N_P$Intersect_Count >= 
                  min_Intersect_Count, ]
                GO_MF_N_P <- GO_MF_N_P[, c(ncol(GO_MF_N_P), 1:(ncol(GO_MF_N_P) - 
                  1))]
                n.list = n.list + 1
                gene2pathway_result[[n.list]] <- GO_MF_N_P
                names(gene2pathway_result)[n.list] <- c("GO_MF")
            }
            if (DataBase %in% c("GOterm", "CC")) {
                GO_CC_FAIME <- rungene2pathway(dat = dat_CP, 
                  gsmap = GO_CC_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", na.rm = na.rm)
                GO_CC_FAIME_N <- Normalize_F(input = GO_CC_FAIME)
                GO_CC_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                  gsmap = GO_CC_list, alpha = alpha, logCheck = logCheck, 
                  method = "FAIME", B = B, na.rm = na.rm)
                GO_CC_N_P <- merge(GO_CC_FAIME_N, GO_CC_FAIME_Pvalue, 
                  by = "row.names", all = TRUE)
                rownames(GO_CC_N_P) <- GO_CC_N_P$Row.names
                GO_CC_N_P <- GO_CC_N_P[, -1]
                for (i in 1:nrow(GO_CC_N_P)) {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(GO_CC_list[names(GO_CC_list) == 
                      rownames(GO_CC_N_P)[i]])))
                  GO_CC_N_P$Intersect_Count[i] <- length(intsect)
                  GO_CC_N_P$Intersect_gene[i] <- paste(intsect, 
                    collapse = " ")
                  GO_CC_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                    intsect, c(1)]), collapse = " ")
                  rm(intsect)
                  GO_CC_N_P$Des[i] <- as.character(Des_CC_list[which(names(Des_CC_list) == 
                    rownames(GO_CC_N_P)[i])])
                }
                GO_CC_N_P <- GO_CC_N_P[GO_CC_N_P$Intersect_Count >= 
                  min_Intersect_Count, ]
                GO_CC_N_P <- GO_CC_N_P[, c(ncol(GO_CC_N_P), 1:(ncol(GO_CC_N_P) - 
                  1))]
                n.list = n.list + 1
                gene2pathway_result[[n.list]] <- GO_CC_N_P
                names(gene2pathway_result)[n.list] <- c("GO_CC")
            }
        }
        else {
            dat_FAIME <- rungene2pathway(dat = dat_CP, gsmap = DataBase, 
                alpha = alpha, logCheck = logCheck, method = "FAIME", 
                na.rm = na.rm)
            N_FAIME <- Normalize_F(input = dat_FAIME)
            dat_FAIME_Pvalue <- rungene2pathway_EmpiricalP(dat = dat_CP, 
                gsmap = DataBase, alpha = alpha, logCheck = logCheck, 
                method = "FAIME", B = B, na.rm = na.rm)
            N_FAIME <- as.matrix(N_FAIME)
            dat_FAIME_Pvalue <- as.matrix(dat_FAIME_Pvalue)
            DB_N_P <- cbind(N_FAIME, as.matrix(dat_FAIME_Pvalue[match(rownames(N_FAIME), 
                rownames(dat_FAIME_Pvalue)), ]))
            colnames(DB_N_P) <- c("score2pathscore_Normalized", 
                "score2pathscore_Pvalue")
            DB_N_P <- as.data.frame(DB_N_P)
            for (i in 1:nrow(DB_N_P)) {
                if (class(DataBase) == "GSA.genesets") {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(DataBase$genesets[which(DataBase$geneset.names == 
                      rownames(DB_N_P)[i])])))
                }
                else if (class(DataBase) == "list") {
                  intsect <- intersect(toupper(rownames(dat_CP)), 
                    toupper(unlist(DataBase[names(DataBase) == 
                      rownames(DB_N_P)[i]])))
                }
                DB_N_P$Intersect_Count[i] <- length(intsect)
                DB_N_P$Intersect_gene[i] <- paste(intsect, collapse = " ")
                DB_N_P$Intersect_element[i] <- paste(as.vector(dat_collapsed[dat_collapsed$gene %in% 
                  intsect, c(1)]), collapse = " ")
                rm(intsect)
                if (class(DataBase) == "GSA.genesets") {
                  DB_N_P$Des[i] <- as.character(DataBase$geneset.descriptions[which(DataBase$geneset.names == 
                    rownames(DB_N_P)[i])])
                }
            }
            DB_N_P <- DB_N_P[DB_N_P$Intersect_Count >= min_Intersect_Count, 
                ]
            gene2pathway_result <- DB_N_P[, c(ncol(DB_N_P), 1:(ncol(DB_N_P) - 
                1))]
        }
        print("gene2pathway analysis is done")
    }
    if (exists("gene2pathway_result") & exists("FS_test")) {
        TotalResult <- list()
        TotalResult[[1]] <- seq2gene_result
        names(TotalResult)[1] <- "seq2gene_result"
        TotalResult[[2]] <- gene2pathway_result
        names(TotalResult)[2] <- "gene2pathway_result.FAIME"
        TotalResult[[3]] <- FS_test
        names(TotalResult)[3] <- "gene2pathway_result.FET"
        TotalResult[[4]] <- dat_CP
        names(TotalResult)[4] <- "gene_collapse"
    }
    else if (exists("gene2pathway_result") & exists("FS_test") == 
        FALSE) {
        TotalResult <- list()
        TotalResult[[1]] <- seq2gene_result
        names(TotalResult)[1] <- "seq2gene_result"
        TotalResult[[2]] <- gene2pathway_result
        names(TotalResult)[2] <- "gene2pathway_result.FAIME"
        TotalResult[[3]] <- dat_CP
        names(TotalResult)[3] <- "gene_collapse"
    }
    else if (exists("gene2pathway_result") == FALSE & exists("FS_test")) {
        TotalResult <- list()
        TotalResult[[1]] <- seq2gene_result
        names(TotalResult)[1] <- "seq2gene_result"
        TotalResult[[2]] <- FS_test
        names(TotalResult)[2] <- "gene2pathway_result.FET"
    }
    return(TotalResult)
}
<bytecode: 0x000000001cd3b308>
<environment: namespace:seq2pathway>
 --- function search by body ---
Function runseq2pathway in namespace seq2pathway has this body.
 ----------- END OF FAILURE REPORT -------------- 
Fatal error: the condition has length > 1

* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 ERRORs, 2 WARNINGs, 1 NOTE
See
  'C:/Users/biocbuild/bbs-3.9-bioc/meat/seq2pathway.Rcheck/00check.log'
for details.


Installation output

seq2pathway.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.9/bioc/src/contrib/seq2pathway_1.15.0.tar.gz && rm -rf seq2pathway.buildbin-libdir && mkdir seq2pathway.buildbin-libdir && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=seq2pathway.buildbin-libdir seq2pathway_1.15.0.tar.gz && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL seq2pathway_1.15.0.zip && rm seq2pathway_1.15.0.tar.gz seq2pathway_1.15.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 11.0M  100 11.0M    0     0  47.4M      0 --:--:-- --:--:-- --:--:-- 49.0M

install for i386

* installing *source* package 'seq2pathway' ...
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
  converting help for package 'seq2pathway'
    finding HTML links ... done
    Chipseq_Peak_demo                       html  
    FisherTest_GO_BP_MF_CC                  html  
    FisherTest_MsigDB                       html  
    GRanges_demo                            html  
    addDescription                          html  
    dat_RNA                                 html  
    dat_chip                                html  
    gene2pathway_test                       html  
    plotTop10                               html  
    runseq2gene                             html  
    runseq2pathway                          html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'seq2pathway' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'seq2pathway' as seq2pathway_1.15.0.zip
* DONE (seq2pathway)
* installing to library 'C:/Users/biocbuild/bbs-3.9-bioc/R/library'
package 'seq2pathway' successfully unpacked and MD5 sums checked

Tests output


Example timings

seq2pathway.Rcheck/examples_i386/seq2pathway-Ex.timings

nameusersystemelapsed
Chipseq_Peak_demo000
FisherTest_GO_BP_MF_CC2.670.032.80
FisherTest_MsigDB1.600.021.64
GRanges_demo000
addDescription 0.37 0.0413.58
dat_RNA0.030.000.03
dat_chip0.000.020.02
gene2pathway_test1.210.281.59
plotTop102.500.032.53
runseq2gene 0.00 0.0235.75

seq2pathway.Rcheck/examples_x64/seq2pathway-Ex.timings

nameusersystemelapsed
Chipseq_Peak_demo0.010.000.01
FisherTest_GO_BP_MF_CC2.250.012.27
FisherTest_MsigDB1.560.021.57
GRanges_demo000
addDescription 0.36 0.0028.11
dat_RNA0.020.010.03
dat_chip000
gene2pathway_test0.680.190.88
plotTop103.210.023.22
runseq2gene 0.00 0.0032.72