Back to Multiple platform build/check report for BioC 3.14
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2022-04-13 12:08:48 -0400 (Wed, 13 Apr 2022).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 20.04.4 LTS)x86_644.1.3 (2022-03-10) -- "One Push-Up" 4324
tokay2Windows Server 2012 R2 Standardx644.1.3 (2022-03-10) -- "One Push-Up" 4077
machv2macOS 10.14.6 Mojavex86_644.1.3 (2022-03-10) -- "One Push-Up" 4137
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on machv2


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1807/2083HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.4.0  (landing page)
Yichen Wang
Snapshot Date: 2022-04-12 01:55:07 -0400 (Tue, 12 Apr 2022)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_14
git_last_commit: 91f98fc
git_last_commit_date: 2021-10-27 11:24:49 -0400 (Wed, 27 Oct 2021)
nebbiolo2Linux (Ubuntu 20.04.4 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
tokay2Windows Server 2012 R2 Standard / x64  OK    OK    ERROR    OK  
machv2macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: singleCellTK
Version: 2.4.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.4.0.tar.gz
StartedAt: 2022-04-12 18:37:24 -0400 (Tue, 12 Apr 2022)
EndedAt: 2022-04-12 18:56:15 -0400 (Tue, 12 Apr 2022)
EllapsedTime: 1130.9 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.4.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.14-bioc/meat/singleCellTK.Rcheck’
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.4.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.3Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.8Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... NOTE
Namespaces in Imports field not imported from:
  'AnnotationDbi' 'RColorBrewer'
  All declared Imports should be used.
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   32.604  0.538  33.176
importExampleData        27.459  2.170  31.255
plotDoubletFinderResults 27.785  0.144  27.949
runDoubletFinder         19.573  0.049  19.632
runScDblFinder           15.900  0.356  16.272
plotBatchCorrCompare     12.134  0.107  12.237
plotMarkerDiffExp        11.670  0.040  11.723
plotScdsHybridResults    11.305  0.124  11.436
plotBcdsResults          10.362  0.255  10.620
findMarkerTopTable       10.215  0.047  10.274
findMarkerDiffExp         9.982  0.090  10.079
plotDEGHeatmap            9.637  0.090   9.736
plotEmptyDropsResults     9.609  0.026   9.649
runDESeq2                 9.588  0.042   9.642
plotEmptyDropsScatter     9.586  0.017   9.613
plotDecontXResults        9.441  0.064   9.517
runEmptyDrops             9.135  0.017   9.161
runDecontX                7.865  0.026   7.896
plotCxdsResults           7.726  0.051   7.773
plotDEGViolin             7.407  0.152   7.571
runMAST                   7.226  0.042   7.272
detectCellOutlier         6.853  0.240   7.103
plotUMAP                  6.427  0.046   6.476
importGeneSetsFromMSigDB  6.102  0.331   6.442
plotDEGRegression         6.062  0.042   6.113
seuratSCTransform         4.927  0.091   5.030
enrichRSCE                0.725  0.031   6.832
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.14-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.1/Resources/library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.331   0.081   0.386 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    aperm, apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[18:53:28] WARNING: amalgamation/../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[18:53:31] WARNING: amalgamation/../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[18:54:08] WARNING: amalgamation/../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Error in x$.self$finalize() : attempt to apply non-function
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 15 | SKIP 0 | PASS 126 ]

[ FAIL 0 | WARN 15 | SKIP 0 | PASS 126 ]
> 
> proc.time()
   user  system elapsed 
333.734   4.496 339.974 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0030.006
SEG0.0030.0040.007
calcEffectSizes0.2300.0040.235
combineSCE3.2820.0153.300
computeZScore0.5240.0270.552
convertSCEToSeurat4.6310.1564.791
convertSeuratToSCE1.0650.0981.164
dedupRowNames0.1070.0100.118
detectCellOutlier6.8530.2407.103
diffAbundanceFET0.0710.0010.072
discreteColorPalette0.0100.0010.010
distinctColors0.0030.0000.003
downSampleCells1.3280.1041.433
downSampleDepth1.1210.0261.147
enrichRSCE0.7250.0316.832
exportSCE0.0020.0040.005
exportSCEtoAnnData0.1910.0050.196
exportSCEtoFlatFile0.1980.0070.204
featureIndex0.0530.0040.057
findMarkerDiffExp 9.982 0.09010.079
findMarkerTopTable10.215 0.04710.274
generateSimulatedData0.0650.0020.067
getBiomarker0.0760.0010.078
getDEGTopTable1.5350.0101.544
getMSigDBTable0.0070.0040.011
getTSNE0.6780.0120.692
getTopHVG0.5670.0070.575
getUMAP4.4790.0464.520
importAnnData0.0010.0000.002
importBUStools0.6350.0030.639
importCellRanger2.4090.0552.469
importCellRangerV2Sample0.6760.0040.680
importCellRangerV3Sample0.8260.0160.844
importDropEst0.8430.0040.848
importExampleData27.459 2.17031.255
importGeneSetsFromCollection1.3330.0901.424
importGeneSetsFromGMT0.1240.0040.129
importGeneSetsFromList0.3480.0110.359
importGeneSetsFromMSigDB6.1020.3316.442
importMitoGeneSet0.1120.0060.118
importOptimus0.0010.0000.003
importSEQC0.6110.0050.617
importSTARsolo0.6400.0030.644
iterateSimulations0.7740.0060.779
mergeSCEColData1.0580.0151.074
mouseBrainSubsetSCE0.0010.0020.003
msigdb_table0.0010.0010.003
plotBarcodeRankDropsResults1.9840.0162.001
plotBarcodeRankScatter1.6000.0091.611
plotBatchCorrCompare12.134 0.10712.237
plotBatchVariance0.5020.0330.536
plotBcdsResults10.362 0.25510.620
plotClusterAbundance1.1060.0271.136
plotCxdsResults7.7260.0517.773
plotDEGHeatmap9.6370.0909.736
plotDEGRegression6.0620.0426.113
plotDEGViolin7.4070.1527.571
plotDecontXResults9.4410.0649.517
plotDimRed0.5670.0040.571
plotDoubletFinderResults27.785 0.14427.949
plotEmptyDropsResults9.6090.0269.649
plotEmptyDropsScatter9.5860.0179.613
plotMASTThresholdGenes3.3530.0173.372
plotMarkerDiffExp11.670 0.04011.723
plotPCA1.2880.0121.303
plotRunPerCellQCResults0.0020.0000.002
plotSCEBarAssayData0.2130.0010.215
plotSCEBarColData0.1710.0010.173
plotSCEBatchFeatureMean0.2910.0020.294
plotSCEDensity0.2870.0030.292
plotSCEDensityAssayData0.2370.0030.241
plotSCEDensityColData0.3090.0030.313
plotSCEDimReduceColData1.7220.0091.733
plotSCEDimReduceFeatures0.8180.0050.825
plotSCEHeatmap1.6350.0131.653
plotSCEScatter0.7240.0030.728
plotSCEViolin0.3170.0020.321
plotSCEViolinAssayData0.3410.0040.346
plotSCEViolinColData0.3360.0030.341
plotScDblFinderResults32.604 0.53833.176
plotScdsHybridResults11.305 0.12411.436
plotScrubletResults0.0020.0010.004
plotTSNE1.2590.0191.281
plotTopHVG0.8700.0090.881
plotUMAP6.4270.0466.476
readSingleCellMatrix0.0070.0010.008
reportCellQC0.4580.0030.461
reportDropletQC0.0020.0010.002
reportQCTool0.3730.0020.376
retrieveSCEIndex0.0200.0010.021
runANOVA2.2800.0062.289
runBBKNN0.0000.0010.001
runBarcodeRankDrops1.1020.0051.108
runBcds3.8840.0373.928
runCellQC0.4490.0020.451
runComBatSeq0.8190.0130.835
runCxds1.2520.0241.280
runCxdsBcdsHybrid4.1920.0334.233
runDEAnalysis2.1260.0282.154
runDESeq29.5880.0429.642
runDecontX7.8650.0267.896
runDimReduce2.2180.0282.258
runDoubletFinder19.573 0.04919.632
runDropletQC0.0010.0000.003
runEmptyDrops9.1350.0179.161
runFastMNN3.0840.0243.112
runFeatureSelection0.3930.0040.399
runGSVA1.8860.0141.902
runKMeans1.3020.0081.310
runLimmaBC0.2200.0010.221
runLimmaDE1.8900.0061.898
runMAST7.2260.0427.272
runMNNCorrect1.2110.0051.217
runNormalization2.9860.0213.009
runPerCellQC0.7320.0030.735
runSCANORAMA000
runSCMerge0.0020.0000.002
runScDblFinder15.900 0.35616.272
runScranSNN1.2180.0121.230
runScrublet0.0020.0010.003
runSingleR0.0970.0020.100
runVAM1.6470.0201.670
runWilcox1.8680.0111.882
runZINBWaVE0.0020.0010.002
sampleSummaryStats0.7120.0030.717
scaterCPM0.2610.0090.269
scaterPCA1.2000.0061.206
scaterlogNormCounts1.6900.0121.703
sce0.0020.0040.005
scranModelGeneVar0.4780.0110.490
sctkListGeneSetCollections0.3870.0090.397
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv0.0000.0000.001
selectSCTKConda0.0000.0010.000
selectSCTKVirtualEnvironment0.0000.0010.001
setSCTKDisplayRow0.8270.0100.839
seuratComputeHeatmap0.0030.0010.004
seuratComputeJackStraw0.0020.0010.003
seuratElbowPlot0.0020.0010.003
seuratFindClusters0.0020.0010.003
seuratFindHVG0.0030.0010.004
seuratICA0.0020.0010.004
seuratJackStrawPlot0.0030.0010.004
seuratNormalizeData0.0020.0010.003
seuratPCA0.0010.0010.002
seuratPlotHVG0.0020.0010.002
seuratReductionPlot0.0020.0020.003
seuratRunUMAP0.0020.0020.004
seuratSCTransform4.9270.0915.030
seuratScaleData0.0030.0010.004
singleCellTK0.0000.0000.001
subDiffEx1.2020.0121.215
subsetSCECols0.5000.0060.506
subsetSCERows1.0380.0091.048
summarizeSCE0.1260.0030.128
trimCounts0.5210.0190.541