Back to Multiple platform build/check report for BioC 3.13 |
|
This page was generated on 2021-10-15 15:06:14 -0400 (Fri, 15 Oct 2021).
To the developers/maintainers of the netresponse package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/netresponse.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1267/2041 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
netresponse 1.52.0 (landing page) Leo Lahti
| nebbiolo1 | Linux (Ubuntu 20.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: netresponse |
Version: 1.52.0 |
Command: C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:netresponse.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings netresponse_1.52.0.tar.gz |
StartedAt: 2021-10-15 02:43:01 -0400 (Fri, 15 Oct 2021) |
EndedAt: 2021-10-15 02:46:44 -0400 (Fri, 15 Oct 2021) |
EllapsedTime: 222.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: netresponse.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:netresponse.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings netresponse_1.52.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.13-bioc/meat/netresponse.Rcheck' * using R version 4.1.1 (2021-08-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'netresponse/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'netresponse' version '1.52.0' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'netresponse' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE plotPCA: no visible binding for global variable 'npoints' Undefined global functions or variables: npoints * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking use of PKG_*FLAGS in Makefiles ... OK * checking compiled code ... NOTE Note: information on .o files for i386 is not available Note: information on .o files for x64 is not available File 'C:/Users/biocbuild/bbs-3.13-bioc/R/library/netresponse/libs/i386/netresponse.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) File 'C:/Users/biocbuild/bbs-3.13-bioc/R/library/netresponse/libs/x64/netresponse.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs. The detected symbols are linked into the code but might come from libraries and not actually be called. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK ** running examples for arch 'x64' ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'bicmixture.R' Running 'mixture.model.test.R' Running 'mixture.model.test.multimodal.R' Running 'mixture.model.test.singlemode.R' Running 'timing.R' Running 'toydata2.R' Running 'validate.netresponse.R' Running 'validate.pca.basis.R' Running 'vdpmixture.R' OK ** running tests for arch 'x64' ... Running 'bicmixture.R' Running 'mixture.model.test.R' Running 'mixture.model.test.multimodal.R' Running 'mixture.model.test.singlemode.R' Running 'timing.R' Running 'toydata2.R' Running 'validate.netresponse.R' Running 'validate.pca.basis.R' Running 'vdpmixture.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'C:/Users/biocbuild/bbs-3.13-bioc/meat/netresponse.Rcheck/00check.log' for details.
netresponse.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O http://155.52.207.165/BBS/3.13/bioc/src/contrib/netresponse_1.52.0.tar.gz && rm -rf netresponse.buildbin-libdir && mkdir netresponse.buildbin-libdir && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=netresponse.buildbin-libdir netresponse_1.52.0.tar.gz && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL netresponse_1.52.0.zip && rm netresponse_1.52.0.tar.gz netresponse_1.52.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 64 803k 64 516k 0 0 1210k 0 --:--:-- --:--:-- --:--:-- 1210k 100 803k 100 803k 0 0 1474k 0 --:--:-- --:--:-- --:--:-- 1474k install for i386 * installing *source* package 'netresponse' ... ** using staged installation ** libs "C:/rtools40/mingw32/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"c:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c netresponse.c -o netresponse.o netresponse.c: In function 'mHPpost': netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable] const char *prior_fields[]={"Mumu","S2mu", ^~~~~~~~~~~~ netresponse.c: In function 'mLogLambda': netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized] vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AlphaKsi, BetaKsi, KsiAlpha, KsiBeta, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ post_gamma, log_lambda, prior_alpha, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U_p, U_hat, ~~~~~~~~~~~ datalen, dim1, dim2, data1, data2, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ns, ncentroids, implicitnoisevar); ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized] C:/rtools40/mingw32/bin/gcc -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -Lc:/extsoft/lib/i386 -Lc:/extsoft/lib -LC:/Users/BIOCBU~1/BBS-3~1.13-/R/bin/i386 -lR installing to C:/Users/biocbuild/bbs-3.13-bioc/meat/netresponse.buildbin-libdir/00LOCK-netresponse/00new/netresponse/libs/i386 ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'netresponse' finding HTML links ... done NetResponseModel-class html P.S html P.Sr html P.r.s html P.rS html P.rs.joint html P.rs.joint.individual html P.s.individual html P.s.r html PlotMixture html PlotMixtureBivariate html PlotMixtureMultivariate html PlotMixtureUnivariate html add.ellipse html bic.mixture html bic.mixture.multivariate html bic.mixture.univariate html bic.select.best.mode html centerData html check.matrix html check.network html continuous.responses html detect.responses html dna html enrichment.list.factor html enrichment.list.factor.minimal html factor.responses html factor.responses.minimal html filter.netw html filter.network html find.similar.features html generate.toydata html get.dat-NetResponseModel-method html get.mis html get.model.parameters html get.subnets-NetResponseModel-method html getqofz-NetResponseModel-method html independent.models html list.responses.continuous.multi html list.responses.continuous.single html list.responses.factor html list.responses.factor.minimal html list.significant.responses html listify.groupings html mixture.model html model.stats html netresponse-package html order.responses html osmo html pick.model.pairs html pick.model.parameters html plotPCA html plot_associations html plot_data html plot_expression html plot_matrix html plot_response html plot_responses html plot_scale html plot_subnet html read.sif html remove.negative.edges html response.enrichment html response2sample html sample2response html set.breaks html split.qofz html toydata html update.model.pair html vdp.mixt html vectorize.groupings html write.netresponse.results html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'netresponse' ... ** libs "C:/rtools40/mingw64/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c netresponse.c -o netresponse.o netresponse.c: In function 'mHPpost': netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable] const char *prior_fields[]={"Mumu","S2mu", ^~~~~~~~~~~~ netresponse.c: In function 'mLogLambda': netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized] vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AlphaKsi, BetaKsi, KsiAlpha, KsiBeta, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ post_gamma, log_lambda, prior_alpha, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U_p, U_hat, ~~~~~~~~~~~ datalen, dim1, dim2, data1, data2, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ns, ncentroids, implicitnoisevar); ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized] netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized] C:/rtools40/mingw64/bin/gcc -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -LC:/extsoft/lib/x64 -LC:/extsoft/lib -LC:/Users/BIOCBU~1/BBS-3~1.13-/R/bin/x64 -lR installing to C:/Users/biocbuild/bbs-3.13-bioc/meat/netresponse.buildbin-libdir/netresponse/libs/x64 ** testing if installed package can be loaded * MD5 sums packaged installation of 'netresponse' as netresponse_1.52.0.zip * DONE (netresponse) * installing to library 'C:/Users/biocbuild/bbs-3.13-bioc/R/library' package 'netresponse' successfully unpacked and MD5 sums checked
netresponse.Rcheck/tests_i386/bicmixture.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("~/Rpackages/netresponse/netresponse/R/internals.R") > #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ############################################# > > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > dd <- 3 # Dimensionality of data > Nc <- 5 # Number of components > Ns <- 200 # Number of data points > sd0 <- 3 # component spread > rgam.shape = 2 # parameters for Gamma distribution > rgam.scale = 2 # parameters for Gamma distribution to define precisions > > > # Generate means and variances (covariance diagonals) for the components > component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd) > component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), + nrow = Nc, ncol = dd) > component.sds <- sqrt(component.vars) > > > # Size for each component -> sample randomly for each data point from uniform distr. > # i.e. cluster assignments > sample2comp <- sample.int(Nc, Ns, replace = TRUE) > > D <- array(NA, dim = c(Ns, dd)) > for (i in 1:Ns) { + # component identity of this sample + ci <- sample2comp[[i]] + cm <- component.means[ci,] + csd <- component.sds[ci,] + D[i,] <- rnorm(dd, mean = cm, sd = csd) + } > > > ###################################################################### > > # Fit mixture model > out <- mixture.model(D, mixture.method = "bic") > > # FIXME rowmeans(qofz) is constant but not 1 > #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE) > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$mu[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$mu[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$sd[ord.out,] > sds.in <- sqrt(component.vars[ord.in,]) > > # ----------------------------------------------------------- > > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > #for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > #for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > ###################################################### > > #for (ci in 1:nrow(means.out)) { > # points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19) > # el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,]) > # lines(el, col = "red") > #} > > #for (ci in 1:nrow(means.in)) { > # points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19) > # el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,]) > # lines(el, col = "blue") > #} > > > > > > > proc.time() user system elapsed 3.48 0.32 3.81 |
netresponse.Rcheck/tests_x64/bicmixture.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("~/Rpackages/netresponse/netresponse/R/internals.R") > #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ############################################# > > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > dd <- 3 # Dimensionality of data > Nc <- 5 # Number of components > Ns <- 200 # Number of data points > sd0 <- 3 # component spread > rgam.shape = 2 # parameters for Gamma distribution > rgam.scale = 2 # parameters for Gamma distribution to define precisions > > > # Generate means and variances (covariance diagonals) for the components > component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd) > component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), + nrow = Nc, ncol = dd) > component.sds <- sqrt(component.vars) > > > # Size for each component -> sample randomly for each data point from uniform distr. > # i.e. cluster assignments > sample2comp <- sample.int(Nc, Ns, replace = TRUE) > > D <- array(NA, dim = c(Ns, dd)) > for (i in 1:Ns) { + # component identity of this sample + ci <- sample2comp[[i]] + cm <- component.means[ci,] + csd <- component.sds[ci,] + D[i,] <- rnorm(dd, mean = cm, sd = csd) + } > > > ###################################################################### > > # Fit mixture model > out <- mixture.model(D, mixture.method = "bic") > > # FIXME rowmeans(qofz) is constant but not 1 > #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE) > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$mu[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$mu[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$sd[ord.out,] > sds.in <- sqrt(component.vars[ord.in,]) > > # ----------------------------------------------------------- > > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > #for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > #for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > ###################################################### > > #for (ci in 1:nrow(means.out)) { > # points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19) > # el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,]) > # lines(el, col = "red") > #} > > #for (ci in 1:nrow(means.in)) { > # points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19) > # el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,]) > # lines(el, col = "blue") > #} > > > > > > > proc.time() user system elapsed 3.34 0.20 3.53 |
netresponse.Rcheck/tests_i386/mixture.model.test.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Validate mixture models > > # Generate random data from five Gaussians. > # Detect modes > # Plot data points and detected clusters > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > > #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ####################### > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > par(mfrow = c(2,1)) > > for (mm in c("vdp", "bic")) { + + # Fit nonparametric Gaussian mixture model + #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") + out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE) + + ############################################################ + + # Compare input data and results + + ord.out <- order(out$mu[,1]) + ord.in <- order(component.means[,1]) + + means.out <- out$mu[ord.out,] + means.in <- component.means[ord.in,] + + # Cluster stds and variances + sds.out <- out$sd[ord.out,] + vars.out <- sds.out^2 + + sds.in <- component.sds[ord.in,] + vars.in <- sds.in^2 + + # Check correspondence between input and output + if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } + + # Plot results (assuming 2D) + ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) + + real.modes <- sample2comp + obs.modes <- apply(out$qofz, 1, which.max) + + # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + + # plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + + # for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } + # for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } + + } > > > proc.time() user system elapsed 3.28 0.21 3.48 |
netresponse.Rcheck/tests_x64/mixture.model.test.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Validate mixture models > > # Generate random data from five Gaussians. > # Detect modes > # Plot data points and detected clusters > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > > #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ####################### > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > par(mfrow = c(2,1)) > > for (mm in c("vdp", "bic")) { + + # Fit nonparametric Gaussian mixture model + #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") + out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE) + + ############################################################ + + # Compare input data and results + + ord.out <- order(out$mu[,1]) + ord.in <- order(component.means[,1]) + + means.out <- out$mu[ord.out,] + means.in <- component.means[ord.in,] + + # Cluster stds and variances + sds.out <- out$sd[ord.out,] + vars.out <- sds.out^2 + + sds.in <- component.sds[ord.in,] + vars.in <- sds.in^2 + + # Check correspondence between input and output + if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } + + # Plot results (assuming 2D) + ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) + + real.modes <- sample2comp + obs.modes <- apply(out$qofz, 1, which.max) + + # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + + # plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + + # for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } + # for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } + + } > > > proc.time() user system elapsed 3.35 0.18 3.53 |
netresponse.Rcheck/tests_i386/mixture.model.test.multimodal.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > > # Three MODES > > # set.seed(34884) > set.seed(3488400) > > Ns <- 200 > Nd <- 2 > > D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd), + cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3)) + ) > > #X11() > par(mfrow = c(2,2)) > for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D3, mixture.method = mm, pca.basis = pp) + plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:", pp)) + + } + } > > # VDP is less sensitive than BIC in detecting Gaussian modes (more > # separation between the clusters needed) > > # pca.basis option is less important for sensitive detection but > # it will help to avoid overfitting to unimodal features that > # are not parallel to the axes (unimodal distribution often becomes > # splitted in two or more clusters in these cases) > > > proc.time() user system elapsed 5.57 0.45 6.01 |
netresponse.Rcheck/tests_x64/mixture.model.test.multimodal.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > > # Three MODES > > # set.seed(34884) > set.seed(3488400) > > Ns <- 200 > Nd <- 2 > > D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd), + cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3)) + ) > > #X11() > par(mfrow = c(2,2)) > for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D3, mixture.method = mm, pca.basis = pp) + plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:", pp)) + + } + } > > # VDP is less sensitive than BIC in detecting Gaussian modes (more > # separation between the clusters needed) > > # pca.basis option is less important for sensitive detection but > # it will help to avoid overfitting to unimodal features that > # are not parallel to the axes (unimodal distribution often becomes > # splitted in two or more clusters in these cases) > > > proc.time() user system elapsed 5.17 0.23 5.39 |
netresponse.Rcheck/tests_i386/mixture.model.test.singlemode.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + library(netresponse) + + # SINGLE MODE + + # Produce test data that has full covariance + # It is expected that + # pca.basis = FALSE splits Gaussian with full covariance into two modes + # pca.basis = TRUE should detect just a single mode + + Ns <- 200 + Nd <- 2 + k <- 1.5 + + D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1)) + + par(mfrow = c(2,2)) + for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D2, mixture.method = mm, pca.basis = pp) + plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:", pp)) + + } + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > > proc.time() user system elapsed 3.26 0.37 3.62 |
netresponse.Rcheck/tests_x64/mixture.model.test.singlemode.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + library(netresponse) + + # SINGLE MODE + + # Produce test data that has full covariance + # It is expected that + # pca.basis = FALSE splits Gaussian with full covariance into two modes + # pca.basis = TRUE should detect just a single mode + + Ns <- 200 + Nd <- 2 + k <- 1.5 + + D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1)) + + par(mfrow = c(2,2)) + for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D2, mixture.method = mm, pca.basis = pp) + plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:", pp)) + + } + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > > proc.time() user system elapsed 4.09 0.21 4.29 |
netresponse.Rcheck/tests_i386/timing.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Play with different options and check their effect on running times for bic and vdp > > skip <- TRUE > > if (!skip) { + + Ns <- 100 + Nd <- 2 + + set.seed(3488400) + + D <- cbind( + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ), + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ) + ) + + rownames(D) <- paste("R", 1:nrow(D), sep = "-") + colnames(D) <- paste("C", 1:ncol(D), sep = "-") + + ts <- c() + for (mm in c("bic", "vdp")) { + + + # NOTE: no PCA basis needed with mixture.method = "bic" + tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, + mixture.method = mm, information.criterion = "BIC", + merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE)) + + print(paste(mm, ":", round(tt[["elapsed"]], 3))) + ts[[mm]] <- tt[["elapsed"]] + } + + print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3))) + + } > > # -> VDP is much faster when sample sizes increase > # 1000 samples -> 25-fold speedup with VDP > > > > proc.time() user system elapsed 0.28 0.04 0.31 |
netresponse.Rcheck/tests_x64/timing.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Play with different options and check their effect on running times for bic and vdp > > skip <- TRUE > > if (!skip) { + + Ns <- 100 + Nd <- 2 + + set.seed(3488400) + + D <- cbind( + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ), + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ) + ) + + rownames(D) <- paste("R", 1:nrow(D), sep = "-") + colnames(D) <- paste("C", 1:ncol(D), sep = "-") + + ts <- c() + for (mm in c("bic", "vdp")) { + + + # NOTE: no PCA basis needed with mixture.method = "bic" + tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, + mixture.method = mm, information.criterion = "BIC", + merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE)) + + print(paste(mm, ":", round(tt[["elapsed"]], 3))) + ts[[mm]] <- tt[["elapsed"]] + } + + print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3))) + + } > > # -> VDP is much faster when sample sizes increase > # 1000 samples -> 25-fold speedup with VDP > > > > proc.time() user system elapsed 0.20 0.10 0.29 |
netresponse.Rcheck/tests_i386/toydata2.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > Ns <- 300 > Nd <- 2 > > # Isotropic cloud > D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) > > # Single diagonal mode > D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) > > # Two isotropic modes > D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd)) > D <- cbind(D1, D2, D3) > > colnames(D) <- paste("Feature-", 1:ncol(D), sep = "") > rownames(D) <- paste("Sample-", 1:nrow(D), sep = "") > > > proc.time() user system elapsed 0.31 0.03 0.32 |
netresponse.Rcheck/tests_x64/toydata2.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > Ns <- 300 > Nd <- 2 > > # Isotropic cloud > D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) > > # Single diagonal mode > D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) > > # Two isotropic modes > D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd)) > D <- cbind(D1, D2, D3) > > colnames(D) <- paste("Feature-", 1:ncol(D), sep = "") > rownames(D) <- paste("Sample-", 1:nrow(D), sep = "") > > > proc.time() user system elapsed 0.25 0.06 0.29 |
netresponse.Rcheck/tests_i386/validate.netresponse.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- TRUE > > if (!skip) { + + # 2. netresponse test + # test later with varying parameters + + # Load the package + library(netresponse) + #load("../data/toydata.rda") + fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)}; + + data(toydata) + + D <- toydata$emat + netw <- toydata$netw + + # The toy data is random data with 10 features (genes). + # The features + rf <- c(4, 5, 6) + #form a subnetwork with coherent responses + # with means + r1 <- c(0, 3, 0) + r2 <- c(-5, 0, 2) + r3 <- c(5, -3, -3) + mu.real <- rbind(r1, r2, r3) + # real weights + w.real <- c(70, 70, 60)/200 + # and unit variances + rv <- 1 + + # Fit the model + #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2) + #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4) + + res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + print("OK") + + # Subnets (each is a list of nodes) + subnets <- get.subnets(res) + + # the correct subnet is retrieved in subnet number 2: + #> subnet[[2]] + #[1] "feat4" "feat5" "feat6" + + # how about responses + # Retrieve model for the subnetwork with lowest cost function value + # means, standard devations and weights for the components + if (!is.null(subnets)) { + m <- get.model.parameters(res, subnet.id = "Subnet-2") + + # order retrieved and real response means by the first feature + # (to ensure responses are listed in the same order) + # and compare deviation from correct solution + ord.obs <- order(m$mu[,1]) + ord.real <- order(mu.real[,1]) + + print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,])))) + + # all real variances are 1, compare to observed ones + print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv))) + + # weights deviate somewhat, this is likely due to relatively small sample size + #print("Maximum deviation from real weights: ") + #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real]) + + print("estimated and real mean matrices") + print(m$mu[ord.obs,]) + print(mu.real[ord.real,]) + + } + + } > > proc.time() user system elapsed 0.23 0.06 0.26 |
netresponse.Rcheck/tests_x64/validate.netresponse.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- TRUE > > if (!skip) { + + # 2. netresponse test + # test later with varying parameters + + # Load the package + library(netresponse) + #load("../data/toydata.rda") + fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)}; + + data(toydata) + + D <- toydata$emat + netw <- toydata$netw + + # The toy data is random data with 10 features (genes). + # The features + rf <- c(4, 5, 6) + #form a subnetwork with coherent responses + # with means + r1 <- c(0, 3, 0) + r2 <- c(-5, 0, 2) + r3 <- c(5, -3, -3) + mu.real <- rbind(r1, r2, r3) + # real weights + w.real <- c(70, 70, 60)/200 + # and unit variances + rv <- 1 + + # Fit the model + #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2) + #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4) + + res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + print("OK") + + # Subnets (each is a list of nodes) + subnets <- get.subnets(res) + + # the correct subnet is retrieved in subnet number 2: + #> subnet[[2]] + #[1] "feat4" "feat5" "feat6" + + # how about responses + # Retrieve model for the subnetwork with lowest cost function value + # means, standard devations and weights for the components + if (!is.null(subnets)) { + m <- get.model.parameters(res, subnet.id = "Subnet-2") + + # order retrieved and real response means by the first feature + # (to ensure responses are listed in the same order) + # and compare deviation from correct solution + ord.obs <- order(m$mu[,1]) + ord.real <- order(mu.real[,1]) + + print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,])))) + + # all real variances are 1, compare to observed ones + print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv))) + + # weights deviate somewhat, this is likely due to relatively small sample size + #print("Maximum deviation from real weights: ") + #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real]) + + print("estimated and real mean matrices") + print(m$mu[ord.obs,]) + print(mu.real[ord.real,]) + + } + + } > > proc.time() user system elapsed 0.26 0.03 0.28 |
netresponse.Rcheck/tests_i386/validate.pca.basis.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + # Visualization + + library(netresponse) + + #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)} + + source("toydata2.R") + + # -------------------------------------------------------------------- + + set.seed(4243) + mixture.method <- "bic" + + # -------------------------------------------------------------------- + + res <- detect.responses(D, verbose = TRUE, max.responses = 10, + mixture.method = mixture.method, information.criterion = "BIC", + merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE) + + # -------------------------------------------------------------------- + + k <- 1 + + # Incorrect VDP: two modes detected + # Correct BIC: single mode detected + subnet.id <- names(get.subnets(res))[[k]] + + # Correct: single mode detected (VDP & BIC) + subnet.id.pca <- names(get.subnets(res.pca))[[k]] + + # -------------------------------------------------------------------------------------------------- + + vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM")) + vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM") + vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM") + vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM") + + # With original data: VDP overlearns; BIC works; with full covariance data + # With PCA basis: modes detected ok with both VDP and BIC. + + # ------------------------------------------------------------------------ + + # TODO + # pca.plot(res, subnet.id) + # plot_subnet(res, subnet.id) + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse No network provided in function call: assuming fully connected nodes. convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... No network provided in function call: assuming fully connected nodes. convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... Warning messages: 1: In xtfrm.data.frame(x) : cannot xtfrm data frames 2: In xtfrm.data.frame(x) : cannot xtfrm data frames 3: In xtfrm.data.frame(x) : cannot xtfrm data frames 4: In xtfrm.data.frame(x) : cannot xtfrm data frames 5: In xtfrm.data.frame(x) : cannot xtfrm data frames 6: In xtfrm.data.frame(x) : cannot xtfrm data frames 7: In xtfrm.data.frame(x) : cannot xtfrm data frames 8: In xtfrm.data.frame(x) : cannot xtfrm data frames 9: In xtfrm.data.frame(x) : cannot xtfrm data frames 10: In xtfrm.data.frame(x) : cannot xtfrm data frames > > proc.time() user system elapsed 23.84 0.23 24.04 |
netresponse.Rcheck/tests_x64/validate.pca.basis.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + # Visualization + + library(netresponse) + + #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)} + + source("toydata2.R") + + # -------------------------------------------------------------------- + + set.seed(4243) + mixture.method <- "bic" + + # -------------------------------------------------------------------- + + res <- detect.responses(D, verbose = TRUE, max.responses = 10, + mixture.method = mixture.method, information.criterion = "BIC", + merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE) + + # -------------------------------------------------------------------- + + k <- 1 + + # Incorrect VDP: two modes detected + # Correct BIC: single mode detected + subnet.id <- names(get.subnets(res))[[k]] + + # Correct: single mode detected (VDP & BIC) + subnet.id.pca <- names(get.subnets(res.pca))[[k]] + + # -------------------------------------------------------------------------------------------------- + + vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM")) + vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM") + vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM") + vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM") + + # With original data: VDP overlearns; BIC works; with full covariance data + # With PCA basis: modes detected ok with both VDP and BIC. + + # ------------------------------------------------------------------------ + + # TODO + # pca.plot(res, subnet.id) + # plot_subnet(res, subnet.id) + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse No network provided in function call: assuming fully connected nodes. convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... No network provided in function call: assuming fully connected nodes. convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... Warning messages: 1: In xtfrm.data.frame(x) : cannot xtfrm data frames 2: In xtfrm.data.frame(x) : cannot xtfrm data frames 3: In xtfrm.data.frame(x) : cannot xtfrm data frames 4: In xtfrm.data.frame(x) : cannot xtfrm data frames 5: In xtfrm.data.frame(x) : cannot xtfrm data frames 6: In xtfrm.data.frame(x) : cannot xtfrm data frames 7: In xtfrm.data.frame(x) : cannot xtfrm data frames 8: In xtfrm.data.frame(x) : cannot xtfrm data frames 9: In xtfrm.data.frame(x) : cannot xtfrm data frames 10: In xtfrm.data.frame(x) : cannot xtfrm data frames > > proc.time() user system elapsed 22.25 0.31 22.54 |
netresponse.Rcheck/tests_i386/vdpmixture.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("~/Rpackages/netresponse/netresponse/R/internals.R") > #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > > ######### Generate DATA ############################################# > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > # Fit nonparametric Gaussian mixture model > out <- vdp.mixt(D) > # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$posterior$centroids[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$posterior$centroids[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$posterior$sds[ord.out,] > sds.in <- component.sds[ord.in,] > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > #plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > #for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > #for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > > > proc.time() user system elapsed 3.18 0.21 3.39 |
netresponse.Rcheck/tests_x64/vdpmixture.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.7 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2020 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("~/Rpackages/netresponse/netresponse/R/internals.R") > #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > > ######### Generate DATA ############################################# > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > # Fit nonparametric Gaussian mixture model > out <- vdp.mixt(D) > # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$posterior$centroids[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$posterior$centroids[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$posterior$sds[ord.out,] > sds.in <- component.sds[ord.in,] > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > #plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > #for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > #for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > > > proc.time() user system elapsed 3.15 0.18 3.32 |
netresponse.Rcheck/examples_i386/netresponse-Ex.timings
|
netresponse.Rcheck/examples_x64/netresponse-Ex.timings
|