Back to Multiple platform build/check report for BioC 3.13 |
|
This page was generated on 2021-10-15 15:06:24 -0400 (Fri, 15 Oct 2021).
To the developers/maintainers of the STATegRa package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 1855/2041 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
STATegRa 1.28.0 (landing page) David Gomez-Cabrero
| nebbiolo1 | Linux (Ubuntu 20.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
Package: STATegRa |
Version: 1.28.0 |
Command: C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings STATegRa_1.28.0.tar.gz |
StartedAt: 2021-10-15 06:14:59 -0400 (Fri, 15 Oct 2021) |
EndedAt: 2021-10-15 06:20:49 -0400 (Fri, 15 Oct 2021) |
EllapsedTime: 350.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: STATegRa.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings STATegRa_1.28.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.13-bioc/meat/STATegRa.Rcheck' * using R version 4.1.1 (2021-08-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'STATegRa/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'STATegRa' version '1.28.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'STATegRa' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable 'components' modelSelection,list-numeric-character: no visible binding for global variable 'mylabel' plotVAF,caClass: no visible binding for global variable 'comp' plotVAF,caClass: no visible binding for global variable 'VAF' plotVAF,caClass: no visible binding for global variable 'block' selectCommonComps,list-numeric: no visible binding for global variable 'comps' selectCommonComps,list-numeric: no visible binding for global variable 'block' selectCommonComps,list-numeric: no visible binding for global variable 'comp' selectCommonComps,list-numeric: no visible binding for global variable 'ratio' Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK ** running examples for arch 'x64' ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK ** running tests for arch 'x64' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'C:/Users/biocbuild/bbs-3.13-bioc/meat/STATegRa.Rcheck/00check.log' for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O http://155.52.207.165/BBS/3.13/bioc/src/contrib/STATegRa_1.28.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.28.0.tar.gz && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.28.0.zip && rm STATegRa_1.28.0.tar.gz STATegRa_1.28.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 25 3177k 25 809k 0 0 1643k 0 0:00:01 --:--:-- 0:00:01 1641k 100 3177k 100 3177k 0 0 2244k 0 0:00:01 0:00:01 --:--:-- 2245k install for i386 * installing *source* package 'STATegRa' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices converting help for package 'STATegRa' finding HTML links ... done STATegRa-defunct html STATegRa html STATegRaUsersGuide html STATegRa_data html STATegRa_data_TCGA_BRCA html bioDist html bioDistFeature html bioDistFeaturePlot html bioDistW html bioDistWPlot html bioDistclass html bioMap html caClass-class html combiningMappings html createOmicsExpressionSet html getInitialData html getLoadings html getMethodInfo html getPreprocessing html getScores html getVAF html holistOmics html modelSelection html finding level-2 HTML links ... done omicsCompAnalysis html omicsNPC html plotRes html plotVAF html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'STATegRa' ... ** testing if installed package can be loaded * MD5 sums packaged installation of 'STATegRa' as STATegRa_1.28.0.zip * DONE (STATegRa) * installing to library 'C:/Users/biocbuild/bbs-3.13-bioc/R/library' package 'STATegRa' successfully unpacked and MD5 sums checked
STATegRa.Rcheck/tests_i386/runTests.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Fri Oct 15 06:18:52 2021 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 3.39 0.21 3.59 |
STATegRa.Rcheck/tests_x64/runTests.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage("STATegRa") Common components [1] 2 Distinctive components [[1]] [1] 0 [[2]] [1] 0 Common components [1] 2 Distinctive components [[1]] [1] 1 [[2]] [1] 1 Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 RUNIT TEST PROTOCOL -- Fri Oct 15 06:20:41 2021 *********************************************** Number of test functions: 4 Number of errors: 0 Number of failures: 0 1 Test Suite : STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures Number of test functions: 4 Number of errors: 0 Number of failures: 0 Warning messages: 1: In rownames(pData) == colnames(exprs) : longer object length is not a multiple of shorter object length 2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2 3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", : Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3 > > proc.time() user system elapsed 3.42 0.25 3.65 |
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 26.68 0.78 27.45 |
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSCLUSTERING > ########################################### > require(STATegRa) Loading required package: STATegRa > > ############################################# > ## PART 1: CREATING a bioMap CLASS > ############################################# > ####### This part creates or reads the map between features. > ####### In the present example the map is downloaded from a resource. > ####### then the class is created. > > #load("../data/STATegRa_S2.rda") > data(STATegRa_S2) > > MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", + metadata = list(type_v1="Gene",type_v2="miRNA", + source_database="targetscan.Hs.eg.db", + data_extraction="July2014"), + map=mapdata) > > > ############################################# > ## PART 2: CREATING a bioDist CLASS > ############################################# > ##### In the second part given a set of main features and surrogate feautres, > ##### the profile of the main features is computed through the surrogate features. > > # Load Data > data(STATegRa_S1) > #load("../data/STATegRa.S1.Rdata") > > ## Create ExpressionSets > # source("../R/STATegRa_omicsPCA_classes_and_methods.R") > # Block1 - Expression data > mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) > # Block2 - miRNA expression data > miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) > > # Create Gene-gene distance computed through miRNA data > bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), + reference = "Var1", + mapping = MAP.SYMBOL, + surrogateData = miRNA.ds, ### miRNA data + referenceData = mRNA.ds, ### mRNA data + maxitems=2, + selectionRule="sd", + expfac=NULL, + aggregation = "sum", + distance = "spearman", + noMappingDist = 0, + filtering = NULL, + name = "mRNAbymiRNA") > > require(Biobase) Loading required package: Biobase Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. > > # Create Gene-gene distance through mRNA data > bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", + distance = cor(t(exprs(mRNA.ds)),method="spearman"), + map.name = "id", + map.metadata = list(), + params = list()) > > ############################################# > ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList > ############################################# > > bioDistList<-list(bioDistmRNA,bioDistmiRNA) > weights<-matrix(0,4,2) > weights[,1]<-c(0,0.33,0.67,1) > weights[,2]<-c(1,0.67,0.33,0)# > > bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), + bioDistList = bioDistList, + weights=weights) > length(bioDistWList) [1] 4 > > ############################################# > ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL > ############################################# > > bioDistWPlot(referenceFeatures = rownames(Block1) , + listDistW = bioDistWList, + method.cor="spearman") Warning messages: 1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], : Cannot compute exact p-value with ties 4: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 5: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 6: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) 7: In plot.window(...) : relative range of values ( 0 * EPS) is small (axis 2) > > ############################################# > ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE > ############################################# > > ## IDH1 > > IDH1.F<-bioDistFeature(Feature = "IDH1" , + listDistW = bioDistWList, + threshold.cor=0.7) > bioDistFeaturePlot(data=IDH1.F) > > ## PDGFRA > > #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") > > ## EGFR > #EGFR.F<-bioDistFeature(Feature = "EGFR" , > # listDistW = bioDistWList, > # threshold.cor=0.7) > #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") > > ## MGMT > #MGMT.F<-bioDistFeature(Feature = "MGMT" , > # listDistW = bioDistWList, > # threshold.cor=0.5) > #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png") > > > > > > proc.time() user system elapsed 25.04 0.82 25.86 |
STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 66.67 0.23 66.89 |
STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > rm(list = ls()) > require("STATegRa") Loading required package: STATegRa > # Load the data > data("TCGA_BRCA_Batch_93") > # Setting dataTypes > dataTypes <- c("count", "count", "continuous") > # Setting methods to combine pvalues > combMethods = c("Fisher", "Liptak", "Tippett") > # Setting number of permutations > numPerms = 1000 > # Setting number of cores > numCores = 1 > # Setting holistOmics to print out the steps that it performs. > verbose = TRUE > # Run holistOmics analysis. > output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) Compute initial statistics on data Building NULL distributions by permuting data Compute pseudo p-values based on NULL distributions... NPC p-values calculation... > > proc.time() user system elapsed 64.98 0.29 65.26 |
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 0.0781575594 -0.0431548606 sample2 -0.1192221351 0.0294021895 sample3 -0.0531408719 -0.0746837586 sample4 0.0292971804 -0.0006033889 sample5 0.0202090752 0.0110455323 sample6 0.1226088466 0.1053493181 sample7 0.1078931318 -0.0322419135 sample8 0.1782891187 0.1449330434 sample9 0.0468697284 -0.0455171759 sample10 -0.0036032676 0.0420077830 sample11 -0.0035566376 -0.0566285162 sample12 0.1006129669 0.0641393908 sample13 -0.1174412754 0.0907475403 sample14 0.0981203566 0.0617763581 sample15 0.0085337231 -0.0086956217 sample16 0.0783146845 0.1581333476 sample17 -0.1483610653 0.0638580125 sample18 -0.0963084395 0.0556687986 sample19 -0.0217243093 -0.0720128570 sample20 -0.0635633956 -0.0779610247 sample21 -0.0201843956 0.1566382042 sample22 0.0218273803 -0.0764055767 sample23 0.0852039056 -0.0032765078 sample24 -0.1287181413 0.1924426036 sample25 -0.0430575638 -0.0456638644 sample26 -0.1453899763 0.0541458694 sample27 -0.0197483656 -0.1185592761 sample28 -0.1025339397 0.0650655274 sample29 0.0706022417 -0.0682932991 sample30 -0.1295622999 -0.0066677456 sample31 0.1147449325 0.1232727323 sample32 -0.0374308225 0.0380249717 sample33 0.0599520743 0.0136936275 sample34 -0.0984199314 0.0375364671 sample35 -0.0543096420 -0.0378035066 sample36 0.1403628055 -0.0343638695 sample37 0.0228947667 -0.0732689245 sample38 -0.0222073068 -0.0962567254 sample39 -0.0941739218 0.0215180491 sample40 0.0643807064 -0.0687719514 sample41 -0.0327635010 -0.1232187196 sample42 -0.0500431638 -0.0292513799 sample43 -0.0184497193 0.0233044499 sample44 0.1487889421 0.1171209902 sample45 -0.1050778759 0.1123140272 sample46 -0.1151191631 -0.1093995705 sample47 -0.0962591540 -0.0288417980 sample48 0.0004832630 -0.0310379630 sample49 0.1135203919 0.1213936615 sample50 -0.0123549977 -0.1740763092 sample51 0.0550527468 0.1258930875 sample52 0.0499118514 0.0728581032 sample53 0.1119772690 0.1588064377 sample54 -0.0360055712 0.0228585712 sample55 0.0210418827 0.0006750777 sample56 -0.0434171475 0.0633131295 sample57 0.0197820730 0.1150754026 sample58 0.0030440707 0.0326127648 sample59 0.0500256735 0.0129521897 sample60 0.0184280096 0.0136218297 sample61 0.0150298934 0.0635097080 sample62 -0.0304758776 -0.0201235929 sample63 0.1102250137 0.1285968244 sample64 0.1552586841 0.0971185184 sample65 -0.0058503822 0.0207102686 sample66 -0.0025607457 0.0424284574 sample67 0.1546638671 -0.0661577864 sample68 0.0536374227 -0.0923603873 sample69 0.0640332980 0.0082003894 sample70 0.0163521701 -0.0663227228 sample71 -0.0102536142 -0.1345965012 sample72 -0.0654191772 -0.0196035962 sample73 -0.1048553261 0.0221000170 sample74 0.0123800499 0.0586157003 sample75 0.0392079721 -0.0209726118 sample76 0.0648954580 -0.0524759365 sample77 0.1172922660 -0.0201200255 sample78 -0.1463072584 0.0708399398 sample79 0.0265208829 -0.1603425684 sample80 0.0279739193 -0.0214153311 sample81 0.0079212135 -0.0738495580 sample82 -0.1544234601 -0.0361450520 sample83 -0.0494205440 -0.0049938594 sample84 -0.0259039734 -0.0346591622 sample85 0.1116487449 -0.0031403885 sample86 -0.1306479068 -0.0377155810 sample87 -0.0554777860 -0.0459739535 sample88 -0.0301626494 0.0382206824 sample89 -0.1016866182 0.0694078366 sample90 0.0086821634 -0.0201323756 sample91 0.1578629717 -0.2097792379 sample92 0.0170933508 -0.1655936681 sample93 -0.0979805114 -0.0121500481 sample94 0.0131486197 -0.0114929501 sample95 0.0315682449 -0.0758917263 sample96 0.0024125826 -0.0470185271 sample97 0.0634545796 0.0270303634 sample98 -0.0359372573 -0.0135466489 sample99 -0.1009167583 0.1124712534 sample100 0.0551754094 0.0246502129 sample101 -0.0080116038 -0.1627407409 sample102 -0.0046451156 0.0095472750 sample103 -0.0472520891 -0.0940383525 sample104 0.0198157459 -0.0591147260 sample105 -0.0400238984 -0.0160949046 sample106 -0.0923810123 0.0369003857 sample107 -0.1019372381 0.0224967303 sample108 -0.0877091519 -0.0128849754 sample109 0.0864820278 -0.0901081211 sample110 -0.1223116472 -0.0096108519 sample111 0.0257352421 -0.0936281292 sample112 -0.0765285919 0.0270379400 sample113 0.0258799861 0.0377438341 sample114 0.0021141068 -0.0882040153 sample115 0.0303455298 -0.0723735408 sample116 0.0780504483 -0.0685162416 sample117 0.0536894084 -0.0912025380 sample118 0.0666649902 -0.0236261119 sample119 0.1021872531 -0.2325004030 sample120 0.0750216330 0.0243345617 sample121 -0.0756937872 0.0942970348 sample122 -0.0259632042 0.0731921195 sample123 -0.1037844691 -0.0369178672 sample124 0.0611205180 0.0421647001 sample125 -0.0738472616 0.0066944368 sample126 0.0972919116 0.0762698781 sample127 0.0824699422 -0.0096644716 sample128 -0.1249411505 0.0929253705 sample129 -0.0734063712 -0.0434313518 sample130 -0.0003500264 -0.0309857158 sample131 0.0930184045 0.0155970085 sample132 0.0736220615 0.0732972114 sample133 -0.0498398362 -0.0462455902 sample134 0.1644872644 0.0720046906 sample135 -0.0752295055 0.0003869594 sample136 0.0227149942 -0.0495469424 sample137 0.0564721687 -0.0288860564 sample138 0.0255986485 -0.0610930556 sample139 0.0621218795 0.0235857897 sample140 -0.0604148972 -0.0435532387 sample141 0.0246743050 0.0532630381 sample142 -0.0409563846 0.0316234304 sample143 -0.0077356384 -0.0476908799 sample144 0.0173240997 -0.0156785865 sample145 0.0485467759 0.1202737908 sample146 0.0419649952 -0.0811240923 sample147 -0.0977304657 -0.0274771186 sample148 0.0368253309 0.0803969570 sample149 -0.0072864887 -0.1533016959 sample150 0.1020825525 0.0624822556 sample151 0.0305397165 -0.0289337016 sample152 -0.0533595220 -0.0638335148 sample153 -0.0891639361 0.1799453029 sample154 -0.0727554418 -0.0834129412 sample155 -0.0880665838 -0.0220770347 sample156 -0.0276558874 -0.0326601866 sample157 -0.1155031565 0.0183635475 sample158 -0.0281506708 -0.0104911950 sample159 0.0663233797 0.0443809790 sample160 -0.0302644005 0.0404301362 sample161 0.0114712968 -0.0591083082 sample162 -0.1337090971 0.1398131317 sample163 0.1330120782 0.1688769243 sample164 -0.0150338138 0.0028375445 sample165 0.0076518841 -0.0164145789 sample166 0.0367791516 0.0630614243 sample167 0.1111989812 0.0030066421 sample168 -0.0672982961 0.0446266786 sample169 -0.0413003638 0.0224447071 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420463577 0.0867866059 sample2 0.0820849288 -0.0410968888 sample3 -0.0155964811 -0.0195186366 sample4 0.1001342695 -0.0410776453 sample5 0.0153479460 -0.0253257740 sample6 -0.0340240864 -0.0408223312 sample7 -0.0722601924 0.0002323977 sample8 0.0457617041 -0.0370006926 sample9 0.0086217301 0.0820184483 sample10 0.0423630532 -0.0083917670 sample11 -0.0022592593 0.0787764107 sample12 -0.0322076905 0.1479823435 sample13 0.0293968565 -0.0306742889 sample14 -0.0337431936 -0.0367508314 sample15 -0.0815559879 0.1275613909 sample16 -0.0508334549 0.0540604431 sample17 -0.0062556109 0.0041024881 sample18 -0.0705601657 -0.0351053292 sample19 0.0476784953 -0.0509595503 sample20 -0.0523025880 0.0715514091 sample21 0.0119248468 -0.0376087062 sample22 -0.0724456644 -0.0095634877 sample23 0.0992529592 0.0134298888 sample24 0.1595262389 0.0728684138 sample25 0.0920661817 -0.0749749350 sample26 0.0595566365 0.0848973624 sample27 -0.0826575140 -0.0086747526 sample28 0.0384832636 0.0440972715 sample29 -0.0777739611 0.1735298547 sample30 -0.1229474212 -0.0819018402 sample31 -0.0579752507 -0.0238646782 sample32 -0.0970366311 -0.0111435064 sample33 -0.1017580226 -0.0630452521 sample34 -0.0637903125 0.0377936259 sample35 -0.0790002972 -0.0229732440 sample36 -0.1224933073 -0.1274968261 sample37 -0.1798846748 -0.1673447932 sample38 -0.0466392096 0.0888153172 sample39 0.0168694521 0.0421536031 sample40 -0.1756417270 -0.1526662260 sample41 -0.0042467276 0.0004924528 sample42 0.0447826075 -0.0651501431 sample43 -0.0482292333 -0.0253533504 sample44 0.1986817297 -0.0545753846 sample45 0.0741916356 0.0054714193 sample46 -0.0478860221 -0.0007080396 sample47 -0.0608216066 0.0481615465 sample48 0.1381465216 0.0578300927 sample49 0.0530628721 -0.1405523582 sample50 0.0173649636 0.1602386053 sample51 -0.0462458853 0.0303473111 sample52 -0.0279997495 0.0280387919 sample53 -0.0667501310 0.0237700239 sample54 -0.0121812109 -0.0521354893 sample55 -0.0182392303 0.0221326648 sample56 0.0001307768 0.0030909316 sample57 -0.0316576942 0.0530190719 sample58 -0.0393891565 -0.0297801758 sample59 -0.1278271753 -0.0546540515 sample60 -0.1486965141 0.1069141959 sample61 -0.0793068740 0.0569790484 sample62 -0.1172821431 -0.0149211123 sample63 0.0028810710 0.1300524178 sample64 -0.0237297809 0.1073288445 sample65 0.0126543400 0.0589810357 sample66 0.0468233111 -0.0771066623 sample67 -0.1494285418 -0.0769877310 sample68 -0.0978022096 -0.0577363801 sample69 -0.0403090432 0.0156038271 sample70 -0.0221596583 0.0315436600 sample71 0.0546332327 -0.0272395045 sample72 -0.1107500699 -0.0537331335 sample73 -0.0906756839 0.0579957928 sample74 -0.0586514322 0.0121417508 sample75 -0.0390512258 0.0349278226 sample76 0.0022940179 -0.1676560114 sample77 0.0232101550 -0.2067300961 sample78 0.0929808646 -0.0434927982 sample79 0.1619383386 -0.0378102630 sample80 -0.0680392310 0.1424655952 sample81 0.0530726852 -0.0358347736 sample82 -0.0266849789 -0.0577449108 sample83 -0.1517241861 -0.0448570035 sample84 0.0570943762 -0.0273808507 sample85 -0.1086271795 -0.1228130362 sample86 -0.0833890930 -0.0442924794 sample87 -0.0022040195 -0.0943908522 sample88 0.0078275810 -0.1140504523 sample89 -0.0611007002 -0.0094589341 sample90 -0.0022941244 -0.0936254883 sample91 -0.0433769528 0.3205972101 sample92 0.1815220326 -0.0334666844 sample93 -0.0267653628 0.0614425801 sample94 -0.0181901028 0.0605088163 sample95 0.0720315643 -0.0013040641 sample96 0.0559673599 -0.0118787196 sample97 0.0217420407 0.0195417196 sample98 -0.0379198864 0.0588352766 sample99 0.0792506488 -0.0151262387 sample100 -0.0222100683 -0.0023322912 sample101 0.0387087200 0.1224225109 sample102 0.2094625816 -0.0516420982 sample103 -0.0138556363 0.0301047601 sample104 0.0807948876 -0.0162712458 sample105 0.0520492016 -0.1229660395 sample106 0.0192642353 -0.0185235167 sample107 -0.0319014478 0.0405120589 sample108 0.0140674510 0.0163422317 sample109 0.1831858436 0.0613023543 sample110 0.0292782803 -0.0199846510 sample111 0.1423175401 0.0327351962 sample112 -0.0426313680 -0.0029087025 sample113 0.0771931543 0.0268742710 sample114 0.0241569474 -0.0184080708 sample115 0.1958957279 0.0460148449 sample116 0.1394438228 -0.0530793595 sample117 0.1672312897 -0.1386522085 sample118 0.0448331858 -0.0117618016 sample119 0.0910196421 0.2217435627 sample120 0.0331404708 -0.0057270344 sample121 -0.0307517683 0.1392506252 sample122 0.0839836880 -0.0291983638 sample123 -0.0239674868 -0.0642167410 sample124 0.0909175960 0.0130430089 sample125 0.0065362311 -0.1092631027 sample126 -0.0935273988 0.1368276909 sample127 -0.0035405469 0.0292755003 sample128 0.0660349350 0.1018575780 sample129 -0.0693670623 -0.0695430246 sample130 -0.0008516736 -0.0669705407 sample131 -0.0431012124 0.0174061040 sample132 0.0637088383 0.0029383499 sample133 0.0289465044 -0.0390817336 sample134 -0.0446142842 0.0456332369 sample135 -0.0712343748 0.0521627632 sample136 -0.0596317916 0.0197291693 sample137 -0.0793175197 -0.0380637267 sample138 0.0973506152 -0.0454210200 sample139 -0.0539866405 -0.1534332065 sample140 -0.0850871676 0.0955804455 sample141 0.0192723439 -0.0554446463 sample142 0.0672294080 -0.0461313097 sample143 0.0303707455 -0.0519258571 sample144 0.0089350720 0.0145815357 sample145 0.0638875689 0.0122268763 sample146 -0.0585921865 0.0063074889 sample147 -0.0894146558 -0.1124625770 sample148 0.0216438891 -0.0615962380 sample149 0.0515317702 -0.0839902945 sample150 -0.0568229364 -0.0124472677 sample151 0.0789513903 -0.0261823995 sample152 0.0330693871 0.1306444955 sample153 0.1752063686 0.1497755501 sample154 -0.0421489053 -0.0037017136 sample155 -0.0680198592 0.0095703524 sample156 -0.0388949894 0.1057557950 sample157 -0.0314765204 0.0561364661 sample158 -0.0329630178 0.0353943629 sample159 0.0398461235 -0.1007368283 sample160 -0.0424906134 0.0108493088 sample161 0.0888340652 -0.0679692884 sample162 0.0027569708 0.1237848342 sample163 0.0126228043 0.0725440958 sample164 0.0566787171 -0.0458318318 sample165 0.0315331645 -0.0236359598 sample166 0.0612108768 -0.0425224830 sample167 -0.0142729572 0.0179307004 sample168 0.0169542663 -0.0769614864 sample169 -0.0675063582 0.0131499110 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012331670 -1.635716e-01 sample2 -0.0724353217 -6.022123e-03 sample3 -0.0188459942 -1.080029e-01 sample4 0.0390143129 3.106568e-04 sample5 0.1774810626 -2.996429e-02 sample6 -0.0451446469 -3.455898e-02 sample7 -0.0226463479 -7.019216e-03 sample8 -0.1033684567 -9.857940e-03 sample9 0.1350014227 8.979113e-02 sample10 0.1259884412 -5.097937e-02 sample11 0.0979790932 7.086566e-02 sample12 -0.0863020996 -8.620322e-02 sample13 -0.1381401831 1.827998e-01 sample14 -0.0615074742 -2.642808e-02 sample15 0.0381600585 -3.101602e-02 sample16 -0.0048779406 1.271028e-03 sample17 -0.0788483235 -1.547605e-02 sample18 -0.0884189504 -3.795477e-02 sample19 0.0703043519 -1.084003e-01 sample20 -0.0025581342 7.975969e-02 sample21 0.0941596620 -4.126892e-02 sample22 -0.0550270857 -7.806618e-02 sample23 0.0679492816 -4.102077e-02 sample24 -0.1310969457 1.649282e-01 sample25 0.0113583566 -4.426900e-02 sample26 -0.1402948918 2.016460e-02 sample27 0.0261566059 1.589951e-03 sample28 -0.0724200791 5.850511e-02 sample29 -0.0330054762 2.062070e-03 sample30 -0.0228750331 -2.015345e-02 sample31 -0.0635070421 -6.670369e-02 sample32 0.0685099998 -4.955246e-02 sample33 -0.0777764932 -1.272070e-01 sample34 0.0157842079 -3.024311e-02 sample35 -0.0529627918 1.500981e-01 sample36 0.0070908002 2.025321e-01 sample37 -0.0442411778 1.802109e-01 sample38 -0.0781508370 -3.676299e-02 sample39 0.0120330062 -3.388883e-02 sample40 -0.0473283815 1.471581e-01 sample41 0.0228192202 -2.673459e-02 sample42 -0.0245361862 -7.960877e-02 sample43 0.1036362007 -8.229578e-02 sample44 -0.1012234789 7.049242e-02 sample45 0.0013726678 -2.451068e-02 sample46 -0.0558506441 2.948576e-03 sample47 -0.0380478711 4.554236e-02 sample48 0.0784340466 4.888892e-02 sample49 -0.0605168082 -1.162470e-02 sample50 0.0530082929 -2.737814e-02 sample51 0.1514645344 5.678261e-02 sample52 0.1860936012 1.246711e-01 sample53 -0.0064179721 -2.701060e-02 sample54 0.0697037560 -2.308412e-02 sample55 0.1633577707 1.366433e-02 sample56 0.1011483993 4.682134e-02 sample57 0.1730374403 1.609594e-01 sample58 -0.0071384892 -1.666951e-02 sample59 -0.0030458470 3.005375e-02 sample60 0.0215842207 2.665887e-01 sample61 0.1510585334 1.002384e-01 sample62 -0.0925531584 -4.845729e-02 sample63 -0.0596315455 -4.137108e-02 sample64 -0.0449227291 -2.600958e-03 sample65 0.0939382242 -4.406950e-02 sample66 0.1063397729 -5.710077e-02 sample67 -0.0201580787 2.361746e-01 sample68 0.0037208403 2.418541e-02 sample69 -0.0645162003 -1.155618e-01 sample70 -0.1013439748 -1.351780e-01 sample71 -0.0016466093 -2.976774e-02 sample72 0.0328895409 -2.835772e-02 sample73 0.0275080383 -5.148153e-02 sample74 0.1341718359 -7.895303e-02 sample75 0.0951576645 -3.943148e-02 sample76 -0.0864719936 3.035053e-02 sample77 -0.1035749499 -2.545325e-02 sample78 -0.1575647877 4.939476e-02 sample79 0.0189138393 4.874690e-02 sample80 0.1384142772 4.314447e-05 sample81 -0.0118846660 -6.357908e-02 sample82 -0.1675306634 3.533969e-02 sample83 -0.0065671156 -7.812498e-02 sample84 0.1486890661 -3.109096e-02 sample85 -0.0532720335 7.417987e-02 sample86 -0.1138474912 -1.820827e-05 sample87 0.0432865958 6.080499e-02 sample88 0.0433451201 1.402486e-01 sample89 0.0331204794 -1.395428e-02 sample90 -0.0607413478 -8.610386e-02 sample91 -0.0566263727 1.303770e-01 sample92 -0.0359580677 1.061605e-01 sample93 -0.0433646459 -4.443610e-02 sample94 -0.0477292133 -1.059571e-01 sample95 -0.0249595919 -3.980510e-02 sample96 0.0035217580 -9.293931e-02 sample97 -0.0066052012 -1.527234e-01 sample98 0.0020367062 -5.579516e-02 sample99 -0.0886621741 -3.728373e-02 sample100 -0.1091259606 -3.560401e-02 sample101 -0.0739723823 -4.317886e-02 sample102 0.0574455709 -2.784084e-02 sample103 0.0142733757 9.706345e-03 sample104 0.0710395590 4.068331e-02 sample105 0.0980829944 -3.452996e-02 sample106 -0.0254260496 3.628934e-02 sample107 -0.0160655047 -9.173398e-02 sample108 -0.0200988312 -2.379699e-02 sample109 -0.0389781932 1.692312e-02 sample110 -0.0326305249 2.988087e-02 sample111 0.0676935943 -6.038249e-02 sample112 0.0167883508 5.336924e-03 sample113 0.0969213952 -2.757702e-02 sample114 -0.0026397972 -9.209102e-02 sample115 -0.0308049558 1.603745e-02 sample116 -0.1240306380 1.272998e-01 sample117 0.0334728665 5.392663e-02 sample118 -0.1037152152 6.252440e-02 sample119 -0.1064170565 1.196217e-01 sample120 -0.0771357713 -1.004935e-01 sample121 -0.0129352324 3.181915e-02 sample122 0.0847487553 -5.568462e-02 sample123 -0.0041335515 7.693549e-03 sample124 -0.0583462208 -8.396475e-02 sample125 0.0634843251 -5.232567e-02 sample126 -0.0662582110 -1.091730e-01 sample127 -0.0865025619 -1.094172e-01 sample128 -0.0627822039 -1.471092e-02 sample129 -0.0336274588 -4.007775e-02 sample130 -0.0293518113 -8.046087e-02 sample131 -0.0469196794 -2.209388e-03 sample132 -0.0241745641 -1.248608e-01 sample133 0.0907303804 1.466698e-02 sample134 -0.0350841234 7.539660e-02 sample135 0.0001334879 9.185814e-03 sample136 -0.0335874807 -9.860182e-02 sample137 -0.0640147272 -7.554372e-02 sample138 0.0060964055 -1.742782e-02 sample139 -0.0592082759 5.615006e-02 sample140 0.0427988603 -1.099467e-02 sample141 0.0618793268 -9.301101e-02 sample142 0.0898552510 3.573325e-02 sample143 0.0817391072 8.880528e-02 sample144 0.0787754475 -3.821395e-02 sample145 0.1085819510 1.569461e-01 sample146 -0.0589555000 -4.373238e-02 sample147 -0.0495327911 7.278052e-03 sample148 0.1161590484 9.078145e-03 sample149 -0.0121575490 7.788461e-02 sample150 -0.0314511981 3.520220e-02 sample151 0.0575380950 -1.945392e-02 sample152 -0.0494540354 7.025565e-02 sample153 -0.0941338540 2.153270e-01 sample154 -0.0335928826 2.078824e-02 sample155 0.0690459043 -2.780362e-02 sample156 0.1039902300 -6.292489e-02 sample157 -0.0408645845 8.065530e-03 sample158 0.1018106341 7.817019e-03 sample159 -0.0281732528 -1.207259e-02 sample160 0.1643052860 2.977812e-03 sample161 0.0374330092 8.524589e-02 sample162 -0.0804538274 8.349637e-02 sample163 -0.0743232404 -1.406345e-02 sample164 0.1208804282 -2.139523e-02 sample165 0.1608115957 2.025159e-02 sample166 -0.0425947933 -2.660800e-02 sample167 -0.0226849508 -4.464258e-02 sample168 -0.0180737368 -7.471482e-04 sample169 0.0190780205 2.645426e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 10.10 0.32 10.42 |
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ########################################### > ########### EXAMPLE OF THE OMICSPCA > ########################################### > require(STATegRa) Loading required package: STATegRa > > # g_legend (not exported by STATegRa any more) > ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs > g_legend<-function(a.gplot){ + tmp <- ggplot_gtable(ggplot_build(a.gplot)) + leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box") + legend <- tmp$grobs[[leg]] + return(legend)} > > ######################### > ## PART 1. Load data > > ## Load data > data(STATegRa_S3) > > ls() [1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend" > > ## Create ExpressionSets > # Block1 - Expression data > B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) > # Block2 - miRNA expression data > B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) > > ######################### > ## PART 2. Model Selection > > require(grid) Loading required package: grid > require(gridExtra) Loading required package: gridExtra > require(ggplot2) Loading required package: ggplot2 > > ## Select the optimal components > ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE) Common components [1] 2 Distinctive components [[1]] [1] 2 [[2]] [1] 2 > > > ######################### > ## PART 3. Component Analysis > > ## 3.1 Component analysis of the three methods > discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE, + scale=TRUE,weight=TRUE) > > ## 3.2 Exploring scores structures > > # Exploring DISCO-SCA scores structure > discoRes@scores$common ## Common scores 1 2 sample1 0.0781574235 -0.0431498891 sample2 -0.1192218202 0.0294093192 sample3 -0.0531412345 -0.0746839980 sample4 0.0292975383 -0.0005954832 sample5 0.0202091834 0.0110464291 sample6 0.1226089098 0.1053465283 sample7 0.1078927889 -0.0322479709 sample8 0.1782895585 0.1449366352 sample9 0.0468698181 -0.0455174509 sample10 -0.0036030360 0.0420113320 sample11 -0.0035566479 -0.0566293133 sample12 0.1006128856 0.0641379860 sample13 -0.1174408048 0.0907489298 sample14 0.0981203239 0.0617736368 sample15 0.0085334109 -0.0087017516 sample16 0.0783148786 0.1581291749 sample17 -0.1483609869 0.0638582066 sample18 -0.0963086380 0.0556636836 sample19 -0.0217244157 -0.0720083220 sample20 -0.0635636577 -0.0779656138 sample21 -0.0201840088 0.1566391999 sample22 0.0218268383 -0.0764107812 sample23 0.0852042226 -0.0032683468 sample24 -0.1287169896 0.1924551792 sample25 -0.0430574045 -0.0456561056 sample26 -0.1453896639 0.0541515900 sample27 -0.0197489166 -0.1185661302 sample28 -0.1025336094 0.0650687657 sample29 0.0706018218 -0.0682991977 sample30 -0.1295627844 -0.0066775737 sample31 0.1147449110 0.1232683784 sample32 -0.0374311057 0.0380172929 sample33 0.0599515667 0.0136862372 sample34 -0.0984200920 0.0375318002 sample35 -0.0543098511 -0.0378110891 sample36 0.1403625256 -0.0343764368 sample37 0.0228941473 -0.0732857294 sample38 -0.0222077546 -0.0962596751 sample39 -0.0941738440 0.0215200501 sample40 0.0643800738 -0.0687881620 sample41 -0.0327638233 -0.1232188231 sample42 -0.0500431850 -0.0292470503 sample43 -0.0184498932 0.0233008718 sample44 0.1487899429 0.1171364472 sample45 -0.1050773855 0.1123205857 sample46 -0.1151196003 -0.1094031084 sample47 -0.0962593883 -0.0288466958 sample48 0.0004837653 -0.0310270695 sample49 0.1135208057 0.1213975558 sample50 -0.0123553344 -0.1740742337 sample51 0.0550530037 0.1258883563 sample52 0.0499121416 0.0728541937 sample53 0.1119773723 0.1588010280 sample54 -0.0360055672 0.0228574877 sample55 0.0210419008 0.0006730360 sample56 -0.0434169074 0.0633125678 sample57 0.0197824883 0.1150710686 sample58 0.0030439835 0.0326095887 sample59 0.0500252866 0.0129411487 sample60 0.0184278552 0.0136075787 sample61 0.0150299446 0.0635020706 sample62 -0.0304764257 -0.0201325264 sample63 0.1102252641 0.1285977583 sample64 0.1552588175 0.0971167137 sample65 -0.0058503000 0.0207116365 sample66 -0.0025605197 0.0424322493 sample67 0.1546634545 -0.0661726449 sample68 0.0536368922 -0.0923689498 sample69 0.0640330187 0.0081981579 sample70 0.0163517466 -0.0663230302 sample71 -0.0102537736 -0.1345918215 sample72 -0.0654196346 -0.0196125613 sample73 -0.1048556342 0.0220933755 sample74 0.0123799408 0.0586112064 sample75 0.0392077812 -0.0209757155 sample76 0.0648953295 -0.0524764766 sample77 0.1172922090 -0.0201185715 sample78 -0.1463067773 0.0708477763 sample79 0.0265211361 -0.1603299332 sample80 0.0279737006 -0.0214208915 sample81 0.0079211448 -0.0738447575 sample82 -0.1544236646 -0.0361469185 sample83 -0.0494211825 -0.0050056579 sample84 -0.0259038380 -0.0346546492 sample85 0.1116484129 -0.0031504631 sample86 -0.1306483320 -0.0377219564 sample87 -0.0554778226 -0.0459749626 sample88 -0.0301623655 0.0382196882 sample89 -0.1016866753 0.0694030530 sample90 0.0086819751 -0.0201319848 sample91 0.1578625016 -0.2097830664 sample92 0.0170937070 -0.1655797320 sample93 -0.0979806944 -0.0121513123 sample94 0.0131483944 -0.0114932283 sample95 0.0315682640 -0.0758854783 sample96 0.0024125600 -0.0470131865 sample97 0.0634545386 0.0270334002 sample98 -0.0359374788 -0.0135490084 sample99 -0.1009163011 0.1124785081 sample100 0.0551753060 0.0246488625 sample101 -0.0080119105 -0.1627365618 sample102 -0.0046443809 0.0095643905 sample103 -0.0472523347 -0.0940394035 sample104 0.0198159632 -0.0591087398 sample105 -0.0400237711 -0.0160909207 sample106 -0.0923808291 0.0369018768 sample107 -0.1019374062 0.0224953162 sample108 -0.0877091663 -0.0128833030 sample109 0.0864824689 -0.0900931176 sample110 -0.1223115470 -0.0096083991 sample111 0.0257354795 -0.0936160637 sample112 -0.0765286655 0.0270345151 sample113 0.0258803492 0.0377501699 sample114 0.0021138762 -0.0882012972 sample115 0.0303460566 -0.0723574298 sample116 0.0780508718 -0.0685059048 sample117 0.0536898405 -0.0911899506 sample118 0.0666651244 -0.0236228766 sample119 0.1021871563 -0.2324931676 sample120 0.0750216573 0.0243381687 sample121 -0.0756936289 0.0942949085 sample122 -0.0259627790 0.0731992222 sample123 -0.1037846374 -0.0369198624 sample124 0.0611208131 0.0421729500 sample125 -0.0738472725 0.0066950571 sample126 0.0972916243 0.0762635526 sample127 0.0824697500 -0.0096636741 sample128 -0.1249407358 0.0929317180 sample129 -0.0734067802 -0.0434366688 sample130 -0.0003502135 -0.0309852327 sample131 0.0930182721 0.0155934616 sample132 0.0736222977 0.0733034231 sample133 -0.0498397951 -0.0462436053 sample134 0.1644873555 0.0720002464 sample135 -0.0752297361 0.0003813791 sample136 0.0227145461 -0.0495508822 sample137 0.0564717091 -0.0288919966 sample138 0.0255988232 -0.0610851403 sample139 0.0621217729 0.0235803851 sample140 -0.0604152805 -0.0435597903 sample141 0.0246744038 0.0532650094 sample142 -0.0409560067 0.0316283347 sample143 -0.0077355137 -0.0476895318 sample144 0.0173240811 -0.0156777331 sample145 0.0485475024 0.1202773111 sample146 0.0419645310 -0.0811284384 sample147 -0.0977308628 -0.0274845315 sample148 0.0368256399 0.0803980448 sample149 -0.0072865862 -0.1532983642 sample150 0.1020825271 0.0624770971 sample151 0.0305399205 -0.0289273692 sample152 -0.0533594768 -0.0638307118 sample153 -0.0891626775 0.1799587931 sample154 -0.0727557701 -0.0834163313 sample155 -0.0880668770 -0.0220823343 sample156 -0.0276561213 -0.0326627100 sample157 -0.1155032235 0.0183614602 sample158 -0.0281507584 -0.0104940671 sample159 0.0663235853 0.0443839443 sample160 -0.0302643883 0.0404262742 sample161 0.0114715760 -0.0591021053 sample162 -0.1337086835 0.1398135802 sample163 0.1330124758 0.1688782196 sample164 -0.0150335943 0.0028419304 sample165 0.0076520378 -0.0164127052 sample166 0.0367794587 0.0630665698 sample167 0.1111988795 0.0030057201 sample168 -0.0672981499 0.0446280270 sample169 -0.0413005073 0.0224390238 > discoRes@scores$dist[[1]] ## Distinctive scores for Block 1 1 2 sample1 0.0420518641 0.0867862871 sample2 0.0820827022 -0.0410978713 sample3 -0.0155894868 -0.0195182073 sample4 0.1001336698 -0.0410787443 sample5 0.0153464966 -0.0253259827 sample6 -0.0340332283 -0.0408223187 sample7 -0.0722578085 0.0002332854 sample8 0.0457491078 -0.0370016916 sample9 0.0086251713 0.0820184934 sample10 0.0423596198 -0.0083923700 sample11 -0.0022545279 0.0787766188 sample12 -0.0322107999 0.1479824781 sample13 0.0293883812 -0.0306749049 sample14 -0.0337486529 -0.0367506749 sample15 -0.0815537553 0.1275623130 sample16 -0.0508461145 0.0540604673 sample17 -0.0062599794 0.0041023630 sample18 -0.0705642731 -0.0351047272 sample19 0.0476846036 -0.0509598280 sample20 -0.0522958018 0.0715522440 sample21 0.0119117419 -0.0376093539 sample22 -0.0724388275 -0.0095624386 sample23 0.0992532354 0.0134288037 sample24 0.1595107115 0.0728660368 sample25 0.0920695780 -0.0749757858 sample26 0.0595538092 0.0848965476 sample27 -0.0826478831 -0.0086734522 sample28 0.0384784789 0.0440966439 sample29 -0.0777666354 0.1735309261 sample30 -0.1229471063 -0.0819004558 sample31 -0.0579853543 -0.0238644601 sample32 -0.0970395216 -0.0111425643 sample33 -0.1017588603 -0.0630441822 sample34 -0.0637924382 0.0377942120 sample35 -0.0789983046 -0.0229722529 sample36 -0.1224939761 -0.1274953942 sample37 -0.1798818781 -0.1673425891 sample38 -0.0466297798 0.0888161527 sample39 0.0168687117 0.0421533584 sample40 -0.1756390165 -0.1526640862 sample41 -0.0042363387 0.0004929122 sample42 0.0447851525 -0.0651505274 sample43 -0.0482309656 -0.0253528955 sample44 0.1986706911 -0.0545779671 sample45 0.0741830299 0.0054702465 sample46 -0.0478765362 -0.0007071389 sample47 -0.0608186409 0.0481623176 sample48 0.1381491278 0.0578286785 sample49 0.0530512092 -0.1405533528 sample50 0.0173811384 0.1602389939 sample51 -0.0462568908 0.0303473892 sample52 -0.0280070248 0.0280388430 sample53 -0.0667630694 0.0237702179 sample54 -0.0121835210 -0.0521354279 sample55 -0.0182396191 0.0221328567 sample56 0.0001251524 0.0030907211 sample57 -0.0316683094 0.0530190249 sample58 -0.0393920225 -0.0297798519 sample59 -0.1278292393 -0.0546527006 sample60 -0.1486986666 0.1069157658 sample61 -0.0793126669 0.0569796980 sample62 -0.1172799442 -0.0149197536 sample63 0.0028720241 0.1300519508 sample64 -0.0237369888 0.1073287666 sample65 0.0126534244 0.0589808293 sample66 0.0468191822 -0.0771073150 sample67 -0.1494262947 -0.0769859012 sample68 -0.0977956452 -0.0577350092 sample69 -0.0403087061 0.0156042408 sample70 -0.0221526200 0.0315441286 sample71 0.0546442563 -0.0272396543 sample72 -0.1107486785 -0.0537318474 sample73 -0.0906761604 0.0579967261 sample74 -0.0586558599 0.0121421988 sample75 -0.0390491791 0.0349283159 sample76 0.0022962345 -0.1676558693 sample77 0.0232095838 -0.2067302934 sample78 0.0929750761 -0.0434940355 sample79 0.1619505663 -0.0378115108 sample80 -0.0680363449 0.1424664062 sample81 0.0530788543 -0.0358351081 sample82 -0.0266819780 -0.0577444805 sample83 -0.1517234667 -0.0448553157 sample84 0.0570968951 -0.0273813597 sample85 -0.1086291079 -0.1228118500 sample86 -0.0833857513 -0.0442914246 sample87 -0.0022016679 -0.0943906730 sample88 0.0078220946 -0.1140506684 sample89 -0.0611061182 -0.0094584838 sample90 -0.0022927057 -0.0936253925 sample91 -0.0433576537 0.3205983591 sample92 0.1815344545 -0.0334681300 sample93 -0.0267628977 0.0614429269 sample94 -0.0181875960 0.0605090577 sample95 0.0720380424 -0.0013046029 sample96 0.0559718010 -0.0118791731 sample97 0.0217410281 0.0195413917 sample98 -0.0379175721 0.0588357432 sample99 0.0792421082 -0.0151274659 sample100 -0.0222117661 -0.0023321321 sample101 0.0387239661 0.1224226304 sample102 0.2094613267 -0.0516444240 sample103 -0.0138475329 0.0301052281 sample104 0.0807990019 -0.0162719401 sample105 0.0520493480 -0.1229665523 sample106 0.0192611018 -0.0185238413 sample107 -0.0319017378 0.0405123491 sample108 0.0140692283 0.0163421311 sample109 0.1831935723 0.0613006367 sample110 0.0292791208 -0.0199849275 sample111 0.1423258041 0.0327339461 sample112 -0.0426334354 -0.0029083173 sample113 0.0771902415 0.0268732968 sample114 0.0241647073 -0.0184080391 sample115 0.1959020158 0.0460129352 sample116 0.1394478961 -0.0530806719 sample117 0.1672365663 -0.1386537470 sample118 0.0448345252 -0.0117622226 sample119 0.0910401216 0.2217433220 sample120 0.0331391237 -0.0057274805 sample121 -0.0307579381 0.1392506564 sample122 0.0839776811 -0.0291995228 sample123 -0.0239648487 -0.0642163450 sample124 0.0909148639 0.0130418711 sample125 0.0065349980 -0.1092631873 sample126 -0.0935314830 0.1368284581 sample127 -0.0035386527 0.0292755686 sample128 0.0660291246 0.1018565616 sample129 -0.0693636076 -0.0695421103 sample130 -0.0008491607 -0.0669704246 sample131 -0.0431024948 0.0174065154 sample132 0.0637036342 0.0029374068 sample133 0.0289497113 -0.0390818943 sample134 -0.0446207737 0.0456334665 sample135 -0.0712336453 0.0521635501 sample136 -0.0596267327 0.0197299894 sample137 -0.0793150146 -0.0380627636 sample138 0.0973551651 -0.0454218861 sample139 -0.0539907705 -0.1534327013 sample140 -0.0850823520 0.0955815283 sample141 0.0192678573 -0.0554450337 sample142 0.0672259513 -0.0461321498 sample143 0.0303732244 -0.0519260362 sample144 0.0089365673 0.0145814882 sample145 0.0638761671 0.0122257635 sample146 -0.0585851181 0.0063083982 sample147 -0.0894132289 -0.1124614952 sample148 0.0216361337 -0.0615967481 sample149 0.0515428788 -0.0839903531 sample150 -0.0568287569 -0.0124468643 sample151 0.0789533853 -0.0261831720 sample152 0.0330758132 0.1306443484 sample153 0.1751920874 0.1497730357 sample154 -0.0421419266 -0.0037009677 sample155 -0.0680175844 0.0095711804 sample156 -0.0388908118 0.1057563333 sample157 -0.0314769749 0.0561367629 sample158 -0.0329619785 0.0353947598 sample159 0.0398413084 -0.1007374182 sample160 -0.0424941291 0.0108496405 sample161 0.0888373737 -0.0679700713 sample162 0.0027468553 0.1237843525 sample163 0.0126095629 0.0725433851 sample164 0.0566779092 -0.0458324617 sample165 0.0315336782 -0.0236362554 sample166 0.0612054177 -0.0425233648 sample167 -0.0142729897 0.0179308371 sample168 0.0169500435 -0.0769618125 sample169 -0.0675081662 0.0131505792 > discoRes@scores$dist[[2]] ## Distinctive scores for Block 2 1 2 sample1 -0.0012329531 -1.635717e-01 sample2 -0.0724349879 -6.021203e-03 sample3 -0.0188460475 -1.080037e-01 sample4 0.0390145414 3.114623e-04 sample5 0.1774811698 -2.996382e-02 sample6 -0.0451444303 -3.455856e-02 sample7 -0.0226466416 -7.020222e-03 sample8 -0.1033679977 -9.856707e-03 sample9 0.1350011592 8.979097e-02 sample10 0.1259887419 -5.097847e-02 sample11 0.0979788216 7.086532e-02 sample12 -0.0863018991 -8.620317e-02 sample13 -0.1381401071 1.828008e-01 sample14 -0.0615073810 -2.642802e-02 sample15 0.0381598852 -3.101668e-02 sample16 -0.0048776574 1.271894e-03 sample17 -0.0788480816 -1.547550e-02 sample18 -0.0884188715 -3.795487e-02 sample19 0.0703044475 -1.084004e-01 sample20 -0.0025585775 7.975868e-02 sample21 0.0941601960 -4.126731e-02 sample22 -0.0550273570 -7.806752e-02 sample23 0.0679495460 -4.102001e-02 sample24 -0.1310962392 1.649311e-01 sample25 0.0113585385 -4.426860e-02 sample26 -0.1402945736 2.016548e-02 sample27 0.0261560829 1.588346e-03 sample28 -0.0724198594 5.850598e-02 sample29 -0.0330058802 2.060745e-03 sample30 -0.0228752699 -2.015436e-02 sample31 -0.0635067799 -6.670331e-02 sample32 0.0685099624 -4.955274e-02 sample33 -0.0777765239 -1.272079e-01 sample34 0.0157842429 -3.024314e-02 sample35 -0.0529633054 1.500971e-01 sample36 0.0070900324 2.025306e-01 sample37 -0.0442421131 1.802087e-01 sample38 -0.0781511477 -3.676428e-02 sample39 0.0120331965 -3.388838e-02 sample40 -0.0473292571 1.471560e-01 sample41 0.0228189242 -2.673561e-02 sample42 -0.0245360147 -7.960866e-02 sample43 0.1036362853 -8.229577e-02 sample44 -0.1012228429 7.049465e-02 sample45 0.0013732365 -2.450900e-02 sample46 -0.0558510236 2.947304e-03 sample47 -0.0380481331 4.554169e-02 sample48 0.0784342187 4.888986e-02 sample49 -0.0605163711 -1.162348e-02 sample50 0.0530079048 -2.737940e-02 sample51 0.1514646600 5.678350e-02 sample52 0.1860935187 1.246718e-01 sample53 -0.0064176940 -2.700989e-02 sample54 0.0697038389 -2.308387e-02 sample55 0.1633576991 1.366442e-02 sample56 0.1011485168 4.682210e-02 sample57 0.1730374199 1.609604e-01 sample58 -0.0071384697 -1.666955e-02 sample59 -0.0030461882 3.005279e-02 sample60 0.0215834705 2.665877e-01 sample61 0.1510583533 1.002385e-01 sample62 -0.0925534099 -4.845849e-02 sample63 -0.0596311569 -4.137017e-02 sample64 -0.0449225708 -2.600555e-03 sample65 0.0939383852 -4.406906e-02 sample66 0.1063400937 -5.709987e-02 sample67 -0.0201590575 2.361726e-01 sample68 0.0037202887 2.418379e-02 sample69 -0.0645161159 -1.155622e-01 sample70 -0.1013440031 -1.351789e-01 sample71 -0.0016467983 -2.976846e-02 sample72 0.0328892872 -2.835863e-02 sample73 0.0275080020 -5.148188e-02 sample74 0.1341719765 -7.895278e-02 sample75 0.0951575603 -3.943186e-02 sample76 -0.0864722086 3.034988e-02 sample77 -0.1035749568 -2.545355e-02 sample78 -0.1575643907 4.939602e-02 sample79 0.0189137005 4.874678e-02 sample80 0.1384140451 4.261953e-05 sample81 -0.0118846444 -6.357933e-02 sample82 -0.1675308266 3.533908e-02 sample83 -0.0065673551 -7.812617e-02 sample84 0.1486891671 -3.109054e-02 sample85 -0.0532724671 7.417877e-02 sample86 -0.1138477488 -1.921638e-05 sample87 0.0432863863 6.080471e-02 sample88 0.0433450318 1.402491e-01 sample89 0.0331205835 -1.395399e-02 sample90 -0.0607412774 -8.610416e-02 sample91 -0.0566273181 1.303746e-01 sample92 -0.0359582610 1.061604e-01 sample93 -0.0433646358 -4.443636e-02 sample94 -0.0477291251 -1.059574e-01 sample95 -0.0249595760 -3.980526e-02 sample96 0.0035219098 -9.293928e-02 sample97 -0.0066048554 -1.527230e-01 sample98 0.0020366799 -5.579552e-02 sample99 -0.0886615745 -3.728216e-02 sample100 -0.1091259107 -3.560421e-02 sample101 -0.0739726647 -4.318006e-02 sample102 0.0574461495 -2.783903e-02 sample103 0.0142730853 9.705506e-03 sample104 0.0710395190 4.068352e-02 sample105 0.0980831437 -3.452950e-02 sample106 -0.0254259239 3.628987e-02 sample107 -0.0160653352 -9.173394e-02 sample108 -0.0200987617 -2.379692e-02 sample109 -0.0389780570 1.692362e-02 sample110 -0.0326304821 2.988111e-02 sample111 0.0676937668 -6.038210e-02 sample112 0.0167883427 5.336939e-03 sample113 0.0969217208 -2.757597e-02 sample114 -0.0026398376 -9.209160e-02 sample115 -0.0308047175 1.603828e-02 sample116 -0.1240307219 1.273000e-01 sample117 0.0334729113 5.392714e-02 sample118 -0.1037152964 6.252430e-02 sample119 -0.1064177029 1.196201e-01 sample120 -0.0771354929 -1.004932e-01 sample121 -0.0129350658 3.181980e-02 sample122 0.0847492585 -5.568317e-02 sample123 -0.0041336857 7.693155e-03 sample124 -0.0583457739 -8.396384e-02 sample125 0.0634844684 -5.232538e-02 sample126 -0.0662580880 -1.091733e-01 sample127 -0.0865024543 -1.094176e-01 sample128 -0.0627817149 -1.470955e-02 sample129 -0.0336276567 -4.007864e-02 sample130 -0.0293517725 -8.046119e-02 sample131 -0.0469197720 -2.209774e-03 sample132 -0.0241740371 -1.248598e-01 sample133 0.0907303176 1.466701e-02 sample134 -0.0350842133 7.539662e-02 sample135 0.0001333312 9.185349e-03 sample136 -0.0335876140 -9.860280e-02 sample137 -0.0640149013 -7.554476e-02 sample138 0.0060964896 -1.742761e-02 sample139 -0.0592084566 5.614966e-02 sample140 0.0427985758 -1.099557e-02 sample141 0.0618796578 -9.301034e-02 sample142 0.0898554592 3.573424e-02 sample143 0.0817389102 8.880524e-02 sample144 0.0787754801 -3.821391e-02 sample145 0.1085821712 1.569477e-01 sample146 -0.0589558124 -4.373368e-02 sample147 -0.0495330601 7.277145e-03 sample148 0.1161592936 9.079145e-03 sample149 -0.0121579700 7.788368e-02 sample150 -0.0314512575 3.520212e-02 sample151 0.0575382251 -1.945350e-02 sample152 -0.0494542207 7.025535e-02 sample153 -0.0941332376 2.153299e-01 sample154 -0.0335932207 2.078722e-02 sample155 0.0690457560 -2.780413e-02 sample156 0.1039901576 -6.292527e-02 sample157 -0.0408645782 8.065514e-03 sample158 0.1018105242 7.816866e-03 sample159 -0.0281730413 -1.207203e-02 sample160 0.1643053017 2.978123e-03 sample161 0.0374329204 8.524612e-02 sample162 -0.0804535142 8.349763e-02 sample163 -0.0743227698 -1.406217e-02 sample164 0.1208806121 -2.139456e-02 sample165 0.1608115913 2.025194e-02 sample166 -0.0425944433 -2.660709e-02 sample167 -0.0226849479 -4.464283e-02 sample168 -0.0180735472 -7.465841e-04 sample169 0.0190778929 2.645401e-02 > # Exploring O2PLS scores structure > o2plsRes@scores$common[[1]] ## Common scores for Block 1 [,1] [,2] sample1 -0.0572060227 -1.729087e-02 sample2 0.0875245208 1.112588e-02 sample3 0.0403482602 -3.168994e-02 sample4 -0.0218345996 4.052760e-06 sample5 -0.0150905011 4.795041e-03 sample6 -0.0924362933 4.511003e-02 sample7 -0.0793066751 -1.243823e-02 sample8 -0.1342997187 6.215220e-02 sample9 -0.0338886944 -1.854401e-02 sample10 0.0020547173 1.749421e-02 sample11 0.0037275602 -2.364116e-02 sample12 -0.0753094533 2.772698e-02 sample13 0.0856160091 3.679963e-02 sample14 -0.0737457307 2.668452e-02 sample15 -0.0062111746 -3.554864e-03 sample16 -0.0602355268 6.675115e-02 sample17 0.1086768843 2.524534e-02 sample18 0.0702999472 2.231671e-02 sample19 0.0173785882 -3.024846e-02 sample20 0.0484173812 -3.310904e-02 sample21 0.0124657042 6.517144e-02 sample22 -0.0140989936 -3.159137e-02 sample23 -0.0627028403 -5.393710e-04 sample24 0.0919972100 7.909297e-02 sample25 0.0326998483 -1.945206e-02 sample26 0.1064741246 2.120849e-02 sample27 0.0166058995 -4.964993e-02 sample28 0.0743504770 2.614211e-02 sample29 -0.0511008491 -2.782647e-02 sample30 0.0962250842 -3.974893e-03 sample31 -0.0869563008 5.250819e-02 sample32 0.0271858919 1.552005e-02 sample33 -0.0448364581 6.243160e-03 sample34 0.0718415218 1.469396e-02 sample35 0.0403086451 -1.632629e-02 sample36 -0.1036402827 -1.304320e-02 sample37 -0.0159385744 -3.036525e-02 sample38 0.0182198369 -4.034805e-02 sample39 0.0690363619 8.058350e-03 sample40 -0.0467312750 -2.810325e-02 sample41 0.0263674438 -5.171216e-02 sample42 0.0374578960 -1.268634e-02 sample43 0.0132336869 9.536642e-03 sample44 -0.1119154428 5.028683e-02 sample45 0.0759639367 4.587903e-02 sample46 0.0871885519 -4.670385e-02 sample47 0.0721490571 -1.288540e-02 sample48 0.0005086144 -1.290565e-02 sample49 -0.0858177028 5.173760e-02 sample50 0.0118992665 -7.276215e-02 sample51 -0.0426446855 5.306205e-02 sample52 -0.0381605826 3.086785e-02 sample53 -0.0855757630 6.730043e-02 sample54 0.0261723092 9.184260e-03 sample55 -0.0156418304 4.682404e-04 sample56 0.0307831193 2.597550e-02 sample57 -0.0157242103 4.829381e-02 sample58 -0.0031174404 1.359898e-02 sample59 -0.0373001859 5.868397e-03 sample60 -0.0142609099 5.831654e-03 sample61 -0.0122255144 2.663579e-02 sample62 0.0228002942 -8.692265e-03 sample63 -0.0833127581 5.473229e-02 sample64 -0.1166548159 4.196500e-02 sample65 0.0038808902 8.568590e-03 sample66 0.0011561811 1.766612e-02 sample67 -0.1129311062 -2.608702e-02 sample68 -0.0382526429 -3.804045e-02 sample69 -0.0476502440 4.003241e-03 sample70 -0.0110329882 -2.752719e-02 sample71 0.0096850282 -5.627056e-02 sample72 0.0487124704 -8.800131e-03 sample73 0.0773058132 8.239864e-03 sample74 -0.0102488176 2.454957e-02 sample75 -0.0286613976 -8.387293e-03 sample76 -0.0472655595 -2.129315e-02 sample77 -0.0865043074 -7.296820e-03 sample78 0.1070293698 2.818346e-02 sample79 -0.0165060681 -6.659721e-02 sample80 -0.0206765949 -8.712112e-03 sample81 -0.0050943615 -3.079175e-02 sample82 0.1153622361 -1.647054e-02 sample83 0.0367979217 -2.538114e-03 sample84 0.0199463070 -1.468961e-02 sample85 -0.0827122185 -2.709824e-04 sample86 0.0969487314 -1.699897e-02 sample87 0.0421957457 -1.965953e-02 sample88 0.0215934743 1.566050e-02 sample89 0.0751559502 2.811652e-02 sample90 -0.0057328000 -8.283795e-03 sample91 -0.1134005268 -8.603522e-02 sample92 -0.0101689918 -6.894992e-02 sample93 0.0725967502 -6.003176e-03 sample94 -0.0096878852 -4.693081e-03 sample95 -0.0223502239 -3.139636e-02 sample96 -0.0013232863 -1.963604e-02 sample97 -0.0476541710 1.183660e-02 sample98 0.0269546160 -5.978398e-03 sample99 0.0728179461 4.597884e-02 sample100 -0.0413398038 1.079347e-02 sample101 0.0087536994 -6.796076e-02 sample102 0.0032509529 3.932612e-03 sample103 0.0360342395 -3.973263e-02 sample104 -0.0141722563 -2.453107e-02 sample105 0.0294940465 -7.140722e-03 sample106 0.0686472054 1.462895e-02 sample107 0.0748635927 8.401339e-03 sample108 0.0650175850 -6.211942e-03 sample109 -0.0628017242 -3.681224e-02 sample110 0.0905513691 -5.169053e-03 sample111 -0.0176679473 -3.884777e-02 sample112 0.0570870472 1.066018e-02 sample113 -0.0200110554 1.596044e-02 sample114 -0.0001474542 -3.679272e-02 sample115 -0.0213333038 -2.991667e-02 sample116 -0.0567675453 -2.785636e-02 sample117 -0.0379865990 -3.752078e-02 sample118 -0.0484878786 -9.173691e-03 sample119 -0.0713511831 -9.598634e-02 sample120 -0.0555093586 1.089843e-02 sample121 0.0542443861 3.861344e-02 sample122 0.0178575357 3.027138e-02 sample123 0.0775020581 -1.636852e-02 sample124 -0.0460701050 1.814758e-02 sample125 0.0543846585 2.075898e-03 sample126 -0.0729417144 3.276659e-02 sample127 -0.0609509157 -3.270814e-03 sample128 0.0908136899 3.758801e-02 sample129 0.0552445878 -1.879062e-02 sample130 0.0007128089 -1.294308e-02 sample131 -0.0693311345 7.357082e-03 sample132 -0.0556565156 3.126995e-02 sample133 0.0375870104 -1.977240e-02 sample134 -0.1229130924 3.159495e-02 sample135 0.0555550315 -5.563250e-04 sample136 -0.0159768414 -2.046339e-02 sample137 -0.0412337694 -1.151652e-02 sample138 -0.0180604476 -2.526505e-02 sample139 -0.0465649201 1.040683e-02 sample140 0.0452288969 -1.876279e-02 sample141 -0.0189142561 2.247042e-02 sample142 0.0297545566 1.280524e-02 sample143 0.0064292003 -1.997706e-02 sample144 -0.0124284903 -6.369733e-03 sample145 -0.0377141491 5.066743e-02 sample146 -0.0296240067 -3.344465e-02 sample147 0.0726083535 -1.239968e-02 sample148 -0.0284795794 3.389732e-02 sample149 0.0082261455 -6.399305e-02 sample150 -0.0765013197 2.704021e-02 sample151 -0.0220567356 -1.178159e-02 sample152 0.0403422737 -2.714879e-02 sample153 0.0629117719 7.425085e-02 sample154 0.0551622927 -3.548984e-02 sample155 0.0654439133 -1.005306e-02 sample156 0.0209310714 -1.390213e-02 sample157 0.0851522597 6.577150e-03 sample158 0.0208354599 -4.663078e-03 sample159 -0.0498794349 1.913257e-02 sample160 0.0216074437 1.656579e-02 sample161 -0.0075742328 -2.455676e-02 sample162 0.0963663017 5.705881e-02 sample163 -0.1009542191 7.174224e-02 sample164 0.0109881996 1.026806e-03 sample165 -0.0053146157 -6.772855e-03 sample166 -0.0275757357 2.673084e-02 sample167 -0.0825048036 2.278863e-03 sample168 0.0486147429 1.793843e-02 sample169 0.0302506727 8.984253e-03 > o2plsRes@scores$common[[2]] ## Common scores for Block 2 [,1] [,2] sample1 -0.0621842115 -1.364509e-02 sample2 0.0944623785 9.720892e-03 sample3 0.0406196267 -2.236338e-02 sample4 -0.0229316496 -3.932487e-04 sample5 -0.0157330047 3.231033e-03 sample6 -0.0945794025 3.120720e-02 sample7 -0.0854427118 -1.052880e-02 sample8 -0.1376625920 4.286608e-02 sample9 -0.0377115311 -1.415134e-02 sample10 0.0035244506 1.280825e-02 sample11 0.0016639987 -1.717895e-02 sample12 -0.0781403168 1.884368e-02 sample13 0.0938400516 2.838858e-02 sample14 -0.0759839772 1.810989e-02 sample15 -0.0068340837 -2.705361e-03 sample16 -0.0590150849 4.757848e-02 sample17 0.1178805097 2.040526e-02 sample18 0.0767858320 1.756604e-02 sample19 0.0157112113 -2.172867e-02 sample20 0.0485318300 -2.327033e-02 sample21 0.0185928176 4.777095e-02 sample22 -0.0191358702 -2.329775e-02 sample23 -0.0672994194 -1.535656e-03 sample24 0.1047476642 5.935707e-02 sample25 0.0329844953 -1.358036e-02 sample26 0.1154952052 1.741529e-02 sample27 0.0133849853 -3.590922e-02 sample28 0.0821554039 2.042376e-02 sample29 -0.0567643690 -2.123848e-02 sample30 0.1016073931 -1.134728e-03 sample31 -0.0880396372 3.670548e-02 sample32 0.0300363338 1.182406e-02 sample33 -0.0467252272 3.739254e-03 sample34 0.0783666394 1.203777e-02 sample35 0.0424227097 -1.118559e-02 sample36 -0.1107646166 -1.143464e-02 sample37 -0.0191667664 -2.246060e-02 sample38 0.0155968095 -2.909621e-02 sample39 0.0746847148 7.148218e-03 sample40 -0.0517028178 -2.137267e-02 sample41 0.0234979494 -3.723018e-02 sample42 0.0388797356 -8.557228e-03 sample43 0.0149555568 7.210002e-03 sample44 -0.1150305613 3.461805e-02 sample45 0.0846146236 3.486020e-02 sample46 0.0884426404 -3.246853e-02 sample47 0.0748644971 -8.083045e-03 sample48 -0.0012033198 -9.403647e-03 sample49 -0.0872662737 3.616245e-02 sample50 0.0066941314 -5.284863e-02 sample51 -0.0411777630 3.791830e-02 sample52 -0.0379355780 2.180834e-02 sample53 -0.0851639886 4.751761e-02 sample54 0.0288006248 7.184424e-03 sample55 -0.0164920835 5.919925e-05 sample56 0.0355115616 1.951043e-02 sample57 -0.0141146068 3.492409e-02 sample58 -0.0015636132 9.862883e-03 sample59 -0.0390656483 3.590929e-03 sample60 -0.0139454780 3.963030e-03 sample61 -0.0106410274 1.919705e-02 sample62 0.0236748439 -5.922677e-03 sample63 -0.0846790877 3.839102e-02 sample64 -0.1202581015 2.846469e-02 sample65 0.0050548584 6.328644e-03 sample66 0.0028013072 1.291807e-02 sample67 -0.1231623009 -2.112565e-02 sample68 -0.0437782161 -2.845072e-02 sample69 -0.0501199692 2.053469e-03 sample70 -0.0140278645 -2.027157e-02 sample71 0.0057489505 -4.085977e-02 sample72 0.0511212704 -5.522408e-03 sample73 0.0828141409 7.431582e-03 sample74 -0.0085959456 1.772951e-02 sample75 -0.0312180394 -6.636869e-03 sample76 -0.0519051781 -1.640191e-02 sample77 -0.0925924762 -6.907800e-03 sample78 0.1163971046 2.251122e-02 sample79 -0.0240906926 -4.887766e-02 sample80 -0.0221327065 -6.730703e-03 sample81 -0.0072114968 -2.254399e-02 sample82 0.1204416674 -9.907422e-03 sample83 0.0386739485 -1.171663e-03 sample84 0.0195988488 -1.033806e-02 sample85 -0.0877680171 -1.725057e-03 sample86 0.1023541048 -1.062501e-02 sample87 0.0425213089 -1.356865e-02 sample88 0.0244788514 1.180820e-02 sample89 0.0804276691 2.188588e-02 sample90 -0.0074639871 -6.140721e-03 sample91 -0.1278832404 -6.485140e-02 sample92 -0.0162199697 -5.048358e-02 sample93 0.0769344893 -3.045135e-03 sample94 -0.0104345587 -3.593172e-03 sample95 -0.0260058453 -2.330475e-02 sample96 -0.0025018700 -1.433516e-02 sample97 -0.0492358305 7.774183e-03 sample98 0.0279220220 -3.862141e-03 sample99 0.0813921923 3.487339e-02 sample100 -0.0428797405 7.112807e-03 sample101 0.0032855240 -4.940743e-02 sample102 0.0038439317 2.938008e-03 sample103 0.0358511139 -2.831881e-02 sample104 -0.0162784000 -1.815061e-02 sample105 0.0314853405 -4.656633e-03 sample106 0.0726456731 1.192390e-02 sample107 0.0807342975 7.508627e-03 sample108 0.0688338003 -3.336161e-03 sample109 -0.0694151950 -2.800146e-02 sample110 0.0961218924 -2.111997e-03 sample111 -0.0217900036 -2.864702e-02 sample112 0.0599954082 8.820317e-03 sample113 -0.0195006577 1.128215e-02 sample114 -0.0032126533 -2.682851e-02 sample115 -0.0251101087 -2.221077e-02 sample116 -0.0625141551 -2.137258e-02 sample117 -0.0440473375 -2.806256e-02 sample118 -0.0532042630 -7.590494e-03 sample119 -0.0848603028 -7.133574e-02 sample120 -0.0588832131 6.937326e-03 sample121 0.0613899126 2.915307e-02 sample122 0.0218424338 2.241775e-02 sample123 0.0809008460 -1.051759e-02 sample124 -0.0472109313 1.239887e-02 sample125 0.0583180947 2.521167e-03 sample126 -0.0753941872 2.256455e-02 sample127 -0.0649774209 -3.496964e-03 sample128 0.1000212216 2.908091e-02 sample129 0.0568033049 -1.269016e-02 sample130 -0.0002370832 -9.419675e-03 sample131 -0.0727030877 4.091672e-03 sample132 -0.0566219024 2.179861e-02 sample133 0.0384172955 -1.372840e-02 sample134 -0.1280862736 2.077912e-02 sample135 0.0592633273 6.106685e-04 sample136 -0.0187635410 -1.521173e-02 sample137 -0.0449958970 -9.152840e-03 sample138 -0.0211348699 -1.875415e-02 sample139 -0.0482882861 6.729304e-03 sample140 0.0468926306 -1.285498e-02 sample141 -0.0186248693 1.605439e-02 sample142 0.0328031246 9.887746e-03 sample143 0.0052919839 -1.445666e-02 sample144 -0.0140067923 -4.867248e-03 sample145 -0.0361804310 3.625323e-02 sample146 -0.0345286735 -2.493652e-02 sample147 0.0765025670 -7.714769e-03 sample148 -0.0276016641 2.420589e-02 sample149 0.0027545308 -4.653007e-02 sample150 -0.0792296010 1.831289e-02 sample151 -0.0245894512 -8.991738e-03 sample152 0.0409796547 -1.907063e-02 sample153 0.0734301757 5.528780e-02 sample154 0.0557740684 -2.487723e-02 sample155 0.0689436560 -6.127635e-03 sample156 0.0212272938 -9.747423e-03 sample157 0.0911931194 6.355708e-03 sample158 0.0220840645 -3.016357e-03 sample159 -0.0513244242 1.304175e-02 sample160 0.0246213576 1.248444e-02 sample161 -0.0100369130 -1.805391e-02 sample162 0.1078802043 4.337260e-02 sample163 -0.1017965082 5.047171e-02 sample164 0.0119430799 9.593002e-04 sample165 -0.0063708014 -5.032148e-03 sample166 -0.0283181180 1.899222e-02 sample167 -0.0872832229 1.516582e-04 sample168 0.0540714512 1.397701e-02 sample169 0.0328432652 7.104347e-03 > o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1 [,1] [,2] sample1 0.0133684846 2.195848e-02 sample2 0.0254157197 -1.058416e-02 sample3 -0.0049551479 -4.840017e-03 sample4 0.0310390570 -1.063929e-02 sample5 0.0046941318 -6.488426e-03 sample6 -0.0107406753 -1.026702e-02 sample7 -0.0225157631 2.624712e-04 sample8 0.0141320952 -9.505821e-03 sample9 0.0029681280 2.078210e-02 sample10 0.0131729174 -2.275042e-03 sample11 -0.0004164298 1.994019e-02 sample12 -0.0095211620 3.759883e-02 sample13 0.0091018604 -7.953956e-03 sample14 -0.0106557524 -9.181659e-03 sample15 -0.0249924121 3.262724e-02 sample16 -0.0156216400 1.375700e-02 sample17 -0.0019382446 1.073994e-03 sample18 -0.0221072481 -8.703592e-03 sample19 0.0146917619 -1.311712e-02 sample20 -0.0160353760 1.826290e-02 sample21 0.0035947899 -9.616341e-03 sample22 -0.0225060762 -2.532589e-03 sample23 0.0310000683 3.033060e-03 sample24 0.0499544372 1.809450e-02 sample25 0.0284442301 -1.932558e-02 sample26 0.0188220043 2.146985e-02 sample27 -0.0257763219 -1.999228e-03 sample28 0.0120888648 1.125834e-02 sample29 -0.0236482520 4.426726e-02 sample30 -0.0385486305 -2.055935e-02 sample31 -0.0181539336 -5.877838e-03 sample32 -0.0302630460 -2.607192e-03 sample33 -0.0319565715 -1.562628e-02 sample34 -0.0197970124 9.906813e-03 sample35 -0.0247412713 -5.434440e-03 sample36 -0.0386259060 -3.190394e-02 sample37 -0.0566199273 -4.192574e-02 sample38 -0.0142060273 2.259644e-02 sample39 0.0053589035 1.076485e-02 sample40 -0.0552546493 -3.819896e-02 sample41 -0.0013089975 9.278818e-05 sample42 0.0137252142 -1.664652e-02 sample43 -0.0151259626 -6.290953e-03 sample44 0.0617391754 -1.442883e-02 sample45 0.0231410886 1.163143e-03 sample46 -0.0148898209 -1.384176e-04 sample47 -0.0187252536 1.221690e-02 sample48 0.0432839432 1.416671e-02 sample49 0.0160818605 -3.588745e-02 sample50 0.0059333545 4.067003e-02 sample51 -0.0142914866 7.776270e-03 sample52 -0.0086339952 7.208917e-03 sample53 -0.0207386980 6.272432e-03 sample54 -0.0039856719 -1.316934e-02 sample55 -0.0056217017 5.692315e-03 sample56 0.0000123292 8.978290e-04 sample57 -0.0095805555 1.324253e-02 sample58 -0.0124160295 -7.326376e-03 sample59 -0.0400195442 -1.349736e-02 sample60 -0.0460063358 2.770091e-02 sample61 -0.0245266456 1.470710e-02 sample62 -0.0366022783 -3.437352e-03 sample63 0.0013742171 3.288796e-02 sample64 -0.0070599859 2.739588e-02 sample65 0.0041201911 1.498268e-02 sample66 0.0143173351 -1.968812e-02 sample67 -0.0467477531 -1.929938e-02 sample68 -0.0306751978 -1.436184e-02 sample69 -0.0125317217 4.130407e-03 sample70 -0.0068071487 8.080857e-03 sample71 0.0169170264 -7.027348e-03 sample72 -0.0346909749 -1.333770e-02 sample73 -0.0280506153 1.493843e-02 sample74 -0.0182611498 3.294697e-03 sample75 -0.0120563964 8.974612e-03 sample76 0.0001437236 -4.253184e-02 sample77 0.0065330299 -5.252886e-02 sample78 0.0288278141 -1.127782e-02 sample79 0.0503961481 -1.023318e-02 sample80 -0.0207693429 3.648391e-02 sample81 0.0163562768 -9.074596e-03 sample82 -0.0084317129 -1.478976e-02 sample83 -0.0474097918 -1.103126e-02 sample84 0.0177181395 -7.191197e-03 sample85 -0.0342718548 -3.082360e-02 sample86 -0.0261671791 -1.089491e-02 sample87 -0.0009486358 -2.411514e-02 sample88 0.0020528931 -2.894615e-02 sample89 -0.0189361111 -2.638639e-03 sample90 -0.0009863658 -2.390075e-02 sample91 -0.0124352695 8.153234e-02 sample92 0.0564264106 -8.909537e-03 sample93 -0.0081461774 1.570851e-02 sample94 -0.0054896581 1.547251e-02 sample95 0.0224073150 -4.374348e-04 sample96 0.0173528924 -3.050441e-03 sample97 0.0067948115 5.008237e-03 sample98 -0.0116030825 1.498764e-02 sample99 0.0246422688 -4.054795e-03 sample100 -0.0069420745 -4.846343e-04 sample101 0.0124923691 3.091503e-02 sample102 0.0650835386 -1.367400e-02 sample103 -0.0042741828 7.855985e-03 sample104 0.0250591040 -4.171938e-03 sample105 0.0157516368 -3.121990e-02 sample106 0.0060593853 -5.101693e-03 sample107 -0.0098329626 1.044506e-02 sample108 0.0044269853 4.142036e-03 sample109 0.0572473486 1.517542e-02 sample110 0.0090474827 -5.119868e-03 sample111 0.0444263015 7.983232e-03 sample112 -0.0131765484 -9.696342e-04 sample113 0.0241047399 6.706740e-03 sample114 0.0074558775 -4.728652e-03 sample115 0.0611851433 1.117210e-02 sample116 0.0432646951 -1.380556e-02 sample117 0.0516750066 -3.575617e-02 sample118 0.0139942100 -3.279138e-03 sample119 0.0291722987 5.587946e-02 sample120 0.0103515853 -1.690016e-03 sample121 -0.0091396331 3.552116e-02 sample122 0.0260431679 -7.583975e-03 sample123 -0.0076666389 -1.628489e-02 sample124 0.0283466326 3.127845e-03 sample125 0.0016472378 -2.770692e-02 sample126 -0.0286529417 3.489336e-02 sample127 -0.0010224500 7.483214e-03 sample128 0.0209049296 2.572016e-02 sample129 -0.0218184878 -1.755347e-02 sample130 -0.0005009620 -1.697978e-02 sample131 -0.0134032968 4.637390e-03 sample132 0.0198526786 5.723983e-04 sample133 0.0088812957 -9.988115e-03 sample134 -0.0137484514 1.172591e-02 sample135 -0.0220314568 1.347465e-02 sample136 -0.0185173353 5.168079e-03 sample137 -0.0248352123 -9.472788e-03 sample138 0.0301635767 -1.175283e-02 sample139 -0.0173576929 -3.872592e-02 sample140 -0.0262157762 2.456863e-02 sample141 0.0058369763 -1.420854e-02 sample142 0.0207886071 -1.188764e-02 sample143 0.0092832598 -1.324238e-02 sample144 0.0028442140 3.627979e-03 sample145 0.0199749569 2.862202e-03 sample146 -0.0182236697 1.726556e-03 sample147 -0.0282519995 -2.825595e-02 sample148 0.0065435868 -1.572917e-02 sample149 0.0158233820 -2.159451e-02 sample150 -0.0177383738 -3.020633e-03 sample151 0.0245166984 -6.888241e-03 sample152 0.0107259913 3.314630e-02 sample153 0.0550963965 3.758760e-02 sample154 -0.0131452472 -8.153903e-04 sample155 -0.0211742574 2.642246e-03 sample156 -0.0117803505 2.698265e-02 sample157 -0.0096167165 1.433840e-02 sample158 -0.0101754772 9.137620e-03 sample159 0.0120662931 -2.565236e-02 sample160 -0.0132238202 2.916023e-03 sample161 0.0274491966 -1.748284e-02 sample162 0.0012482909 3.152261e-02 sample163 0.0042031315 1.830701e-02 sample164 0.0174896157 -1.175915e-02 sample165 0.0097517662 -6.119019e-03 sample166 0.0190134679 -1.121582e-02 sample167 -0.0044140836 4.665585e-03 sample168 0.0049689168 -1.941822e-02 sample169 -0.0209802098 3.498729e-03 > o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2 [,1] [,2] sample1 -0.0515543627 -0.0305856787 sample2 -0.0144993256 0.0236342950 sample3 -0.0371833108 -0.0140263348 sample4 0.0068945388 -0.0132539692 sample5 0.0215035333 -0.0663338101 sample6 -0.0187055152 0.0088773016 sample7 -0.0061521552 0.0064029054 sample8 -0.0210874459 0.0334652901 sample9 0.0516865043 -0.0291142799 sample10 0.0059440366 -0.0527217447 sample11 0.0393010793 -0.0200624712 sample12 -0.0420837100 0.0131331362 sample13 0.0333252565 0.0818552509 sample14 -0.0190062644 0.0160202175 sample15 -0.0030968049 -0.0189230681 sample16 -0.0004452158 0.0018880102 sample17 -0.0185848615 0.0240170131 sample18 -0.0273093598 0.0230213640 sample19 -0.0217761111 -0.0445894441 sample20 0.0245820821 0.0159812738 sample21 0.0034527644 -0.0400016054 sample22 -0.0340789054 0.0039289109 sample23 -0.0010344929 -0.0310161212 sample24 0.0289468503 0.0760962436 sample25 -0.0119098496 -0.0122798760 sample26 -0.0181001057 0.0517892852 sample27 0.0050465417 -0.0086515844 sample28 0.0057491502 0.0358830107 sample29 -0.0051104246 0.0116605117 sample30 -0.0103085904 0.0039678538 sample31 -0.0319929858 0.0090606113 sample32 -0.0036232521 -0.0328202010 sample33 -0.0534742153 0.0024751837 sample34 -0.0067495749 -0.0111000311 sample35 0.0378745721 0.0465929296 sample36 0.0647886800 0.0359987924 sample37 0.0488441236 0.0492906912 sample38 -0.0251514062 0.0197110110 sample39 -0.0085428066 -0.0105117852 sample40 0.0379324087 0.0440810741 sample41 -0.0044199152 -0.0128820644 sample42 -0.0292553573 -0.0067045265 sample43 -0.0077829155 -0.0510178219 sample44 0.0045122248 0.0479660309 sample45 -0.0074444298 -0.0051116726 sample46 -0.0088025512 0.0196186661 sample47 0.0076696301 0.0215947965 sample48 0.0290108585 -0.0175568376 sample49 -0.0141754858 0.0184717099 sample50 0.0006282201 -0.0233054373 sample51 0.0441995177 -0.0410022921 sample52 0.0715329391 -0.0399499475 sample53 -0.0095954087 -0.0029140909 sample54 0.0048933768 -0.0281884386 sample55 0.0327325487 -0.0532290012 sample56 0.0323068984 -0.0256595538 sample57 0.0806603122 -0.0286748097 sample58 -0.0064792049 -0.0006945349 sample59 0.0088958941 0.0067389649 sample60 0.0874124612 0.0431964341 sample61 0.0577604571 -0.0326112099 sample62 -0.0313318464 0.0224391756 sample63 -0.0233625220 0.0125110562 sample64 -0.0086426068 0.0148770341 sample65 0.0025256193 -0.0404466327 sample66 0.0006014071 -0.0471576264 sample67 0.0706087042 0.0516228406 sample68 0.0082301011 0.0033109509 sample69 -0.0475076743 0.0001452708 sample70 -0.0600773716 0.0089986962 sample71 -0.0096321627 -0.0050761187 sample72 -0.0031773546 -0.0166221542 sample73 -0.0113700517 -0.0191726684 sample74 -0.0014179662 -0.0608101325 sample75 0.0041911740 -0.0399981269 sample76 -0.0055326449 0.0353114263 sample77 -0.0260214459 0.0305731380 sample78 -0.0119267436 0.0632236007 sample79 0.0186017239 0.0027402910 sample80 0.0241047889 -0.0472697181 sample81 -0.0220288317 -0.0079577210 sample82 -0.0180751258 0.0639051029 sample83 -0.0256671713 -0.0125898269 sample84 0.0161392598 -0.0567222449 sample85 0.0139988188 0.0322763454 sample86 -0.0198382995 0.0389225776 sample87 0.0266270281 -0.0032979996 sample88 0.0515677078 0.0117902495 sample89 0.0014022125 -0.0140510488 sample90 -0.0375949749 0.0044004551 sample91 0.0310397965 0.0440610926 sample92 0.0270570567 0.0324380452 sample93 -0.0215009202 0.0063993941 sample94 -0.0415702912 -0.0037692077 sample95 -0.0168416047 0.0010019120 sample96 -0.0285582661 -0.0187991000 sample97 -0.0490843868 -0.0266760748 sample98 -0.0171579033 -0.0112897471 sample99 -0.0271316525 0.0232395583 sample100 -0.0301789816 0.0305498693 sample101 -0.0264371151 0.0170723968 sample102 0.0012767734 -0.0248949597 sample103 0.0055214687 -0.0030040587 sample104 0.0251346074 -0.0165212671 sample105 0.0062424215 -0.0400309901 sample106 0.0069768684 0.0154982315 sample107 -0.0315912602 -0.0118883820 sample108 -0.0109690679 0.0023637162 sample109 -0.0014762845 0.0165583675 sample110 0.0036971063 0.0168260726 sample111 -0.0071624739 -0.0345651461 sample112 0.0046098120 -0.0048009350 sample113 0.0082236008 -0.0383233357 sample114 -0.0293642209 -0.0165595240 sample115 -0.0003260453 0.0135805368 sample116 0.0183575759 0.0665377581 sample117 0.0227640036 -0.0012287760 sample118 0.0015695248 0.0472617382 sample119 0.0190084932 0.0590034062 sample120 -0.0449645755 0.0072755697 sample121 0.0077307184 0.0104738937 sample122 -0.0027132063 -0.0394983138 sample123 0.0016959300 0.0028593594 sample124 -0.0365091615 0.0040382925 sample125 -0.0053658663 -0.0316029164 sample126 -0.0458032408 0.0019165544 sample127 -0.0494064872 0.0088209044 sample128 -0.0155454766 0.0186819802 sample129 -0.0184340400 0.0038684312 sample130 -0.0303640987 -0.0052225766 sample131 -0.0088697422 0.0156339713 sample132 -0.0433916471 -0.0154075483 sample133 0.0204029276 -0.0282209049 sample134 0.0175513332 0.0262883962 sample135 0.0029009925 0.0017003151 sample136 -0.0367997573 -0.0072249751 sample137 -0.0348600323 0.0075400273 sample138 -0.0044063824 -0.0053752428 sample139 0.0073103935 0.0308956174 sample140 0.0039925654 -0.0167019605 sample141 -0.0184093462 -0.0387953445 sample142 0.0268670676 -0.0239229634 sample143 0.0421049126 -0.0110888235 sample144 0.0017253664 -0.0341766012 sample145 0.0681741320 -0.0073526377 sample146 -0.0239965222 0.0118396767 sample147 -0.0063453522 0.0183130585 sample148 0.0230825251 -0.0379753037 sample149 0.0223298673 0.0188909118 sample150 0.0055709108 0.0174179009 sample151 0.0039177786 -0.0233533275 sample152 0.0134325667 0.0302344591 sample153 0.0511990309 0.0730230140 sample154 0.0006698324 0.0154177486 sample155 0.0032926626 -0.0288651601 sample156 -0.0016463495 -0.0474657733 sample157 -0.0045857599 0.0154934573 sample158 0.0201775524 -0.0332982124 sample159 -0.0086909001 0.0073496711 sample160 0.0295437331 -0.0555734536 sample161 0.0332754288 0.0033779619 sample162 0.0121954537 0.0433540412 sample163 -0.0173490933 0.0227219128 sample164 0.0143374783 -0.0453542590 sample165 0.0343612593 -0.0511194536 sample166 -0.0157536004 0.0094621170 sample167 -0.0179654624 -0.0006982358 sample168 -0.0033829919 0.0060747155 sample169 0.0116231468 -0.0015112800 > > ## 3.3 Plotting VAF > > # DISCO-SCA plotVAF > plotVAF(discoRes) > > # JIVE plotVAF > plotVAF(jiveRes) > > > ######################### > ## PART 4. Plot Results > > # Scores for common part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. JIVE > plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > > # Scores for common part. O2PLS. > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common part. O2PLS. > plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > > # Scores for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for distinctive part. DISCO-SCA > plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual", + combined=TRUE,block=NULL,color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > > # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block) > p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > legend <- g_legend(p1) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + legend,heights=c(6/7,1/7)) > > # Loadings for common part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Loadings for distinctive part. DISCO-SCA. (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > # Combined plot for loadings from common and distinctive part (two plots one for each block) > p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="expr",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both", + combined=FALSE,block="mirna",color="classname",shape=NULL, + labels=NULL,background=TRUE,palette=NULL,pointSize=4, + labelSize=NULL,axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > ## Plot scores and loadings togheter: Common components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Common components O2PLS > p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > ## Plot scores and loadings togheter: Distintive components DISCO-SCA > p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual", + combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL, + background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, + axisSize=NULL,titleSize=NULL) > grid.arrange(arrangeGrob(p1+theme(legend.position="none"), + p2+theme(legend.position="none"),nrow=1), + heights=c(6/7,1/7)) > > > > > proc.time() user system elapsed 13.32 0.50 13.81 |
STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings
|
STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings
|