Back to Multiple platform build/check report for BioC 3.13
AB[C]DEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2021-10-15 15:05:38 -0400 (Fri, 15 Oct 2021).

CHECK results for ComplexHeatmap on nebbiolo1

To the developers/maintainers of the ComplexHeatmap package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/ComplexHeatmap.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 372/2041HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
ComplexHeatmap 2.8.0  (landing page)
Zuguang Gu
Snapshot Date: 2021-10-14 04:50:12 -0400 (Thu, 14 Oct 2021)
git_url: https://git.bioconductor.org/packages/ComplexHeatmap
git_branch: RELEASE_3_13
git_last_commit: 1bd0c3b
git_last_commit_date: 2021-05-19 12:12:28 -0400 (Wed, 19 May 2021)
nebbiolo1Linux (Ubuntu 20.04.2 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
tokay2Windows Server 2012 R2 Standard / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
machv2macOS 10.14.6 Mojave / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published

Summary

Package: ComplexHeatmap
Version: 2.8.0
Command: /home/biocbuild/bbs-3.13-bioc/R/bin/R CMD check --install=check:ComplexHeatmap.install-out.txt --library=/home/biocbuild/bbs-3.13-bioc/R/library --no-vignettes --timings ComplexHeatmap_2.8.0.tar.gz
StartedAt: 2021-10-14 09:21:20 -0400 (Thu, 14 Oct 2021)
EndedAt: 2021-10-14 09:26:02 -0400 (Thu, 14 Oct 2021)
EllapsedTime: 281.9 seconds
RetCode: 0
Status:   OK  
CheckDir: ComplexHeatmap.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.13-bioc/R/bin/R CMD check --install=check:ComplexHeatmap.install-out.txt --library=/home/biocbuild/bbs-3.13-bioc/R/library --no-vignettes --timings ComplexHeatmap_2.8.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.13-bioc/meat/ComplexHeatmap.Rcheck’
* using R version 4.1.1 (2021-08-10)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘ComplexHeatmap/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘ComplexHeatmap’ version ‘2.8.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘ComplexHeatmap’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘test-AnnotationFunction.R’
  Running ‘test-ColorMapping-class.R’
  Running ‘test-Heatmap-class.R’
  Running ‘test-Heatmap-cluster.R’
  Running ‘test-HeatmapAnnotation.R’
  Running ‘test-HeatmapList-class.R’
  Running ‘test-Legend.R’
  Running ‘test-SingleAnnotation.R’
  Running ‘test-annotation_axis.R’
  Running ‘test-dendrogram.R’
  Running ‘test-gridtext.R’
  Running ‘test-interactive.R’
  Running ‘test-multiple-page.R’
  Running ‘test-oncoPrint.R’
  Running ‘test-pheatmap.R’
  Running ‘test-upset.R’
  Running ‘test-utils.R’
  Running ‘testthat-all.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: OK


Installation output

ComplexHeatmap.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.13-bioc/R/bin/R CMD INSTALL ComplexHeatmap
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.13-bioc/R/library’
* installing *source* package ‘ComplexHeatmap’ ...
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (ComplexHeatmap)

Tests output

ComplexHeatmap.Rcheck/tests/test-annotation_axis.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "left", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "left", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "left", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "left", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "right", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "right", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:5, labels = month.name[1:5], labels_rot = 0, 
+     side = "right", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "right", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 90, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 45, 
+     side = "top", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "top", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "top", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "bottom", facing = "outside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "bottom", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> gb = annotation_axis_grob(at = 1:3, labels = month.name[1:3], labels_rot = 0, 
+     side = "bottom", facing = "inside")
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> grid.rect()
> grid.text('side = "bottom", facing = "inside"')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(labels_rot = 0, side = "left", facing = "outside")
> grid.rect()
> grid.text('side = "left", facing = "outside"')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(side = "left", direction = "reverse")
> grid.rect()
> grid.text('side = "left", direction = "reverse')
> grid.draw(gb)
> popViewport()
> 
> grid.newpage()
> pushViewport(viewport(xscale = c(0, 4), yscale = c(0, 6), width = 0.6, height = 0.6))
> gb = annotation_axis_grob(side = "bottom", direction = "reverse")
> grid.rect()
> grid.text('side = "bottom", direction = "reverse"')
> grid.draw(gb)
> popViewport()
> 
> 
> 
> proc.time()
   user  system elapsed 
  2.131   0.147   2.265 

ComplexHeatmap.Rcheck/tests/test-AnnotationFunction.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("normalize_graphic_param_to_mat")) {
+ 	normalize_graphic_param_to_mat = ComplexHeatmap:::normalize_graphic_param_to_mat
+ }
> 
> if(!exists("height")) {
+ 	height = ComplexHeatmap:::height
+ }
> 
> if(!exists("width")) {
+ 	width = ComplexHeatmap:::width
+ }
> 
> normalize_graphic_param_to_mat(1, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    1
[2,]    1    1
[3,]    1    1
[4,]    1    1
> normalize_graphic_param_to_mat(1:2, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    2
[2,]    1    2
[3,]    1    2
[4,]    1    2
> normalize_graphic_param_to_mat(1:4, nc = 2, nr = 4, "foo")
     [,1] [,2]
[1,]    1    1
[2,]    2    2
[3,]    3    3
[4,]    4    4
> 
> ### AnnotationFunction constructor #####
> fun = function(index) {
+ 	x = runif(10)
+ 	pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1)))
+ 	grid.points(index, x[index])
+ 	popViewport()
+ }
> anno = AnnotationFunction(fun = fun)
> 
> x = runif(10)
> fun = function(index) {
+ 	pushViewport(viewport(xscale = c(0.5, 10.5), yscale = c(0, 1)))
+ 	grid.points(index, x[index])
+ 	popViewport()
+ }
> anno = AnnotationFunction(fun = fun, var_import = "x")
> anno = AnnotationFunction(fun = fun, var_import = list(x))
> 
> 
> # devAskNewPage(ask = dev.interactive())
> 
> ########### testing anno_simple ############
> anno = anno_simple(1:10)
> draw(anno, test = "as a simple vector")
> draw(anno[1:5], test = "subset of column annotation")
> anno = anno_simple(1:10, which = "row")
> draw(anno, test = "as row annotation")
> draw(anno[1:5], test = "subste of row annotation")
> 
> anno = anno_simple(1:10, col = structure(rand_color(10), names = 1:10))
> draw(anno, test = "self-define colors")
> 
> anno = anno_simple(1:10, border = TRUE)
> draw(anno, test = "border")
> anno = anno_simple(1:10, gp = gpar(col = "red"))
> draw(anno, test = "gp for the grids")
> 
> anno = anno_simple(c(1:9, NA))
> draw(anno, test = "vector has NA values")
> 
> anno = anno_simple(cbind(1:10, 10:1))
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "subste of a matrix")
> 
> anno = anno_simple(1:10, pch = 1, pt_gp = gpar(col = "red"), pt_size = unit(seq(1, 10), "mm"))
> draw(anno, test = "with symbols + pt_gp + pt_size")
> anno = anno_simple(1:10, pch = 1:10)
> draw(anno, test = "pch is a vector")
> anno = anno_simple(1:10, pch = c(1:4, NA, 6:8, NA, 10, 11))
> draw(anno, test = "pch has NA values")
> 
> anno = anno_simple(cbind(1:10, 10:1), pch = 1, pt_gp = gpar(col = "blue"))
> draw(anno, test = "matrix with symbols")
> anno = anno_simple(cbind(1:10, 10:1), pch = 1:2)
> draw(anno, test = "matrix, length of pch is number of annotations")
> anno = anno_simple(cbind(1:10, 10:1), pch = 1:10)
> draw(anno, test = "matrix, length of pch is length of samples")
> anno = anno_simple(cbind(1:10, 10:1), pch = matrix(1:20, nc = 2))
> draw(anno, test = "matrix, pch is a matrix")
> pch = matrix(1:20, nc = 2)
> pch[sample(length(pch), 10)] = NA
> anno = anno_simple(cbind(1:10, 10:1), pch = pch)
> draw(anno, test = "matrix, pch is a matrix with NA values")
> 
> 
> ####### test anno_empty ######
> anno = anno_empty()
> draw(anno, test = "anno_empty")
> anno = anno_empty(border = FALSE)
> draw(anno, test = "anno_empty without border")
> 
> if(0) {
+ ###### test anno_image #####
+ image1 = sample(dir("~/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
+ anno = anno_image(image1)
+ draw(anno, test = "png")
+ draw(anno[1:5], test = "subset of png")
+ anno = anno_image(image1, which = "row")
+ draw(anno, test = "png on rows")
+ image2 = sample(dir("~/Downloads/IcoMoon-Free-master/SVG/", full.names = TRUE), 10)
+ anno = anno_image(image2)
+ draw(anno, test = "svg")
+ image3 = sample(dir("~/Downloads/IcoMoon-Free-master/EPS/", full.names = TRUE), 10)
+ anno = anno_image(image3)
+ draw(anno, test = "eps")
+ image4 = sample(dir("~/Downloads/IcoMoon-Free-master/PDF/", full.names = TRUE), 10)
+ anno = anno_image(image4)
+ draw(anno, test = "pdf")
+ 
+ anno = anno_image(c(image1[1:3], image2[1:3], image3[1:3], image4[1:3]))
+ draw(anno, test = "png+svg+eps+pdf")
+ 
+ anno = anno_image(image1, gp = gpar(fill = 1:10, col = "black"))
+ draw(anno, test = "png + gp")
+ draw(anno[1:5], test = "png + gp")
+ 
+ anno = anno_image(image1, space = unit(3, "mm"))
+ draw(anno, test = "space")
+ 
+ image1[1] = ""
+ anno = anno_image(image1)
+ draw(anno, test = "png")
+ }
> 
> ######## test anno_points #####
> anno = anno_points(runif(10))
> draw(anno, test = "anno_points")
> anno = anno_points(matrix(runif(20), nc = 2), pch = 1:2)
> draw(anno, test = "matrix")
> anno = anno_points(c(1:5, 1:5))
> draw(anno, test = "anno_points")
> anno = anno_points(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
> draw(anno, test = "matrix")
> 
> anno = anno_points(1:10, gp = gpar(col = rep(2:3, each = 5)), pch = rep(2:3, each = 5))
> draw(anno, test = "anno_points")
> draw(anno, index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10), test = "anno_points")
> 
> anno = anno_points(c(1:5, NA, 7:10))
> draw(anno, test = "anno_points")
> 
> 
> anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1))
> draw(anno, test = "anno_points")
> 
> anno = anno_points(runif(10), axis_param = list(direction = "reverse"), ylim = c(0, 1), which = "row")
> draw(anno, test = "anno_points")
> 
> # pch as image
> if(0) {
+ image1 = sample(dir("/desktop-home/guz/Downloads/IcoMoon-Free-master/PNG/64px", full.names = TRUE), 10)
+ x = runif(10)
+ anno1 = anno_points(x, pch = image1, pch_as_image = TRUE, size = unit(5, "mm"), height = unit(4, "cm"))
+ anno2 = anno_points(x, height = unit(4, "cm"))
+ draw(anno1, test = "anno_points")
+ draw(anno2, test = "anno_points")
+ }
> 
> ##### test anno_lines ###
> anno = anno_lines(runif(10))
> draw(anno, test = "anno_lines")
> anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3))
> draw(anno, test = "matrix")
> anno = anno_lines(cbind(c(1:5, 1:5), c(5:1, 5:1)), gp = gpar(col = 2:3),
+ 	add_points = TRUE, pt_gp = gpar(col = 5:6), pch = c(1, 16))
> draw(anno, test = "matrix")
> anno = anno_lines(sort(rnorm(10)), height = unit(2, "cm"), smooth = TRUE, add_points = TRUE)
> draw(anno, test = "anno_lines, smooth")
> anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), 
+ 	height = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3))
> draw(anno, test = "anno_lines, smooth, matrix")
> 
> anno = anno_lines(sort(rnorm(10)), width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, which = "row")
> draw(anno, test = "anno_lines, smooth, by row")
> anno = anno_lines(cbind(sort(rnorm(10)), sort(rnorm(10), decreasing = TRUE)), 
+ 	width = unit(2, "cm"), smooth = TRUE, add_points = TRUE, gp = gpar(col = 2:3), which = "row")
> draw(anno, test = "anno_lines, smooth, matrix, by row")
> 
> anno = anno_lines(c(1:5, NA, 7:10))
> draw(anno, test = "anno_lines")
> 
> anno = anno_lines(runif(10), axis_param = list(direction = "reverse"))
> draw(anno, test = "anno_lines")
> 
> ###### test anno_text #######
> anno = anno_text(month.name)
> draw(anno, test = "month names")
> anno = anno_text(month.name, gp = gpar(fontsize = 16))
> draw(anno, test = "month names with fontsize")
> anno = anno_text(month.name, gp = gpar(fontsize = 1:12+4))
> draw(anno, test = "month names with changing fontsize")
> anno = anno_text(month.name, which = "row")
> draw(anno, test = "month names on rows")
> anno = anno_text(month.name, location = 0, rot = 45, just = "left", gp = gpar(col = 1:12))
> draw(anno, test = "with rotations")
> anno = anno_text(month.name, location = 1, rot = 45, just = "right", gp = gpar(fontsize = 1:12+4))
> draw(anno, test = "with rotations")
> 
> 
> for(rot in seq(0, 360, by = 45)) {
+ 	anno = anno_text(month.name, which = "row", location = 0, rot = rot, 
+ 		just = "left")
+ 	draw(anno, test = paste0("rot =", rot))
+ }
> 
> 
> ##### test anno_barplot #####
> anno = anno_barplot(1:10)
> draw(anno, test = "a vector")
> draw(anno[1:5], test = "a vector, subset")
> anno = anno_barplot(1:10, which = "row")
> draw(anno, test = "a vector")
> anno = anno_barplot(1:10, bar_width = 1)
> draw(anno, test = "bar_width")
> anno = anno_barplot(1:10, gp = gpar(fill = 1:10))
> draw(anno, test = "fill colors")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
> draw(anno, test = "a matrix")
> draw(anno[1:5], test = "a matrix, subset")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row")
> draw(anno, test = "a matrix, on rows")
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), gp = gpar(fill = 2:3, col = 2:3))
> draw(anno, test = "a matrix with fill")
> 
> m = matrix(runif(4*10), nc = 4)
> m = t(apply(m, 1, function(x) x/sum(x)))
> anno = anno_barplot(m)
> draw(anno, test = "proportion matrix")
> anno = anno_barplot(m, gp = gpar(fill = 2:5), bar_width = 1, height = unit(6, "cm"))
> draw(anno, test = "proportion matrix")
> 
> anno = anno_barplot(c(1:5, NA, 7:10))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(1:10, which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(1:10, baseline = 5, which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)), which = "row", axis_param = list(direction = "reverse"))
> draw(anno, test = "a vector")
> 
> 
> ##### test anno_boxplot #####
> set.seed(123)
> m = matrix(rnorm(100), 10)
> anno = anno_boxplot(m, height = unit(4, "cm"))
> draw(anno, test = "anno_boxplot")
> draw(anno[1:5], test = "subset")
> anno = anno_boxplot(m, height = unit(4, "cm"), gp = gpar(fill = 1:10))
> draw(anno, test = "anno_boxplot with gp")
> anno = anno_boxplot(m, height = unit(4, "cm"), box_width = 0.9)
> draw(anno, test = "anno_boxplot with box_width")
> 
> m = matrix(rnorm(100), 10)
> m[1, ] = NA
> anno = anno_boxplot(m, height = unit(4, "cm"))
> draw(anno, test = "anno_boxplot")
> 
> 
> ####### test anno_joyplot ####
> m = matrix(rnorm(1000), nc = 10)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row")
> draw(anno, test = "joyplot")
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = 1:10))
> draw(anno, test = "joyplot + col")
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", scale = 1)
> draw(anno, test = "joyplot + scale")
> 
> m = matrix(rnorm(5000), nc = 50)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, width = unit(4, "cm"), which = "row", gp = gpar(fill = NA), scale = 4)
> draw(anno, test = "joyplot")
> 
> ######## test anno_horizon ######
> lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, which = "row")
> draw(anno, test = "horizon chart")
> anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = "orange", neg_fill = "darkgreen"))
> draw(anno, test = "horizon chart, col")
> anno = anno_horizon(lt, which = "row", negative_from_top = TRUE)
> draw(anno, test = "horizon chart + negative_from_top")
> anno = anno_horizon(lt, which = "row", gap = unit(1, "mm"))
> draw(anno, test = "horizon chart + gap")
> anno = anno_horizon(lt, which = "row", gp = gpar(pos_fill = rep(c("orange", "red"), each = 10),
+ 	neg_fill = rep(c("darkgreen", "blue"), each = 10)))
> draw(anno, test = "horizon chart, col")
> 
> ####### test anno_histogram ####
> m = matrix(rnorm(1000), nc = 10)
> anno = anno_histogram(t(m), which = "row")
> draw(anno, test = "row histogram")
> draw(anno[1:5], test = "subset row histogram")
> anno = anno_histogram(t(m), which = "row", gp = gpar(fill = 1:10))
> draw(anno, test = "row histogram with color")
> anno = anno_histogram(t(m), which = "row", n_breaks = 20)
> draw(anno, test = "row histogram with color")
> m[1, ] = NA
> anno = anno_histogram(t(m), which = "row")
> draw(anno, test = "row histogram")
> 
> 
> ####### test anno_density ######
> anno = anno_density(t(m), which = "row")
> draw(anno, test = "normal density")
> draw(anno[1:5], test = "normal density, subset")
> anno = anno_density(t(m), which = "row", type = "violin")
> draw(anno, test = "violin")
> anno = anno_density(t(m), which = "row", type = "heatmap")
> draw(anno, test = "heatmap")
> anno = anno_density(t(m), which = "row", type = "heatmap", heatmap_colors = c("white", "orange"))
> draw(anno, test = "heatmap, colors")
> 
> 
> ###### anno_mark ###
> if(0) {
+ library(gridtext)
+ grid.text = function(text, x = 0.5, y = 0.5, gp = gpar(), rot = 0, default.units = "npc", just = "center") {
+ 	if(length(just) == 1) {
+ 		if(just == "center") {
+ 			just = c("center", "center")
+ 		} else if(just == "bottom") {
+ 			just = c("center", "bottom")
+ 		} else if (just == "top") {
+ 			just = c("center", "top")
+ 		} else if(just == "left") {
+ 			just = c("left", "center")
+ 		} else if(just == "right") {
+ 			just = c("right", "center")
+ 		}
+ 	}
+ 	just2 = c(0.5, 0.5)
+ 	if(is.character(just)) {
+ 		just2[1] = switch(just[1], "center" = 0.5, "left" = 0, "right" = 1)
+ 		just2[2] = switch(just[2], "center" = 0.5, "bottom" = 0, "top" = 1)
+ 	}
+ 	gb = richtext_grob(text, x = x, y = y, gp = gpar(fontsize = 10), box_gp = gpar(col = "black"),
+ 		default.units = default.units, hjust = just2[1], vjust = just2[2], rot = rot)
+ 	grid.draw(gb)
+ }
+ }
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row")
> draw(anno, index = 1:100, test = "anno_mark")
> 
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], labels_rot = 30, which = "column")
> draw(anno, index = 1:100, test = "anno_mark")
> 
> m = matrix(1:1000, byrow = TRUE, nr = 100)
> anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10], which = "row", labels_rot = 30)
> Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno)
> Heatmap(m) + rowAnnotation(mark = anno)
> 
> ht_list = Heatmap(m, cluster_rows = F, cluster_columns = F) + rowAnnotation(mark = anno)
> draw(ht_list, row_split = c(rep("a", 95), rep("b", 5)))
> 
> 
> grid.newpage()
> pushViewport(viewport(x = 0.45, w = 0.7, h = 0.95))
> h = unit(0, "mm")
> for(rot in seq(0, 360, by = 30)[-13]) {
+ 	anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "column", side = "bottom")
+ 	h = h + height(anno)
+ 	pushViewport(viewport(y = h, height = height(anno), just = "top"))
+ 	grid.rect()
+ 	draw(anno, index = 1:100)
+ 	grid::grid.text(qq("labels_rot = @{rot}"), unit(1, "npc") + unit(2, "mm"), just = "left")
+ 	popViewport()
+ }
> 
> 
> grid.newpage()
> pushViewport(viewport(w = 0.9, h = 0.9))
> w = unit(0, "mm")
> for(rot in seq(0, 360, by = 30)) {
+ 	anno = anno_mark(at = c(1:4, 20, 60, 97:100), labels = strrep(letters[1:10], 4), labels_rot = rot, which = "row", side = "left")
+ 	w = w + width(anno)
+ 	pushViewport(viewport(x = w, width = width(anno), just = "right"))
+ 	grid.rect()
+ 	draw(anno, index = 1:100)
+ 	popViewport()
+ }
> 
> 
> 
> ### graphic parameters after reordering
> index = c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)
> anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	pt_size = unit(1:10, "mm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_simple(1:10, pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	pt_size = unit(1:10, "mm"), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_points(1:10, pch = 1:10, gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), add_points = TRUE)
> draw(anno, index, test = "a numeric vector")
> anno = anno_lines(sort(runif(10)), pch = 1:10, pt_gp = gpar(col = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), add_points = TRUE, which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_barplot(1:10, gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2))
> draw(anno, index, test = "a numeric vector")
> anno = anno_barplot(cbind(1:10, 10:1), gp = gpar(fill = 1:2), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> m = matrix(rnorm(100), 10)
> m = m[, order(apply(m, 2, median))]
> anno = anno_boxplot(m, pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), height = unit(4, "cm"))
> draw(anno, index, test = "a numeric vector")
> anno = anno_boxplot(t(m), pch = 1:10, gp = gpar(fill = rep(c(1, 2), each = 5)),
+ 	size = unit(1:10, "mm"), which = "row", width = unit(4, "cm"))
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_histogram(m, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_histogram(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> anno = anno_density(m, gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_density(t(m), gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_density(m, type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_density(t(m), type = "violin", gp = gpar(fill = rep(c(1, 2), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> 
> anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)))
> draw(anno, index, test = "a numeric vector")
> anno = anno_text(month.name, gp = gpar(col = rep(c(1, 2), each = 5)), which= "row")
> draw(anno, index, test = "a numeric vector")
> 
> lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, gp = gpar(pos_fill = rep(c(1, 2), each = 5), neg_fill = rep(c(3, 4), each = 5)), which = "row")
> draw(anno, index, test = "a numeric vector")
> 
> m = matrix(rnorm(1000), nc = 10)
> lt = apply(m, 2, function(x) data.frame(density(x)[c("x", "y")]))
> anno = anno_joyplot(lt, gp = gpar(fill = rep(c(1, 2), each = 5)), 
+ 	width = unit(4, "cm"), which = "row")
> draw(anno, index, test = "joyplot")
> 
> 
> anno = anno_block(gp = gpar(fill = 1:4))
> draw(anno, index = 1:10, k = 1, n = 4, test = "anno_block")
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> 
> anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"))
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> draw(anno, index = 1:10, k = 4, n = 4, test = "anno_block")
> # draw(anno, index = 1:10, k = 2, n = 2, test = "anno_block")
> 
> anno = anno_block(gp = gpar(fill = 1:4), labels = letters[1:4], labels_gp = gpar(col = "white"), which = "row")
> draw(anno, index = 1:10, k = 2, n = 4, test = "anno_block")
> 
> 
> ### anno_zoom
> fa = sort(sample(letters[1:3], 100, replace = TRUE, prob = c(1, 2, 3)))
> panel_fun = function(index, nm) {
+ 	grid.rect()
+ 	grid.text(nm)
+ }
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> anno = anno_zoom(align_to = list(a = which(fa == "a")), which = "row", panel_fun = panel_fun)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> 
> panel_fun = function(index, nm) {
+ 	grid.rect(gp = gpar(fill = "grey", col = NA))
+ 	grid.text(nm)
+ }
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun, link_gp = gpar(fill = "grey", col = "black"), internal_line = FALSE)
> draw(anno, index = 1:100, test = "anno_zoom")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, set gap")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3)
> draw(anno, index = 1:100, test = "anno_zoom, size set as relative values")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3, extend = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, extend")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(c(2, 20, 40), "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, big size")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = 1:3, gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as relative values, gap")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), gap = unit(1, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, size set as absolute values, gap")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), side = "left")
> draw(anno, index = 1:100, test = "anno_zoom, side")
> 
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3))
> draw(anno, index = 1:100, test = "anno_zoom, link_gp")
> 
> anno = anno_zoom(align_to = fa, which = "row", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"), link_gp = gpar(fill = 1:3),
+ 	link_width = unit(2, "cm"), width = unit(4, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, width")
> 
> anno = anno_zoom(align_to = list(a = 1:10, b = 30:45, c = 70:90), 
+ 	which = "row", panel_fun = panel_fun, size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, a list of indices")
> 
> anno = anno_zoom(align_to = fa, which = "column", panel_fun = panel_fun,
+ 	size = unit(1:3, "cm"))
> draw(anno, index = 1:100, test = "anno_zoom, column annotation")
> 
> 
> m = matrix(rnorm(100*10), nrow = 100)
> hc = hclust(dist(m))
> fa2 = cutree(hc, k = 4)
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun)
> draw(anno, index = hc$order, test = "anno_zoom, column annotation")
> 
> anno = anno_zoom(align_to = fa2, which = "column", panel_fun = panel_fun)
> draw(anno, index = hc$order, test = "anno_zoom, column annotation")
> 
> 
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun)
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno)))
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno), row_split = 2))
> 
> 
> anno = anno_zoom(align_to = fa2, which = "row", panel_fun = panel_fun, size = unit(1:4, "cm"))
> draw(Heatmap(m, cluster_rows = hc, right_annotation = rowAnnotation(foo = anno)))
> 
> set.seed(123)
> m = matrix(rnorm(100*10), nrow = 100)
> subgroup = sample(letters[1:3], 100, replace = TRUE, prob = c(1, 5, 10))
> rg = range(m)
> panel_fun = function(index, nm) {
+ 	pushViewport(viewport(xscale = rg, yscale = c(0, 2)))
+ 	grid.rect()
+ 	grid.xaxis(gp = gpar(fontsize = 8))
+ 	grid.boxplot(m[index, ], pos = 1, direction = "horizontal")
+ 	grid.text(paste("distribution of group", nm), mean(rg), y = 1.9, 
+ 		just = "top", default.units = "native", gp = gpar(fontsize = 10))
+ 	popViewport()
+ }
> anno = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun, 
+ 	size = unit(2, "cm"), gap = unit(1, "cm"), width = unit(4, "cm"))
> draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), row_split = subgroup))
> 
> panel_fun2 = function(index, nm) {
+ 	pushViewport(viewport())
+ 	grid.rect()
+ 	n = floor(length(index)/4)
+ 	txt = paste("gene function", 1:n, collapse = "\n")
+ 	grid.text(txt, 0.95, 0.5, default.units = "npc", just = "right", gp = gpar(fontsize = 8))
+ 	popViewport()
+ }
> anno2 = anno_zoom(align_to = subgroup, which = "row", panel_fun = panel_fun2, 
+ 	gap = unit(1, "cm"), width = unit(3, "cm"), side = "left")
> 
> draw(Heatmap(m, right_annotation = rowAnnotation(subgroup = subgroup, foo = anno,
+ 	show_annotation_name = FALSE), 
+ 	left_annotation = rowAnnotation(bar = anno2, subgroup = subgroup, show_annotation_name = FALSE),
+ 	show_row_dend = FALSE,
+ 	row_split = subgroup))
> 
> draw(Heatmap(m, right_annotation = rowAnnotation(foo = anno), 
+ 	left_annotation = rowAnnotation(bar = anno2),
+ 	show_row_dend = FALSE,
+ 	row_split = subgroup))
> 
> set.seed(12345)
> mat = matrix(rnorm(30*10), nr = 30)
> row_split = c(rep("a", 10), rep("b", 5), rep("c", 2), rep("d", 3), 
+ 	          rep("e", 2), letters[10:17])
> row_split = factor(row_split)
> 
> panel_fun = function(index, name) {
+ 	pushViewport(viewport())
+ 	grid.rect()
+ 	grid.text(name)
+ 	popViewport()
+ }
> 
> anno = anno_zoom(align_to = row_split, which = "row", panel_fun = panel_fun, 
+ 	size = unit(0.5, "cm"), width = unit(4, "cm"))
> 
> # > dev.size()
> # [1] 3.938326 4.502203
> dev.new(width = 3.938326, height = 4.502203)
dev.new(): using pdf(file="Rplots1.pdf")
> draw(Heatmap(mat, right_annotation = rowAnnotation(foo = anno), 
+ 	row_split = row_split))
> 
> 
> proc.time()
   user  system elapsed 
 15.191   0.313  15.488 

ComplexHeatmap.Rcheck/tests/test-ColorMapping-class.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> cm = ColorMapping(name = "test",
+ 	colors = c("blue", "white", "red"),
+ 	levels = c("a", "b", "c"))
> color_mapping_legend(cm)
> 
> cm = ColorMapping(name = "test",
+ 	col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red")))
> color_mapping_legend(cm)
> 
> cm = ColorMapping(name = "test",
+ 	colors = c("blue", "white", "red"),
+ 	levels = c(1, 2, 3))
> color_mapping_legend(cm)
> 
> ha = SingleAnnotation(value = rep(NA, 10), name = "foo")
> cm = ha@color_mapping
> color_mapping_legend(cm)
> 
> 
> proc.time()
   user  system elapsed 
  2.165   0.135   2.286 

ComplexHeatmap.Rcheck/tests/test-dendrogram.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("cut_dendrogram")) {
+ 	cut_dendrogram = ComplexHeatmap:::cut_dendrogram
+ }
> 
> library(dendextend)

---------------------
Welcome to dendextend version 1.15.1
Type citation('dendextend') for how to cite the package.

Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
Or contact: <tal.galili@gmail.com>

	To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
---------------------


Attaching package: 'dendextend'

The following object is masked from 'package:stats':

    cutree

> 
> m = matrix(rnorm(100), 10)
> dend1 = as.dendrogram(hclust(dist(m)))
> dend1 = adjust_dend_by_x(dend1, sort(runif(10)))
> 
> m = matrix(rnorm(50), nr = 5)
> dend2 = as.dendrogram(hclust(dist(m)))
> 
> dend3 = as.dendrogram(hclust(dist(m[1:2, ])))
> 
> 
> dend_merge = merge_dendrogram(dend3, 
+ 	list(set(dend1, "branches_col", "red"), 
+ 		 set(dend2, "branches_col", "blue"))
+ )
> 
> grid.dendrogram(dend_merge, test = TRUE, facing = "bottom")
> grid.dendrogram(dend_merge, test = TRUE, facing = "top")
> grid.dendrogram(dend_merge, test = TRUE, facing = "left")
> grid.dendrogram(dend_merge, test = TRUE, facing = "right")
> 
> grid.dendrogram(dend_merge, test = TRUE, facing = "bottom", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "top", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "left", order = "reverse")
> grid.dendrogram(dend_merge, test = TRUE, facing = "right", order = "reverse")
> 
> 
> m = matrix(rnorm(100), 10)
> dend1 = as.dendrogram(hclust(dist(m)))
> dend1 = adjust_dend_by_x(dend1, unit(1:10, "cm"))
> grid.dendrogram(dend1, test = TRUE)
> 
> dl = cut_dendrogram(dend1, k = 3)
> grid.dendrogram(dl$upper, test = TRUE)
> 
> 
> m1 = matrix(rnorm(100), nr = 10)
> m2 = matrix(rnorm(80), nr = 8)
> m3 = matrix(rnorm(50), nr = 5)
> dend1 = as.dendrogram(hclust(dist(m1)))
> dend2 = as.dendrogram(hclust(dist(m2)))
> dend3 = as.dendrogram(hclust(dist(m3)))
> dend_p = as.dendrogram(hclust(dist(rbind(colMeans(m1), colMeans(m2), colMeans(m3)))))
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
> grid.dendrogram(dend_m, test = T)
> 
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3), only_parent = TRUE)
> grid.dendrogram(dend_m, test = T)
> 
> require(dendextend)
> dend1 = color_branches(dend1, k = 1, col = "red")
> dend2 = color_branches(dend2, k = 1, col = "blue")
> dend3 = color_branches(dend3, k = 1, col = "green")
> dend_p = color_branches(dend_p, k = 1, col = "orange")
> dend_m = merge_dendrogram(dend_p, list(dend1, dend2, dend3))
> grid.dendrogram(dend_m, test = T)
> 
> 
> m = matrix(rnorm(120), nc = 12)
> colnames(m) = letters[1:12]
> fa = rep(c("a", "b", "c"), times = c(2, 4, 6))
> dend = cluster_within_group(m, fa)
> grid.dendrogram(dend, test = TRUE)
> 
> 
> # stack overflow problem
> m = matrix(1, nrow = 1000, ncol = 10)
> m[1, 2] = 2
> dend = as.dendrogram(hclust(dist(m)))
> grid.dendrogram(dend, test = T)
> 
> # node attr
> m = matrix(rnorm(100), 10)
> dend = as.dendrogram(hclust(dist(m)))
> require(dendextend)
> dend1 = color_branches(dend, k = 2, col = 1:2)
> grid.dendrogram(dend1, test = T)
> dend1 = dend
> dend1 = dendrapply(dend, function(d) {
+ 	attr(d, "nodePar") = list(pch = sample(20, 1), cex = runif(1, min = 0.3, max = 1.3), col = rand_color(1))
+ 	d
+ })
> grid.dendrogram(dend1, test = T)
> 
> Heatmap(m, cluster_rows = dend1, cluster_columns = dend1)
> 
> d1 = ComplexHeatmap:::dend_edit_node(dend, method = "top-bottom", function(d, index) {
+ 	attr(d, "depth") = length(index)
+ 	d
+ })
> 
> d2 = ComplexHeatmap:::dend_edit_node(dend, method = "bottom-top", function(d, index) {
+ 	attr(d, "depth") = length(index)
+ 	d
+ })
> 
> identical(d1, d2)
[1] TRUE
> 
> proc.time()
   user  system elapsed 
  6.549   0.235   6.768 

ComplexHeatmap.Rcheck/tests/test-gridtext.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> if(requireNamespace("gridtext")) {
+ ##### test anno_richtext ####
+ mat = matrix(rnorm(100), 10)
+ rownames(mat) = letters[1:10]
+ ht = Heatmap(mat, 
+ 	column_title = gt_render("Some <span style='color:blue'>blue text **in bold.**</span><br>And *italics text.*<br>And some <span style='font-size:18pt; color:black'>large</span> text.", r = unit(2, "pt"), padding = unit(c(2, 2, 2, 2), "pt")),
+ 	column_title_gp = gpar(box_fill = "orange"),
+ 	row_labels = gt_render(letters[1:10], padding = unit(c(2, 10, 2, 10), "pt")),
+ 	row_names_gp = gpar(box_col = rep(2:3, times = 5), box_fill = ifelse(1:10%%2, "yellow", "white")),
+ 	row_km = 2, 
+ 	row_title = gt_render(c("title1", "title2")), 
+ 	row_title_gp = gpar(box_fill = "yellow"),
+ 	heatmap_legend_param = list(
+ 		title = gt_render("<span style='color:orange'>**Legend title**</span>"), 
+ 		title_gp = gpar(box_fill = "grey"),
+ 		at = c(-3, 0, 3), 
+ 		labels = gt_render(c("*negative* three", "zero", "*positive* three"))
+ 	))
+ ht = rowAnnotation(
+ 	foo = anno_text(gt_render(sapply(LETTERS[1:10], strrep, 10), align_widths = TRUE), 
+ 	                gp = gpar(box_col = "blue", box_lwd = 2), 
+ 	                just = "right", 
+ 	                location = unit(1, "npc")
+ 	)) + ht
+ draw(ht)
+ 
+ }
Loading required namespace: gridtext
> 
> proc.time()
   user  system elapsed 
  3.800   0.176   3.963 

ComplexHeatmap.Rcheck/tests/test-Heatmap-class.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> nr1 = 10; nr2 = 8; nr3 = 6
> nc1 = 6; nc2 = 8; nc3 = 10
> mat = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat) = paste0("row", seq_len(nrow(mat)))
> colnames(mat) = paste0("column", seq_len(nrow(mat)))
> 
> ht = Heatmap(mat)
> draw(ht, test = TRUE)
> ht
> 
> 
> ht = Heatmap(mat, col = colorRamp2(c(-3, 0, 3), c("green", "white", "red")))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, name = "test")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, rect_gp = gpar(col = "black"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, border = "red")
> draw(ht, test = TRUE)
> 
> ######## test title ##########
> ht = Heatmap(mat, row_title = "blablabla")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_side = "right")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fontsize = 20, font = 2))
> draw(ht, test = TRUE)
> 
> # ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 45)
> # draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_title = "blablabla", row_title_gp = gpar(fill = "red", col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_side = "bottom")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_gp = gpar(fontsize = 20, font = 2))
> draw(ht, test = TRUE)
> 
> # ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 45)
> # draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_title = "blablabla", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> 
> ### test clustering ####
> 
> ht = Heatmap(mat, cluster_rows = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = "pearson")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = function(x) dist(x))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_rows = function(x, y) 1 - cor(x, y))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_method_rows = "single")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_side = "right")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_width = unit(4, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_dend_gp = gpar(lwd = 2, col = "red"))
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(mat)))
> ht = Heatmap(mat, cluster_rows = dend)
> draw(ht, test = TRUE)
> 
> library(dendextend)

---------------------
Welcome to dendextend version 1.15.1
Type citation('dendextend') for how to cite the package.

Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
Or contact: <tal.galili@gmail.com>

	To suppress this message use:  suppressPackageStartupMessages(library(dendextend))
---------------------


Attaching package: 'dendextend'

The following object is masked from 'package:stats':

    cutree

> dend = color_branches(dend, k = 3)
> ht = Heatmap(mat, cluster_rows = dend)
> draw(ht, test = TRUE)
> 
> 
> ht = Heatmap(mat, cluster_columns = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = "pearson")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = function(x) dist(x))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_distance_columns = function(x, y) 1 - cor(x, y))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, clustering_method_columns = "single")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_side = "bottom")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_height = unit(4, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_dend_gp = gpar(lwd = 2, col = "red"))
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(t(mat))))
> ht = Heatmap(mat, cluster_columns = dend)
> draw(ht, test = TRUE)
> 
> dend = color_branches(dend, k = 3)
> ht = Heatmap(mat, cluster_columns = dend)
> draw(ht, test = TRUE)
> 
> 
> ### test row/column order
> od = c(seq(1, 24, by = 2), seq(2, 24, by = 2))
> ht = Heatmap(mat, row_order = od)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_order = od, cluster_rows = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_order = od)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_order = od, cluster_columns = TRUE)
> draw(ht, test = TRUE)
> 
> 
> #### test row/column names #####
> ht = Heatmap(unname(mat))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, show_row_names = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_side = "left")
> draw(ht, test = TRUE)
> 
> random_str2 = function(k) {
+ 	sapply(1:k, function(i) paste(sample(letters, sample(5:10, 1)), collapse = ""))
+ }
> ht = Heatmap(mat, row_labels = random_str2(24))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_gp = gpar(fontsize = 20))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_gp = gpar(fontsize = 1:24/2 + 5))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_rot = 45)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_names_rot = 45, row_names_side = "left")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, show_column_names = FALSE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_side = "top")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_labels = random_str2(24))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_gp = gpar(fontsize = 20))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_gp = gpar(fontsize = 1:24/2 + 5))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_names_rot = 45)
> draw(ht, test = TRUE)
> 
> ### test annotations ####
> anno = HeatmapAnnotation(
+ 	foo = 1:24,
+ 	df = data.frame(type = c(rep("A", 12), rep("B", 12))),
+ 	bar = anno_barplot(24:1))
> ht = Heatmap(mat, top_annotation = anno)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, bottom_annotation = anno)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno)
> draw(ht, test = TRUE)
> 
> 
> ### test split ####
> ht = Heatmap(mat, km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), row_gap = unit(5, "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)),
+ 	row_gap = unit(c(1, 2, 3), "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "foo")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = "cluster%s", row_title_gp = gpar(fill = 2:4, col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_title = NULL)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, row_names_gp = gpar(col = 2:4))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), times = c(6, 18)), row_km = 3, row_title = "cluster%s,group%s", row_title_rot = 0)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2, row_title = "foo")
> ht = Heatmap(mat, row_split = 2, row_title = "cluster%s")
> 
> 
> dend = as.dendrogram(hclust(dist(mat)))
> ht = Heatmap(mat, cluster_rows = dend, row_split = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 2, row_names_gp = gpar(col = 2:3))
> draw(ht, test = TRUE)
> 
> 
> ### column split
> ht = Heatmap(mat, column_km = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_gap = unit(1, "cm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = data.frame(rep(c("A", "B"), 12), rep(c("C", "D"), each = 12)),
+ 	column_gap = unit(c(1, 2, 3), "mm"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "foo")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s")
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = "cluster%s", column_title_gp = gpar(fill = 2:3, col = "white"))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_title = NULL)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_km = 2, column_names_gp = gpar(col = 2:3))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("A", "B")), column_km = 2)
> draw(ht, test = TRUE)
> ht = Heatmap(mat, column_split = factor(rep(c("A", "B"), times = c(6, 18)), levels = c("B", "A")), column_km = 2)
> 
> 
> ht = Heatmap(mat, column_split = rep(c("A", "B"), times = c(6, 18)), column_km = 2, 
+ 	column_title = "cluster%s,group%s", column_title_rot = 90)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, column_split = 3)
> draw(ht, test = TRUE)
> 
> dend = as.dendrogram(hclust(dist(t(mat))))
> ht = Heatmap(mat, cluster_columns = dend, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_km = 2)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno, bottom_annotation = anno, column_split = 3)
> draw(ht, test = TRUE)
> 
> ### combine row and column split
> ht = Heatmap(mat, row_km = 3, column_km = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = 3, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 3, column_split = 3)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_split = rep(c("A", "B"), 12), 
+ 	column_split = rep(c("C", "D"), 12))
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, top_annotation = anno,
+ 	row_split = rep(c("A", "B"), 12), 
+ 	row_names_gp = gpar(col = 2:3), row_gap = unit(2, "mm"),
+ 	column_split = 3,
+ 	column_names_gp = gpar(col = 2:4), column_gap = unit(4, "mm")
+ )
> draw(ht, test = TRUE)
> 
> 
> #### character matrix
> mat3 = matrix(sample(letters[1:6], 100, replace = TRUE), 10, 10)
> rownames(mat3) = {x = letters[1:10]; x[1] = "aaaaaaaaaaaaaaaaaaaaaaa";x}
> ht = Heatmap(mat3, rect_gp = gpar(col = "white"))
> draw(ht, test = TRUE)
> 
> 
> ### cell_fun
> mat = matrix(1:9, 3, 3)
> rownames(mat) = letters[1:3]
> colnames(mat) = letters[1:3]
> 
> ht = Heatmap(mat, rect_gp = gpar(col = "white"), cell_fun = function(j, i, x, y, width, height, fill) grid.text(mat[i, j], x = x, y = y),
+ 	cluster_rows = FALSE, cluster_columns = FALSE, row_names_side = "left", column_names_side = "top",
+ 	column_names_rot = 0)
> draw(ht, test = TRUE)
> 
> 
> ### test the size
> ht = Heatmap(mat)
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 1npc

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 3null

$height
[1] 3null

> 
> ht = Heatmap(mat, width = unit(10, "cm"), height = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 114.853733333333mm

$height
[1] 114.853733333333mm

> ht@matrix_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 10cm

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, width = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 114.853733333333mm

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 3null

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, heatmap_width = unit(10, "cm"), heatmap_height = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 10cm

> ht@matrix_param[c("width", "height")]
$width
[1] 85.1462666666667mm

$height
[1] 85.1462666666667mm

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, heatmap_width = unit(10, "cm"))
> ht = prepare(ht)
> ht@heatmap_param[c("width", "height")]
$width
[1] 10cm

$height
[1] 1npc

> ht@matrix_param[c("width", "height")]
$width
[1] 85.1462666666667mm

$height
[1] 3null

> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 2, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> ht = Heatmap(mat, row_km = 2, column_km = 2, use_raster = TRUE)
> draw(ht, test = TRUE)
> 
> #### test global padding
> ra = rowAnnotation(foo = 1:3)
> ht = Heatmap(mat, show_column_names = FALSE) + ra
> draw(ht)
> 
> ht = Heatmap(matrix(rnorm(100), 10), row_km = 2, row_title = "")
> draw(ht)
> 
> if(0) {
+ ht = Heatmap(matrix(rnorm(100), 10), heatmap_width = unit(5, "mm"))
+ draw(ht)
+ }
> 
> proc.time()
   user  system elapsed 
 19.376   0.390  19.713 

ComplexHeatmap.Rcheck/tests/test-Heatmap-cluster.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> # ht_opt("verbose" = TRUE)
> m = matrix(rnorm(50), nr = 10)
> 
> ht = Heatmap(m)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = FALSE)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, row_km = 2)
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, row_split = sample(letters[1:2], 10, replace = TRUE))
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = hclust(dist(m)))
> ht = make_row_cluster(ht)
> 
> ht = Heatmap(m, cluster_rows = hclust(dist(m)), row_split = 2)
> ht = make_row_cluster(ht)
> 
> # ht_opt("verbose" = FALSE)
> 
> proc.time()
   user  system elapsed 
  2.312   0.105   2.403 

ComplexHeatmap.Rcheck/tests/test-HeatmapAnnotation.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> 
> ha = HeatmapAnnotation(foo = 1:10)
> ha
A HeatmapAnnotation object with 1 annotation
  name: heatmap_annotation_0 
  position: column 
  items: 10 
  width: 1npc 
  height: 5mm 
  this object is subsetable
  6.75733333333333mm extension on the right 

 name   annotation_type color_mapping height
  foo continuous vector        random    5mm
> 
> 
> ha = HeatmapAnnotation(foo = cbind(1:10, 10:1))
> ha
A HeatmapAnnotation object with 1 annotation
  name: heatmap_annotation_1 
  position: column 
  items: 10 
  width: 1npc 
  height: 10mm 
  this object is subsetable
  6.75733333333333mm extension on the right 

 name   annotation_type color_mapping height
  foo continuous matrix        random   10mm
> draw(ha, test = "matrix as column annotation")
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	pt = anno_points(1:10), annotation_name_side = "left")
> draw(ha, test = "complex annotations")
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	pt = anno_points(1:10), annotation_name_side = "left", height = unit(8, "cm"))
> draw(ha, test = "complex annotations")
> 
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE))
> 
> ha = HeatmapAnnotation(foo = 1:10, 
+ 	bar = cbind(1:10, 10:1),
+ 	pt = anno_points(1:10),
+ 	gap = unit(2, "mm"))
> draw(ha, test = "complex annotations")
> 
> ha2 = re_size(ha, annotation_height = unit(1:3, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = 1, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = 1:3, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(1, 2, 3), c("null", "null", "cm")), height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "null", "cm")), height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha, annotation_height = unit(c(2, 2, 3), c("cm", "cm", "cm")))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], annotation_height = 1, height = unit(4, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], annotation_height = c(1, 4), height = unit(4, "cm"))
> draw(ha2, test = "complex annotations")
> ha2 = re_size(ha[, 1:2], height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> 
> ha2 = re_size(ha, height = unit(6, "cm"))
> draw(ha2, test = "complex annotations")
> 
> #### test anno_empty and self-defined anotation function
> ha = HeatmapAnnotation(foo = anno_empty(), height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> ha = HeatmapAnnotation(foo = anno_empty(), bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "anno_empty")
> 
> ha = HeatmapAnnotation(foo = function(index) {grid.rect()}, bar = 1:10, height = unit(4, "cm"))
> draw(ha, 1:10, test = "self-defined function")
> 
> 
> lt = lapply(1:10, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> ha = HeatmapAnnotation(foo = 1:10, bar = sample(c("a", "b"), 10, replace = TRUE),
+ 	anno = anno_horizon(lt), which = "row")
> draw(ha, test = "complex annotations on row")
> 
> ## test row annotation with no heatmap
> rowAnnotation(foo = 1:10, bar = anno_points(10:1))
A HeatmapAnnotation object with 2 annotations
  name: heatmap_annotation_11 
  position: row 
  items: 10 
  width: 15.3514598035146mm 
  height: 1npc 
  this object is subsetable
  9.17784444444445mm extension on the bottom 

 name   annotation_type color_mapping width
  foo continuous vector        random   5mm
  bar     anno_points()                10mm
> 
> if(0) {
+ HeatmapAnnotation(1:10)
+ 
+ HeatmapAnnotation(data.frame(1:10))
+ }
> 
> 
> ha = HeatmapAnnotation(summary = anno_summary(height = unit(4, "cm")))
> v = sample(letters[1:2], 50, replace = TRUE)
> split = sample(letters[1:2], 50, replace = TRUE)
> 
> ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
> draw(ht)
> 
> ha = HeatmapAnnotation(summary = anno_summary(gp = gpar(fill = 2:3), height = unit(4, "cm")))
> v = rnorm(50)
> ht = Heatmap(v, top_annotation = ha, width = unit(1, "cm"), split = split)
> draw(ht)
> 
> 
> ### auto adjust
> m = matrix(rnorm(100), 10)
> ht_list = Heatmap(m, top_annotation = HeatmapAnnotation(foo = 1:10), column_dend_height = unit(4, "cm")) +
+ 	Heatmap(m, top_annotation = HeatmapAnnotation(bar = anno_points(1:10)),
+ 		cluster_columns = FALSE)
> draw(ht_list)
> 
> fun = function(index) {
+ 	grid.rect()
+ }
> ha = HeatmapAnnotation(fun = fun, height = unit(4, "cm"))
> draw(ha, 1:10, test = TRUE)
> 
> ha = rowAnnotation(fun = fun, width = unit(4, "cm"))
> draw(ha, 1:10, test = TRUE)
> 
> 
> ## test anno_mark
> m = matrix(rnorm(1000), nrow = 100)
> ha1 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]))
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1)
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha1
> draw(ht)
> 
> split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b"
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha1, row_split = split, gap = unit(1, "cm"))
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha1
> draw(ht)
> 
> # ha has two annotations
> ha2 = rowAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2)
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE) + ha2
> draw(ht)
> 
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, right_annotation = ha2, row_split = split, gap = unit(1, "cm"))
> draw(ht)
> ht = Heatmap(m, name = "mat", cluster_rows = FALSE, row_split = split, gap = unit(1, "cm")) + ha2
> draw(ht)
> 
> ## test anno_mark as column annotation
> m = matrix(rnorm(1000), ncol = 100)
> ha1 = columnAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]))
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1)
> draw(ht)
> ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE)
> draw(ht_list)
> 
> split = rep("a", 100); split[c(1:4, 20, 60, 98:100)] = "b"
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha1, column_split = split, column_gap = unit(1, "cm"))
> draw(ht)
> ht_list = ha1 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, gap = unit(1, "cm"))
> draw(ht_list)
> 
> # ha has two annotations
> ha2 = HeatmapAnnotation(foo = anno_mark(at = c(1:4, 20, 60, 97:100), labels = month.name[1:10]), bar = 1:100)
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2)
> draw(ht)
> ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE)
> draw(ht_list)
> 
> ht = Heatmap(m, name = "mat", cluster_columns = FALSE, top_annotation = ha2, column_split = split, column_gap = unit(1, "cm"))
> draw(ht)
> ht_list = ha2 %v% Heatmap(m, name = "mat", cluster_columns = FALSE, column_split = split, column_gap = unit(1, "cm"))
> draw(ht_list)
> 
> 
> ### when there are only simple annotations
> col_fun = colorRamp2(c(0, 10), c("white", "blue"))
> ha = HeatmapAnnotation(
+     foo = cbind(a = 1:10, b = 10:1), 
+     bar = sample(letters[1:3], 10, replace = TRUE),
+     col = list(foo = col_fun,
+                bar = c("a" = "red", "b" = "green", "c" = "blue")
+     ),
+     simple_anno_size = unit(1, "cm")
+ )
> draw(ha, test = TRUE)
> 
> set.seed(123)
> mat1 = matrix(rnorm(80, 2), 8, 10)
> mat1 = rbind(mat1, matrix(rnorm(40, -2), 4, 10))
> rownames(mat1) = paste0("R", 1:12)
> colnames(mat1) = paste0("C", 1:10)
> 
> mat2 = matrix(runif(60, max = 3, min = 1), 6, 10)
> mat2 = rbind(mat2, matrix(runif(60, max = 2, min = 0), 6, 10))
> rownames(mat2) = paste0("R", 1:12)
> colnames(mat2) = paste0("C", 1:10)
> 
> ind = sample(12, 12)
> mat1 = mat1[ind, ]
> mat2 = mat2[ind, ]
> 
> ha1 = HeatmapAnnotation(foo1 = 1:10, 
+ 	                    annotation_height = unit(1, "cm"),
+ 	                    simple_anno_size_adjust = TRUE,
+                         annotation_name_side = "left")
> ha2 = HeatmapAnnotation(df = data.frame(foo1 = 1:10,
+                                         foo2 = 1:10,
+                                         foo4 = 1:10,
+                                         foo5 = 1:10))
> ht1 = Heatmap(mat1, name = "rnorm", top_annotation = ha1)
> ht2 = Heatmap(mat2, name = "runif", top_annotation = ha2)
> 
> draw(ht1 + ht2)
> 
> ##### test size of a single simple annotation
> 
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	simple_anno_size = unit(1, "cm")
+ )
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	annotation_height = unit(1, "cm"),
+ 	simple_anno_size_adjust = TRUE
+ )
> ha = HeatmapAnnotation(foo1 = 1:10, 
+ 	height = unit(1, "cm"),
+ 	simple_anno_size_adjust = TRUE
+ )
> 
> 
> ## annotation with the same names
> 
> set.seed(123)
> m = matrix(rnorm(100), 10)
> ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE))
> ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE))
> 
> ht_list = Heatmap(m, top_annotation = ha1) + 
+ 	Heatmap(m, top_annotation = ha2)
> draw(ht_list)
> 
> ha1 = HeatmapAnnotation(foo = sample(c("a", "b"), 10, replace = TRUE),
+ 	annotation_legend_param = list(
+ 		foo = list(title = "letters", 
+ 			       at = c("a", "b", "c"),
+ 			       labels = c("A", "B", "C")
+ 			  )
+ 	))
> ha2 = HeatmapAnnotation(foo = sample(c("b", "c"), 10, replace = TRUE))
> 
> ht_list = Heatmap(m, top_annotation = ha1) + 
+ 	Heatmap(m, top_annotation = ha2)
> draw(ht_list)
> 
> x = matrix(rnorm(6), ncol=3)
> subtype_col = c("Basal" = "purple","Her2" = "black","Normal" = "blue")
> h1 <- HeatmapAnnotation("Subtype" = c("Basal","Her2", "Normal"),
+                         col = list("Subtype" = subtype_col))
> h2 <- HeatmapAnnotation("Subtype" = c("Normal","Normal", "Basal"),
+                         col = list("Subtype" = subtype_col))
> 
> ht_list = Heatmap(x,top_annotation = h1) + Heatmap(x,top_annotation = h2)
> draw(ht_list)
> 
> 
> ### test annotation_label
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = c("anno1", "anno2"))
> draw(ha, test = TRUE)
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(foo = "anno1"))
> draw(ha, test = TRUE)
> 
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(
+ 		foo = gt_render("foo", gp = gpar(box_fill = "red"))))
Loading required namespace: gridtext
> draw(ha, test = TRUE)
> 
> ha = HeatmapAnnotation(foo = 1:10, bar = letters[1:10],
+ 	annotation_label = list(
+ 		foo = gt_render("foo", gp = gpar(box_fill = "red")),
+ 		bar = gt_render("bar", gp = gpar(box_fill = "blue"))))
> draw(ha, test = TRUE)
> 
> proc.time()
   user  system elapsed 
 11.664   0.231  11.880 

ComplexHeatmap.Rcheck/tests/test-HeatmapList-class.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> nr1 = 10; nr2 = 8; nr3 = 6
> nc1 = 6; nc2 = 8; nc3 = 10
> mat1 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat1) = paste0("row_1_", seq_len(nrow(mat1)))
> colnames(mat1) = paste0("column_1_", seq_len(nrow(mat1)))
> 
> nr3 = 10; nr1 = 8; nr2 = 6
> nc3 = 6; nc1 = 8; nc2 = 10
> mat2 = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc1, mean = 0,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc1, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc2, mean = 0,   sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc2, mean = 1,   sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc2, mean = 0,   sd = 0.5), nr = nr3)),
+     rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nr = nr1),
+           matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nr = nr2),
+           matrix(rnorm(nr3*nc3, mean = 1,   sd = 0.5), nr = nr3))
+    )
> 
> rownames(mat2) = paste0("row_2_", seq_len(nrow(mat2)))
> colnames(mat2) = paste0("column_2_", seq_len(nrow(mat2)))
> 
> 
> ht_list = Heatmap(mat1) + Heatmap(mat2)
> draw(ht_list)
> 
> ######### legend ############
> draw(ht_list, heatmap_legend_side = "bottom")
> draw(ht_list, heatmap_legend_side = "left")
> draw(ht_list, heatmap_legend_side = "top")
> 
> 
> ########## width #############
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(8, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(12, "cm")) + Heatmap(mat2, width = unit(8, "cm"))
> draw(ht_list)
> 
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1) + Heatmap(mat2, width = unit(6, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + Heatmap(mat2, width = unit(6, "cm"))
> draw(ht_list)
> ht_list = Heatmap(mat1, width = 4) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, width = 2) + Heatmap(mat2, width = 1)
> draw(ht_list)
> 
> 
> ########### height ###########
> ht_list = Heatmap(mat1, height = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, heatmap_height = unit(6, "cm")) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm"), height = unit(6, "cm")) + 
+ 	Heatmap(mat2, width = unit(6, "cm"), height = unit(6, "cm"))
> draw(ht_list, column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> 
> ##### split #####
> ht_list = Heatmap(mat1, name = "m1", row_km = 2) + Heatmap(mat2, name = "m2", row_km = 3)
> draw(ht_list, main_heatmap = "m1")
> draw(ht_list, main_heatmap = "m2")
> 
> ht_list = Heatmap(mat1, name = "m1", row_km = 2, column_km = 3, width = unit(8, "cm"), height = unit(6, "cm")) + 
+ 	Heatmap(mat2, name = "m2", row_km = 3, column_km = 2, width = unit(8, "cm"), height = unit(10, "cm"))
> draw(ht_list, main_heatmap = "m1", column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> draw(ht_list, main_heatmap = "m2", column_title = "foooooooooo", row_title = "baaaaaaaaaaar")
> 
> ##### adjust column annotations #####
> ha1 = HeatmapAnnotation(foo = 1:24, bar = anno_points(24:1, height = unit(4, "cm")))
> ha2 = HeatmapAnnotation(bar = anno_points(24:1), foo = 1:24)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2)
> draw(ht_list)
> ha2 = HeatmapAnnotation(foo = 1:24)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2, top_annotation = ha2)
> draw(ht_list)
> ht_list = Heatmap(mat1, top_annotation = ha1) + Heatmap(mat2)
> draw(ht_list)
> ht_list = Heatmap(mat1, bottom_annotation = ha1) + Heatmap(mat2)
> draw(ht_list)
> 
> 
> #### row annotations #####
> ha = rowAnnotation(foo = 1:24, bar = anno_points(24:1), width = unit(6, "cm"))
> ht_list = Heatmap(mat1) + ha
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm")) + ha
> draw(ht_list)
> ht_list = Heatmap(mat1, width = unit(6, "cm"), row_km = 2) + ha
> draw(ht_list)
> 
> ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") +
+   rowAnnotation(foo = 1:10, bar = anno_points(10:1)) + 
+   Heatmap(matrix(runif(100), 10), name = "runif")
> summary(ht_list[1:5, ])
A horizontal heamtap list with 3 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
  heatmap_annotation_4: a list of 2 annotations
    foo:   a simple annotation.
    bar:   a complex annotation.
  runif: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, 1])
A horizontal heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, "rnorm"])
A horizontal heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
> summary(ht_list[1:5, c("rnorm", "foo")])
A horizontal heamtap list with 2 heatmap/annotations.
  rnorm: a matrix with 5 rows and 10 columns
  heatmap_annotation_4: a list of 1 annotations
    foo:   a simple annotation.
> 
> ht_list = Heatmap(matrix(rnorm(100), 10), name = "rnorm") %v%
+   columnAnnotation(foo = 1:10, bar = anno_points(10:1)) %v%
+   Heatmap(matrix(runif(100), 10), name = "runif")
> summary(ht_list[, 1:5])
A vertical heamtap list with 3 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
  heatmap_annotation_5: a list of 2 annotations
    foo:   a simple annotation.
    bar:   a complex annotation.
  runif: a matrix with 10 rows and 5 columns
> summary(ht_list[1, 1:5])
A vertical heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
> summary(ht_list["rnorm", 1:5])
A vertical heamtap list with 1 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
> summary(ht_list[c("rnorm", "foo"), 1:5])
A vertical heamtap list with 2 heatmap/annotations.
  rnorm: a matrix with 10 rows and 5 columns
  heatmap_annotation_5: a list of 1 annotations
    foo:   a simple annotation.
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 14.014   0.254  14.252 

ComplexHeatmap.Rcheck/tests/test-interactive.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> if(0) {
+ 
+ m = matrix(rnorm(100), 10)
+ rownames(m) = 1:10
+ colnames(m) = 1:10
+ 
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ 
+ 
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ 
+ ht = Heatmap(m, row_km = 2, column_km = 2) + Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht)
+ 
+ pdf("~/test.pdf")
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE)
+ 
+ set.seed(123)
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ png("~/test-1.png")
+ ht = Heatmap(m)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(4, 4), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ png("~/test-2.png")
+ set.seed(123)
+ ht = Heatmap(m, row_km = 2, column_km = 2)
+ ht = draw(ht)
+ selectArea(ht, pos1 = unit(c(1, 1), "cm"), pos2 = unit(c(8, 8), "cm"), verbose = TRUE)
+ dev.off()
+ 
+ }
> 
> proc.time()
   user  system elapsed 
  0.178   0.034   0.197 

ComplexHeatmap.Rcheck/tests/test-Legend.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> if(!exists("random_str")) {
+ 	random_str = ComplexHeatmap:::random_str
+ }
> 
> lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "default discrete legends style")
> 
> lgd = Legend(labels = 1:6, legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "only specify labels with no at")
> 
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "add labels and title")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "lefttop")
> draw(lgd, test = "title put in the lefttop")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "lefttop-rot")
> draw(lgd, test = "title put in the lefttop-rot")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", legend_gp = gpar(fill = 1:6),
+ 	title_position = "leftcenter-rot")
> draw(lgd, test = "title put in the leftcenter-rot")
> 
> lgd = Legend(labels = 1:6, title = "fooooooo", legend_gp = gpar(fill = 1:6))
> draw(lgd, test = "title is longer than the legend body")
> 
> lgd = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), grid_height = unit(1, "cm"), 
+ 	title = "foo", grid_width = unit(5, "mm"))
> draw(lgd, test = "grid size")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	labels_gp = gpar(col = "red", fontsize = 14))
> draw(lgd, test = "labels_gp")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	title_gp = gpar(col = "red", fontsize = 14))
> draw(lgd, test = "title_gp")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foo", 
+ 	border = "red")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3)
> draw(lgd, test = "in 3 columns")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, title_position = "topcenter")
> draw(lgd, test = "in 3 columns, title in the center")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, by_row = TRUE)
> draw(lgd, test = "in 3 columns and by rows")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	ncol = 3, gap = unit(1, "cm"))
> draw(lgd, test = "in 3 columns with gap between columns")
> 
> lgd = Legend(labels = month.name[1:10], legend_gp = gpar(fill = 1:10), title = "foo", 
+ 	nrow = 3)
> draw(lgd, test = "in 3 rows")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "lefttop")
> draw(lgd, test = "1 row and title is on the left")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "lefttop-rot")
> draw(lgd, test = "1 row and title is on the left, 90 rotation")
> 
> lgd = Legend(labels = month.name[1:6], legend_gp = gpar(fill = 1:6), title = "foooooo", 
+ 	nrow = 1, title_position = "leftcenter")
> draw(lgd, test = "1 row and title is on the left, 90 rotation")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = 1:6, 
+ 	legend_gp = gpar(col = 1:6), background = "red")
> draw(lgd, test = "points as legends")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "points", pch = letters[1:6], 
+ 	legend_gp = gpar(col = 1:6), background = "white")
> draw(lgd, test = "letters as legends")
> 
> lgd = Legend(labels = month.name[1:6], title = "foo", type = "lines", 
+ 	legend_gp = gpar(col = 1:6, lty = 1:6))
> draw(lgd, test = "lines as legends")
> 
> ###### vertical continous legend #######
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo")
> draw(lgd, test = "only col_fun")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1))
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)))
> draw(lgd, test = "with at")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"))
> draw(lgd, test = "with labels")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", legend_height = unit(6, "cm"))
> draw(lgd, test = "set legend_height")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"))
> draw(lgd, test = "set label color")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", border = "red")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "lefttop-rot")
> draw(lgd, test = "lefttop rot title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", title_position = "leftcenter-rot")
> draw(lgd, test = "leftcenter top title")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", title_position = "lefttop", direction = "horizontal")
> draw(lgd, test = "lefttop title")
> 
> ###### horizontal continous legend #######
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo", direction = "horizontal")
> draw(lgd, test = "only col_fun")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal")
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = rev(c(0, 0.25, 0.5, 0.75, 1)), direction = "horizontal")
> draw(lgd, test = "with at")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.5, 1), labels = c("low", "median", "high"),
+ 	direction = "horizontal")
> draw(lgd, test = "with labels")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", legend_width = unit(6, "cm"), direction = "horizontal")
> draw(lgd, test = "set legend_width")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", labels_gp = gpar(col = "red"), direction = "horizontal")
> draw(lgd, test = "set label color")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", border = "red", direction = "horizontal")
> draw(lgd, test = "legend border")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "topcenter")
> draw(lgd, test = "topcenter title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "lefttop")
> draw(lgd, test = "lefttop title")
> 
> lgd = Legend(col_fun = col_fun, title = "foooooooo", direction = "horizontal", 
+ 	title_position = "leftcenter")
> draw(lgd, test = "leftcenter title")
> 
> 
> ###### pack legend
> lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
> 
> pd = packLegend(lgd1, lgd2)
> draw(pd, test = "two legends")
> 
> pd = packLegend(list = list(lgd1, lgd2))
> draw(pd, test = "two legends specified as a list")
> 
> pd = packLegend(lgd1, lgd2, direction = "horizontal")
> draw(pd, test = "two legends packed horizontally")
> 
> lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1), direction = "horizontal")
> pd = packLegend(lgd3, lgd4)
> draw(pd, test = "two legends with different directions")
> pd = packLegend(lgd3, lgd4, direction = "horizontal")
> draw(pd, test = "two legends with different directions")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2)
> draw(pd, test = "many legends with same legends")
> 
> lgd3 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1")
> lgd4 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1))
> pd = packLegend(lgd1, lgd2, lgd3, lgd4)
> draw(pd, test = "many legends with all different legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2)
> draw(pd, test = "many legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(1, "npc"))
> draw(pd, test = "many legends, max_height = unit(1, 'npc')")
> ## reduce the height of the interactive window and rerun draw()
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"))
> draw(pd, test = "many legends, max_height = unit(10, 'cm')")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_height = unit(10, "cm"), gap = unit(1, "cm"))
> draw(pd, test = "many legends, max_height = unit(10, 'cm'), with gap")
> 
> lgd_long = Legend(at = 1:50, legend_gp = gpar(fill = 1:50))
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, lgd_long, max_height = unit(10, "cm"))
> draw(pd, test = "many legends with a long one, max_height = unit(10, 'cm')")
> 
> lgd1 = Legend(at = 1:6, legend_gp = gpar(fill = 1:6), title = "legend1",
+ 	nr = 1)
> lgd2 = Legend(col_fun = col_fun, title = "legend2", at = c(0, 0.25, 0.5, 0.75, 1),
+ 	direction = "horizontal")
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, direction = "horizontal")
> draw(pd, test = "many legends")
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(1, "npc"), direction = "horizontal")
> draw(pd, test = "many legends, max_width = unit(1, 'npc')")
> ## reduce the height of the interactive window and rerun draw()
> 
> pd = packLegend(lgd1, lgd2, lgd1, lgd2, lgd1, lgd2, max_width = unit(10, "cm"), direction = "horizontal")
> draw(pd, test = "many legends, max_width = unit(10, 'cm')")
> 
> 
> ####### unequal interval breaks
> col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1))
> draw(lgd, test = "unequal interval breaks")
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.3, 1), legend_height = unit(4, "cm"))
> draw(lgd, test = "unequal interval breaks but not label position adjustment")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal")
> draw(lgd, test = "unequal interval breaks")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal", title_position = "lefttop")
> draw(lgd, test = "unequal interval breaks")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.15, 0.5, 0.9, 0.95, 1),
+ 	direction = "horizontal", title_position = "lefttop", labels_rot = 90)
> draw(lgd, test = "unequal interval breaks, label rot 90")
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1),
+ 	labels = c("mininal", "q10", "median", "q75", "maximal"),
+ 	direction = "horizontal", title_position = "lefttop")
> draw(lgd, test = "unequal interval breaks with labels")
> 
> 
> lgd = Legend(col_fun = col_fun, title = "foo", at = c(0, 0.1, 0.5, 0.75, 1),
+ 	labels = c("mininal", "q10", "median", "q75", "maximal"),
+ 	direction = "horizontal")
> draw(lgd, test = "unequal interval breaks with labels")
> 
> 
> col_fun = colorRamp2(c(0, 0.05, 0.1, 0.5, 1), c("green", "white", "red", "black", "blue"))
> lgd = Legend(col_fun = col_fun, title = "foo", break_dist = 1:4)
> draw(lgd, test = "unequal interval breaks")
> 
> 
> #### position of legends to heatmaps ##
> if(0) {
+ m = matrix(rnorm(100), 10)
+ rownames(m) = random_str(10, len = 20)
+ colnames(m) = random_str(10, len = 20)
+ Heatmap(m)
+ }
> 
> 
> 
> proc.time()
   user  system elapsed 
  3.446   0.343   3.774 

ComplexHeatmap.Rcheck/tests/test-multiple-page.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> m = matrix(rnorm(100), 10)
> 
> postscript("test.ps")
> lgd = Legend(labels = c("a", "b", "c"))
> draw(Heatmap(m), heatmap_legend_list = list(lgd))
> dev.off()
null device 
          1 
> 
> check_pages = function() {
+ 	lines = readLines("test.ps")
+ 	print(lines[length(lines)-1])
+ 	invisible(file.remove("test.ps"))
+ }
> 
> check_pages()
[1] "%%Pages: 1"
> 
> postscript("test.ps")
> ha = HeatmapAnnotation(foo = 1:10, bar = anno_points(1:10))
> Heatmap(m, top_annotation = ha)
> dev.off()
null device 
          1 
> 
> check_pages()
[1] "%%Pages: 1"
> 
> proc.time()
   user  system elapsed 
  6.061   0.182   6.229 

ComplexHeatmap.Rcheck/tests/test-oncoPrint.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> mat = read.table(textConnection(
+ "s1,s2,s3
+ g1,snv;indel,snv,indel
+ g2,,snv;indel,snv
+ g3,snv,,indel;snv"), row.names = 1, header = TRUE, sep = ",", stringsAsFactors = FALSE)
> mat = as.matrix(mat)
> 
> get_type_fun = function(x) strsplit(x, ";")[[1]]
> 
> alter_fun = list(
+     snv = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.9, 
+         gp = gpar(fill = col["snv"], col = NA)),
+     indel = function(x, y, w, h) grid.rect(x, y, w*0.9, h*0.4, 
+         gp = gpar(fill = col["indel"], col = NA))
+ )
> 
> col = c(snv = "red", indel = "blue")
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col)
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ## turn off row names while turn on column names
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col, 
+     show_column_names = TRUE, show_row_names = FALSE, show_pct = FALSE)
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col, pct_side = "right", 
+     row_names_side = "left")
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(column_barplot = anno_oncoprint_barplot())
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+     	column_barplot = anno_oncoprint_barplot(),
+     	foo = 1:3,
+     	annotation_name_side = "left")
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+     	cbar = anno_oncoprint_barplot(),
+     	foo1 = 1:3,
+     	annotation_name_side = "left"),
+     left_annotation = rowAnnotation(foo2 = 1:3),
+     right_annotation = rowAnnotation(cbar = anno_oncoprint_barplot(), foo3 = 1:3),
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     top_annotation = HeatmapAnnotation(
+         cbar = anno_oncoprint_barplot(border = TRUE),
+         foo1 = 1:3,
+         annotation_name_side = "left"),
+     left_annotation = rowAnnotation(foo2 = 1:3),
+     right_annotation = rowAnnotation(
+         cbar = anno_oncoprint_barplot(border = TRUE), 
+         foo3 = 1:3),
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> ht = oncoPrint(mat, get_type = get_type_fun,
+     alter_fun = alter_fun, col = col,
+     right_annotation = rowAnnotation(rbar = anno_oncoprint_barplot(axis_param = list(side = "bottom", labels_rot = 90)))
+ )
All mutation types: snv, indel.
`alter_fun` is assumed vectorizable. If it does not generate correct
plot, please set `alter_fun_is_vectorized = FALSE` in `oncoPrint()`.
> draw(ht)
> 
> 
> proc.time()
   user  system elapsed 
  8.338   0.252   8.577 

ComplexHeatmap.Rcheck/tests/test-pheatmap.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> 
> if(requireNamespace("pheatmap")) {
+ 	mat = matrix(rnorm(100), 10)
+ 
+ 	compare_pheatmap(mat)
+ 
+ 	pheatmap(mat)
+ 	pheatmap(mat, col = rev(RColorBrewer::brewer.pal(n = 7, name = "RdYlBu")))
+ 
+ 	test = matrix(rnorm(200), 20, 10)
+ 	test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
+ 	test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
+ 	test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
+ 	colnames(test) = paste("Test", 1:10, sep = "")
+ 	rownames(test) = paste("Gene", 1:20, sep = "")
+ 
+ 	# Draw heatmaps
+ 	compare_pheatmap(test)
+ 	compare_pheatmap(test, kmeans_k = 2)
+ 	compare_pheatmap(test, scale = "row", clustering_distance_rows = "correlation")
+ 	compare_pheatmap(test, color = colorRampPalette(c("navy", "white", "firebrick3"))(50))
+ 	compare_pheatmap(test, cluster_row = FALSE)
+ 	compare_pheatmap(test, legend = FALSE)
+ 
+ 	# Show text within cells
+ 	compare_pheatmap(test, display_numbers = TRUE)
+ 	compare_pheatmap(test, display_numbers = TRUE, number_format = "%.1e")
+ 	compare_pheatmap(test, display_numbers = matrix(ifelse(test > 5, "*", ""), nrow(test)))
+ 	compare_pheatmap(test, cluster_row = FALSE, legend_breaks = -1:4, legend_labels = c("0",
+ 		"1e-4", "1e-3", "1e-2", "1e-1", "1"))
+ 
+ 	# Fix cell sizes and save to file with correct size
+ 	compare_pheatmap(test, cellwidth = 15, cellheight = 12, main = "Example heatmap")
+ 
+ 	# Generate annotations for rows and columns
+ 	annotation_col = data.frame(
+ 	    CellType = factor(rep(c("CT1", "CT2"), 5)), 
+ 	    Time = 1:5
+ 	)
+ 	rownames(annotation_col) = paste("Test", 1:10, sep = "")
+ 
+ 	annotation_row = data.frame(
+ 	    GeneClass = factor(rep(c("Path1", "Path2", "Path3"), c(10, 4, 6)))
+ 	)
+ 	rownames(annotation_row) = paste("Gene", 1:20, sep = "")
+ 
+ 	# Display row and color annotations
+ 	compare_pheatmap(test, annotation_col = annotation_col)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_legend = FALSE)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row)
+ 
+ 	# Change angle of text in the columns
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, angle_col = "45")
+ 	compare_pheatmap(test, annotation_col = annotation_col, angle_col = "0")
+ 
+ 	# Specify colors
+ 	ann_colors = list(
+ 	    Time = c("white", "firebrick"),
+ 	    CellType = c(CT1 = "#1B9E77", CT2 = "#D95F02"),
+ 	    GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")
+ 	)
+ 
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors, main = "Title")
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_row = annotation_row, 
+ 	         annotation_colors = ann_colors)
+ 	compare_pheatmap(test, annotation_col = annotation_col, annotation_colors = ann_colors[2]) 
+ 
+ 	# Gaps in heatmaps
+ 	compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14))
+ 	compare_pheatmap(test, annotation_col = annotation_col, cluster_rows = FALSE, gaps_row = c(10, 14), 
+ 	         cutree_col = 2)
+ 
+ 	# Show custom strings as row/col names
+ 	labels_row = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", 
+ 		"", "", "Il10", "Il15", "Il1b")
+ 
+ 	compare_pheatmap(test, annotation_col = annotation_col, labels_row = labels_row)
+ 
+ 	# Specifying clustering from distance matrix
+ 	drows = dist(test, method = "minkowski")
+ 	dcols = dist(t(test), method = "minkowski")
+ 	compare_pheatmap(test, clustering_distance_rows = drows, clustering_distance_cols = dcols)
+ 
+ 	library(dendsort)
+ 
+ 	callback = function(hc, ...){dendsort(hc)}
+ 	compare_pheatmap(test, clustering_callback = callback)
+ }
Loading required namespace: pheatmap
Warning message:
argument `kmeans_k` is not suggested to use in pheatmap -> Heatmap
translation because it changes the input matrix. You might check
`row_km` and `column_km` arguments in Heatmap(). 
> 
> proc.time()
   user  system elapsed 
 19.657   0.249  19.894 

ComplexHeatmap.Rcheck/tests/test-SingleAnnotation.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> ha = SingleAnnotation(value = 1:10)
> draw(ha, test = "single column annotation")
> ha = SingleAnnotation(value = 1:10, which = "row")
> draw(ha, test = "single row annotation")
> ha = SingleAnnotation(value = 1:10)
> draw(ha, index = 6:10, test = "single column annotation, subset")
> draw(ha, index = 6:10, k = 1, n = 2, test = "single column annotation, subset, k=1 n=2")
> draw(ha, index = 6:10, k = 2, n = 2, test = "single column annotation, subset, k=1 n=2")
> 
> x = 1:10
> ha = SingleAnnotation(value = x)
> draw(ha, test = "single column annotation")
> 
> m = cbind(1:10, 10:1)
> colnames(m) = c("a", "b")
> ha = SingleAnnotation(value = m)
> draw(ha, test = "matrix as column annotation")
> 
> ha = SingleAnnotation(value = 1:10, col = colorRamp2(c(1, 10), c("blue", "red")))
> draw(ha, test = "color mapping function")
> 
> ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)))
> draw(ha, test = "discrete annotation")
> ha = SingleAnnotation(value = c(rep(c("a", "b"), 5)), col = c("a" = "red", "b" = "blue"))
> draw(ha, test = "discrete annotation with defined colors")
> 
> anno = anno_simple(1:10)
> ha = SingleAnnotation(fun = anno)
> draw(ha, test = "AnnotationFunction as input")
> 
> anno = anno_barplot(matrix(nc = 2, c(1:10, 10:1)))
> ha = SingleAnnotation(fun = anno)
> draw(ha, test = "anno_barplot as input")
> draw(ha, index = 1:5, test = "anno_barplot as input, 1:5")
> draw(ha, index = 1:5, k = 1, n = 2, test = "anno_barplot as input, 1:5, k = 1, n = 2")
> draw(ha, index = 1:5, k = 2, n = 2, test = "anno_barplot as input, 1:5, k = 2, n = 2")
> 
> lt = lapply(1:20, function(x) cumprod(1 + runif(1000, -x/100, x/100)) - 1)
> anno = anno_horizon(lt, which = "row")
> ha = SingleAnnotation(fun = anno, which = "row")
> draw(ha, test = "anno_horizon as input")
> 
> fun = local({
+ 	value = 1:10
+ 	function(index, k = 1, n = 1) {
+ 		pushViewport(viewport(xscale = c(0.5, length(index) + 0.5), yscale = range(value)))
+ 		grid.points(seq_along(index), value[index])
+ 		grid.rect()
+ 		if(k == 1) grid.yaxis()
+ 		popViewport()
+ 	}
+ })
> ha = SingleAnnotation(fun = fun, height = unit(4, "cm"))
> # ha[1:5]
> draw(ha, index = c(1, 4, 2, 6), test = "self-defined function")
> draw(ha, index = c(1, 4, 2, 6), k = 1, n = 2, test = "self-defined function, k = 1, n = 2")
> draw(ha, index = c(1, 4, 2, 6), k = 2, n = 2, test = "self-defined function, k = 2, n = 2")
> 
> 
> # test gridtext
> ha = SingleAnnotation(value = 1:10, label = gt_render("foo", r = unit(2, "pt")), name_gp = gpar(box_fill = "red"))
Loading required namespace: gridtext
> draw(ha, test = "single column annotation")
> 
> 
> 
> proc.time()
   user  system elapsed 
  3.484   0.151   3.624 

ComplexHeatmap.Rcheck/tests/test-upset.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> set.seed(123)
> lt = list(a = sample(letters, 10),
+ 	      b = sample(letters, 15),
+ 	      c = sample(letters, 20))
> 
> m = make_comb_mat(lt)
> t(m)
A combination matrix with 3 sets and 6 combinations.
  ranges of combination set size: c(1, 8).
  mode for the combination size: distinct.
  sets are on columns

Combination sets are:
  a b c code size
  x x x  111    4
  x x    110    4
  x   x  101    2
    x x  011    6
    x    010    1
      x  001    8

Sets are:
  set size
    a   10
    b   15
    c   20
> set_name(m)
[1] "a" "b" "c"
> comb_name(m)
[1] "111" "110" "101" "011" "010" "001"
> set_size(m)
 a  b  c 
10 15 20 
> comb_size(m)
111 110 101 011 010 001 
  4   4   2   6   1   8 
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "k" "n" "s"

[[3]]
[1] "o" "r"

[[4]]
[1] "a" "g" "h" "i" "l" "u"

[[5]]
[1] "d"

[[6]]
[1] "b" "f" "m" "q" "t" "v" "w" "z"

> draw(UpSet(m))
> draw(UpSet(m, comb_col = c(rep(2, 3), rep(3, 3), 1)))
> draw(UpSet(t(m)))
> 
> set_name(t(m))
[1] "a" "b" "c"
> comb_name(t(m))
[1] "111" "110" "101" "011" "010" "001"
> set_size(t(m))
 a  b  c 
10 15 20 
> comb_size(t(m))
111 110 101 011 010 001 
  4   4   2   6   1   8 
> lapply(comb_name(t(m)), function(x) extract_comb(t(m), x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "k" "n" "s"

[[3]]
[1] "o" "r"

[[4]]
[1] "a" "g" "h" "i" "l" "u"

[[5]]
[1] "d"

[[6]]
[1] "b" "f" "m" "q" "t" "v" "w" "z"

> 
> m = make_comb_mat(lt, mode = "intersect")
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
[1] "e" "j" "x" "y"

[[2]]
[1] "c" "e" "j" "k" "n" "s" "x" "y"

[[3]]
[1] "e" "j" "o" "r" "x" "y"

[[4]]
 [1] "a" "e" "g" "h" "i" "j" "l" "u" "x" "y"

[[5]]
 [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y"

[[6]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y"

[[7]]
 [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y"
[20] "z"

> draw(UpSet(m))
> 
> m = make_comb_mat(lt, mode = "union")
> lapply(comb_name(m), function(x) extract_comb(m, x))
[[1]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t"
[20] "u" "v" "w" "x" "y" "z"

[[2]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "o" "r" "s" "u" "x" "y"

[[3]]
 [1] "a" "b" "c" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t" "u"
[20] "v" "w" "x" "y" "z"

[[4]]
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "q" "r" "s" "t"
[20] "u" "v" "w" "x" "y" "z"

[[5]]
 [1] "c" "e" "j" "k" "n" "o" "r" "s" "x" "y"

[[6]]
 [1] "a" "c" "d" "e" "g" "h" "i" "j" "k" "l" "n" "s" "u" "x" "y"

[[7]]
 [1] "a" "b" "e" "f" "g" "h" "i" "j" "l" "m" "o" "q" "r" "t" "u" "v" "w" "x" "y"
[20] "z"

> draw(UpSet(m))
> 
> f = system.file("extdata", "movies.csv", package = "UpSetR")
> if(file.exists(f)) {
+ 	movies <- read.csv(system.file("extdata", "movies.csv", package = "UpSetR"), header = T, sep = ";")
+ 	m = make_comb_mat(movies, top_n_sets = 6)
+ 	t(m)
+ 	set_name(m)
+ 	comb_name(m)
+ 	set_size(m)
+ 	comb_size(m)
+ 	lapply(comb_name(m), function(x) extract_comb(m, x))
+ 
+ 	set_name(t(m))
+ 	comb_name(t(m))
+ 	set_size(t(m))
+ 	comb_size(t(m))
+ 	lapply(comb_name(t(m)), function(x) extract_comb(t(m), x))
+ 
+ 	draw(UpSet(m))
+ 	draw(UpSet(t(m)))
+ 
+ 	m = make_comb_mat(movies, top_n_sets = 6, mode = "intersect")
+ 	m = make_comb_mat(movies, top_n_sets = 6, mode = "union")
+ }
> 
> library(circlize)
> library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
> lt = lapply(1:4, function(i) generateRandomBed())
> lt = lapply(lt, function(df) GRanges(seqnames = df[, 1], ranges = IRanges(df[, 2], df[, 3])))
> names(lt) = letters[1:4]
> m = make_comb_mat(lt)
> 
> # if(0) {
> # set.seed(123)
> # lt = list(a = sample(letters, 10),
> # 	      b = sample(letters, 15),
> # 	      c = sample(letters, 20))
> # v = gplots::venn(lt, show.plot = FALSE)
> # rownames(v) = apply(v[, -1], 1, paste, collapse = "")
> # m = make_comb_mat(lt)
> # cs = structure(comb_size(m), names = comb_name(m))
> # }
> 
> if(file.exists(f)) {
+ 	movies <- read.csv(f, header = T, sep = ";")
+ 	genre = c("Action", "Romance", "Horror", "Children", "SciFi", "Documentary")
+ 	rate = cut(movies$AvgRating, c(0, 1, 2, 3, 4, 5))
+ 	m_list = tapply(seq_len(nrow(movies)), rate, function(ind) {
+ 		make_comb_mat(movies[ind, genre, drop = FALSE])
+ 	})
+ 	m_list2 = normalize_comb_mat(m_list)
+ 
+ 	lapply(m_list2, set_name)
+ 	lapply(m_list2, set_size)
+ 	lapply(m_list2, comb_name)
+ 	lapply(m_list2, comb_size)
+ 
+ 	lapply(1:length(m_list), function(i) {
+ 		n1 = comb_name(m_list[[i]])
+ 		x1 = comb_size(m_list[[i]])
+ 		n2 = comb_name(m_list2[[i]])
+ 		x2 = comb_size(m_list2[[i]])
+ 		l = n2 %in% n1
+ 		x2[!l]
+ 	})
+ }
[[1]]
110001 100101 100011 110000 100100 100010 100001 010100 010010 010001 000110 
     0      0      0      0      0      0      0      0      0      0      0 
000101 000011 100000 000010 
     0      0      0      1 

[[2]]
110001 100101 100011 100001 010100 010010 010001 000110 000101 000011 
     1      1      0      5      0      0      0      0      8      0 

[[3]]
110001 100101 100011 100001 010001 000101 000011 
     0      4      0     35      7     27      1 

[[4]]
110001 100101 100011 100100 100001 010001 000101 000011 
     1      6      1      6     45      5     11      4 

[[5]]
110001 100101 100011 100100 100001 010100 010010 010001 000110 000101 000011 
     0      1      1      1      6      0      0      0      0      0      0 

> 
> 
> proc.time()
   user  system elapsed 
 18.619   0.259  18.867 

ComplexHeatmap.Rcheck/tests/test-utils.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(circlize)
========================================
circlize version 0.4.13
CRAN page: https://cran.r-project.org/package=circlize
Github page: https://github.com/jokergoo/circlize
Documentation: https://jokergoo.github.io/circlize_book/book/

If you use it in published research, please cite:
Gu, Z. circlize implements and enhances circular visualization
  in R. Bioinformatics 2014.

This message can be suppressed by:
  suppressPackageStartupMessages(library(circlize))
========================================

> library(ComplexHeatmap)
Loading required package: grid
========================================
ComplexHeatmap version 2.8.0
Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
Github page: https://github.com/jokergoo/ComplexHeatmap
Documentation: http://jokergoo.github.io/ComplexHeatmap-reference

If you use it in published research, please cite:
Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional 
  genomic data. Bioinformatics 2016.

The new InteractiveComplexHeatmap package can directly export static 
complex heatmaps into an interactive Shiny app with zero effort. Have a try!

This message can be suppressed by:
  suppressPackageStartupMessages(library(ComplexHeatmap))
========================================

> library(GetoptLong)
> 
> # things needed to be tested
> # 1. the order
> # 2. if the sum of sizes are larger than xlim
> 
> make_plot = function(pos1, pos2, range) {
+ 	oxpd = par("xpd")
+ 	par(xpd = NA)
+ 	plot(NULL, xlim = c(0, 4), ylim = range, ann = FALSE)
+ 	col = rand_color(nrow(pos1), transparency = 0.5)
+ 	rect(0.5, pos1[, 1], 1.5, pos1[, 2], col = col)
+ 	rect(2.5, pos2[, 1], 3.5, pos2[, 2], col = col)
+ 	segments(1.5, rowMeans(pos1), 2.5, rowMeans(pos2))
+ 	par(xpd = oxpd)
+ }
> 
> range = c(0, 10)
> pos1 = rbind(c(1, 2), c(5, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> range = c(0, 10)
> pos1 = rbind(c(-0.5, 2), c(5, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> pos1 = rbind(c(-1, 2), c(3, 4), c(5, 6), c(7, 11))
> pos1 = pos1 + runif(length(pos1), max = 0.3, min = -0.3)
> par(mfrow = c(3, 3))
> for(i in 1:9) {
+ 	ind = sample(4, 4)
+ 	make_plot(pos1[ind, ], smartAlign2(pos1[ind, ], range = range), range)
+ }
> par(mfrow = c(1, 1))
> 
> pos1 = rbind(c(3, 6), c(4, 7))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> pos1 = rbind(c(1, 8), c(3, 10))
> make_plot(pos1, smartAlign2(pos1, range = range), range)
> 
> ########## new version of smartAlign2() ############
> 
> start = c(0.0400972528391016, 0.0491583597430212, 0.0424302664385027, 0.0547524243812509, 0.0820937279769642, 0.126861283282835, 0.178503822565168, 0.327742831447437, 0.570671411156898, 0.81775868755151)
> end = c(0.0921142856224367, 0.107091640256979, 0.137858195099959, 0.159189883311057, 0.177521656638421, 0.20727333210178, 0.304669254357909, 0.463122553167947, 0.676924742689255, 0.929837466294643)
> range = c(0, 1)
> smartAlign2(start, end, range, plot = TRUE)
enter to continue
             [,1]       [,2]
 [1,] 0.002200888 0.05421792
 [2,] 0.054217921 0.11215120
 [3,] 0.112151202 0.20757913
 [4,] 0.207579130 0.31201659
 [5,] 0.312016589 0.40744452
 [6,] 0.407444518 0.48785657
 [7,] 0.487856567 0.61402200
 [8,] 0.614021999 0.74940172
 [9,] 0.749401720 0.85565505
[10,] 0.855655052 0.96773383
> 
> 
> start <- c(0.722121284290678, 0.701851666769472, 0.284795592003117, 0.335674695572052, 0.246977082249377, 0.767289857630785, 0.728198060058033, 0.299241440370817, -0.0149946764559372, 0.85294351791166, 0.126216621670218, 0.478169948493225)
> end <- c(0.766196472718668, 0.763101604258565, 0.34604552949221, 0.421334650222341, 0.344144413077725, 0.847196123677626, 0.813858014708322, 0.392347344675911, 0.108452620381171, 0.969486388630396, 0.249951602628847, 0.584914163656308)
> od = order(start)
> start = start[od]; end = end[od]
> range = c(0, 1)
> pos = smartAlign2(start, end, range)
> n = nrow(pos)
> pos[1:(n-1), 2] > pos[2:n, 1]
 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> 
> 
> if(0) {
+ 	go_id = random_GO(500)
+ 	mat = GO_similarity(go_id)
+ 	invisible(simplify(mat, order_by_size = FALSE))
+ }
> 
> proc.time()
   user  system elapsed 
  2.451   0.143   2.577 

ComplexHeatmap.Rcheck/tests/testthat-all.Rout


R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> 
> suppressWarnings(suppressPackageStartupMessages(library(ComplexHeatmap)))
> library(testthat)
> 
> test_check("ComplexHeatmap")
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 181 ]
> 
> proc.time()
   user  system elapsed 
 19.151   0.613  19.689 

Example timings

ComplexHeatmap.Rcheck/ComplexHeatmap-Ex.timings

nameusersystemelapsed
AdditiveUnit-class000
AdditiveUnit000
AnnotationFunction-class000
AnnotationFunction3.7230.0443.766
ColorMapping-class000
ColorMapping0.0120.0000.012
ComplexHeatmap-package000
Extract.AnnotationFunction0.0200.0000.019
Extract.Heatmap0.4800.0120.492
Extract.HeatmapAnnotation0.040.000.04
Extract.HeatmapList0.1370.0000.137
Extract.SingleAnnotation0.0170.0000.016
Extract.comb_mat0.0080.0040.011
Extract.gridtext000
Heatmap-class000
Heatmap000
Heatmap3D0.1420.0010.144
HeatmapAnnotation-class0.0000.0000.001
HeatmapAnnotation000
HeatmapList-class000
HeatmapList0.0000.0010.000
Legend0.0560.0070.063
Legends-class0.0070.0000.007
Legends0.0000.0000.001
SingleAnnotation-class0.0010.0000.000
SingleAnnotation0.0510.0000.051
UpSet0.4050.0000.405
add.AdditiveUnit000
add_heatmap-Heatmap-method0.0000.0010.000
add_heatmap-HeatmapAnnotation-method000
add_heatmap-HeatmapList-method000
add_heatmap-dispatch000
adjust_dend_by_x0.0100.0040.014
adjust_heatmap_list-HeatmapList-method000
alter_graphic0.1490.0000.150
anno_barplot0.0190.0000.019
anno_block0.7170.0000.717
anno_boxplot0.0240.0000.025
anno_density0.4010.0080.408
anno_empty0.0100.0040.015
anno_histogram0.0700.0000.071
anno_horizon3.6620.0403.702
anno_image000
anno_joyplot0.3860.0000.386
anno_lines0.0770.0080.085
anno_link000
anno_mark0.3720.0080.379
anno_oncoprint_barplot0.0010.0000.000
anno_points0.0190.0000.019
anno_simple0.0450.0000.044
anno_summary0.2510.0000.250
anno_text0.0550.0040.059
anno_zoom0.3570.0000.357
annotation_axis_grob0.0380.0200.058
annotation_legend_size-HeatmapList-method0.0010.0000.001
attach_annotation-Heatmap-method0.6640.0000.663
bar3D0.0060.0000.006
bin_genome000
c.ColorMapping0.0010.0000.001
c.HeatmapAnnotation0.0320.0000.032
cluster_between_groups0.0220.0000.022
cluster_within_group0.0210.0000.021
color_mapping_legend-ColorMapping-method000
columnAnnotation000
column_dend-Heatmap-method0.2390.0040.242
column_dend-HeatmapList-method0.8110.0080.819
column_dend-dispatch0.0010.0000.000
column_order-Heatmap-method0.4990.0040.503
column_order-HeatmapList-method0.7930.0040.797
column_order-dispatch000
comb_degree0.0010.0000.001
comb_name0.0020.0000.002
comb_size0.0010.0000.001
compare_heatmap.20.8350.0160.851
compare_heatmap0.5830.0040.587
compare_pheatmap0.4490.0040.453
complement_size000
component_height-Heatmap-method000
component_height-HeatmapList-method0.0000.0010.000
component_height-dispatch0.0000.0000.001
component_width-Heatmap-method000
component_width-HeatmapList-method000
component_width-dispatch0.0000.0010.000
copy_all-AnnotationFunction-method0.0000.0000.001
copy_all-SingleAnnotation-method000
copy_all-dispatch000
decorate_annotation0.2110.0040.215
decorate_column_dend000
decorate_column_names0.0010.0000.001
decorate_column_title000
decorate_dend0.120.000.12
decorate_dimnames0.1280.0040.132
decorate_heatmap_body0.1100.0040.114
decorate_row_dend000
decorate_row_names000
decorate_row_title000
decorate_title0.1210.0000.121
default_axis_param0.0010.0000.001
default_get_type0.0010.0000.000
dend_heights000
dend_xy0.0040.0030.008
dendrogramGrob000
densityHeatmap0.9510.0080.959
dim.Heatmap000
dist20.0080.0000.008
draw-AnnotationFunction-method000
draw-Heatmap-method0.0010.0000.000
draw-HeatmapAnnotation-method000
draw-HeatmapList-method000
draw-Legends-method0.0100.0000.011
draw-SingleAnnotation-method000
draw-dispatch000
draw_annotation-Heatmap-method000
draw_annotation_legend-HeatmapList-method0.0010.0000.001
draw_dend-Heatmap-method000
draw_dimnames-Heatmap-method000
draw_heatmap_body-Heatmap-method0.0000.0010.000
draw_heatmap_legend-HeatmapList-method0.0000.0000.001
draw_heatmap_list-HeatmapList-method000
draw_title-Heatmap-method0.0000.0010.000
draw_title-HeatmapList-method0.0000.0000.001
draw_title-dispatch000
extract_comb0.0000.0020.002
frequencyHeatmap0.4720.0040.477
full_comb_code0.0030.0000.003
getXY_in_parent_vp0.0030.0040.007
get_color_mapping_list-HeatmapAnnotation-method000
get_legend_param_list-HeatmapAnnotation-method000
grid.annotation_axis000
grid.boxplot0.0040.0020.006
grid.dendrogram0.4370.0120.450
grid.draw.Legends0.010.000.01
gt_render0.5560.0000.557
heatmap_legend_size-HeatmapList-method000
height.AnnotationFunction0.0030.0040.007
height.Heatmap0.0010.0000.000
height.HeatmapAnnotation000
height.HeatmapList000
height.Legends0.0120.0000.012
height.SingleAnnotation0.0010.0000.001
heightAssign.AnnotationFunction000
heightAssign.HeatmapAnnotation000
heightAssign.SingleAnnotation000
heightDetails.annotation_axis0.0010.0000.000
heightDetails.legend000
heightDetails.legend_body000
heightDetails.packed_legends0.0010.0000.001
ht_global_opt000
ht_opt0.0060.0000.006
ht_size000
is_abs_unit0.0010.0000.001
length.HeatmapAnnotation000
length.HeatmapList000
list_components000
list_to_matrix0.0010.0010.002
make_column_cluster-Heatmap-method000
make_comb_mat0.0030.0010.004
make_layout-Heatmap-method000
make_layout-HeatmapList-method000
make_layout-dispatch000
make_row_cluster-Heatmap-method000
map_to_colors-ColorMapping-method0.0110.0030.014
max_text_height0.0000.0010.002
max_text_width0.0020.0000.001
merge_dendrogram0.0750.0040.079
names.HeatmapAnnotation0.0110.0000.011
names.HeatmapList0.0010.0000.000
namesAssign.HeatmapAnnotation0.0110.0000.011
ncol.Heatmap000
nobs.AnnotationFunction0.0030.0000.003
nobs.HeatmapAnnotation000
nobs.SingleAnnotation0.0010.0000.001
normalize_comb_mat000
normalize_genomic_signals_to_bins0.0000.0010.001
nrow.Heatmap0.0000.0010.000
oncoPrint000
order.comb_mat000
packLegend0.0490.0010.049
pct_v_pct000
pheatmap0.0000.0000.001
pindex0.0050.0000.005
prepare-Heatmap-method0.0010.0000.000
print.comb_mat000
re_size-HeatmapAnnotation-method000
restore_matrix0.3060.0040.310
rowAnnotation0.0010.0000.000
row_anno_barplot000
row_anno_boxplot000
row_anno_density0.0010.0000.001
row_anno_histogram000
row_anno_points000
row_anno_text0.0000.0000.001
row_dend-Heatmap-method0.3350.0030.338
row_dend-HeatmapList-method0.7150.0000.715
row_dend-dispatch000
row_order-Heatmap-method0.2740.0040.278
row_order-HeatmapList-method0.6660.0030.670
row_order-dispatch0.0010.0010.001
set_component_height-Heatmap-method000
set_component_width-Heatmap-method000
set_name0.0020.0000.002
set_nameAssign0.0060.0000.006
set_size0.0020.0000.002
show-AnnotationFunction-method000
show-ColorMapping-method0.0010.0000.001
show-Heatmap-method000
show-HeatmapAnnotation-method000
show-HeatmapList-method000
show-SingleAnnotation-method0.0010.0000.000
show-dispatch000
size.AnnotationFunction0.0080.0000.008
size.HeatmapAnnotation0.0010.0000.001
size.SingleAnnotation000
sizeAssign.AnnotationFunction0.0040.0000.004
sizeAssign.HeatmapAnnotation000
sizeAssign.SingleAnnotation000
smartAlign20.2260.0040.230
str.comb_mat000
subset_gp000
subset_matrix_by_row000
subset_vector000
summary.Heatmap0.0010.0000.001
summary.HeatmapList000
t.comb_mat0.0000.0050.005
test_alter_fun0.0480.0010.050
unify_mat_list000
upset_right_annotation000
upset_top_annotation0.0010.0000.001
width.AnnotationFunction0.0070.0000.007
width.Heatmap000
width.HeatmapAnnotation000
width.HeatmapList0.0000.0000.001
width.Legends0.0110.0030.014
width.SingleAnnotation000
widthAssign.AnnotationFunction000
widthAssign.HeatmapAnnotation0.0010.0000.001
widthAssign.SingleAnnotation000
widthDetails.annotation_axis000
widthDetails.legend000
widthDetails.legend_body0.0000.0000.001
widthDetails.packed_legends000