Back to Multiple platform build/check report for BioC 3.13 |
|
This page was generated on 2021-10-15 15:05:59 -0400 (Fri, 15 Oct 2021).
To the developers/maintainers of the BufferedMatrix package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 220/2041 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
BufferedMatrix 1.56.0 (landing page) Ben Bolstad
| nebbiolo1 | Linux (Ubuntu 20.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | WARNINGS | OK | |||||||||
Package: BufferedMatrix |
Version: 1.56.0 |
Command: C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:BufferedMatrix.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings BufferedMatrix_1.56.0.tar.gz |
StartedAt: 2021-10-14 20:28:49 -0400 (Thu, 14 Oct 2021) |
EndedAt: 2021-10-14 20:29:59 -0400 (Thu, 14 Oct 2021) |
EllapsedTime: 69.8 seconds |
RetCode: 0 |
Status: OK |
CheckDir: BufferedMatrix.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:BufferedMatrix.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings BufferedMatrix_1.56.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck' * using R version 4.1.1 (2021-08-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'BufferedMatrix/DESCRIPTION' ... OK * this is package 'BufferedMatrix' version '1.56.0' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'BufferedMatrix' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files for i386 is not available Note: information on .o files for x64 is not available File 'C:/Users/biocbuild/bbs-3.13-bioc/R/library/BufferedMatrix/libs/i386/BufferedMatrix.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) File 'C:/Users/biocbuild/bbs-3.13-bioc/R/library/BufferedMatrix/libs/x64/BufferedMatrix.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs. The detected symbols are linked into the code but might come from libraries and not actually be called. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking files in 'vignettes' ... OK * checking examples ... NONE * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'Rcodetesting.R' Running 'c_code_level_tests.R' Running 'objectTesting.R' Running 'rawCalltesting.R' OK ** running tests for arch 'x64' ... Running 'Rcodetesting.R' Running 'c_code_level_tests.R' Running 'objectTesting.R' Running 'rawCalltesting.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/00check.log' for details.
BufferedMatrix.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O http://155.52.207.165/BBS/3.13/bioc/src/contrib/BufferedMatrix_1.56.0.tar.gz && rm -rf BufferedMatrix.buildbin-libdir && mkdir BufferedMatrix.buildbin-libdir && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=BufferedMatrix.buildbin-libdir BufferedMatrix_1.56.0.tar.gz && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL BufferedMatrix_1.56.0.zip && rm BufferedMatrix_1.56.0.tar.gz BufferedMatrix_1.56.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 49 201k 49 100k 0 0 495k 0 --:--:-- --:--:-- --:--:-- 496k 100 201k 100 201k 0 0 839k 0 --:--:-- --:--:-- --:--:-- 840k install for i386 * installing *source* package 'BufferedMatrix' ... ** using staged installation ** libs "C:/rtools40/mingw32/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"c:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c RBufferedMatrix.c -o RBufferedMatrix.o "C:/rtools40/mingw32/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"c:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode': doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses] if (!(Matrix->readonly) & setting){ ^~~~~~~~~~~~~~~~~~~ At top level: doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^~~~~~~~~~~ "C:/rtools40/mingw32/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"c:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o "C:/rtools40/mingw32/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"c:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c init_package.c -o init_package.o C:/rtools40/mingw32/bin/gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -Lc:/extsoft/lib/i386 -Lc:/extsoft/lib -LC:/Users/BIOCBU~1/BBS-3~1.13-/R/bin/i386 -lR installing to C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.buildbin-libdir/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs/i386 ** R ** inst ** byte-compile and prepare package for lazy loading Creating a new generic function for 'rowMeans' in package 'BufferedMatrix' Creating a new generic function for 'rowSums' in package 'BufferedMatrix' Creating a new generic function for 'colMeans' in package 'BufferedMatrix' Creating a new generic function for 'colSums' in package 'BufferedMatrix' Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix' Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix' ** help *** installing help indices converting help for package 'BufferedMatrix' finding HTML links ... done BufferedMatrix-class html as.BufferedMatrix html createBufferedMatrix html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'BufferedMatrix' ... ** libs "C:/rtools40/mingw64/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c RBufferedMatrix.c -o RBufferedMatrix.o "C:/rtools40/mingw64/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode': doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses] if (!(Matrix->readonly) & setting){ ^~~~~~~~~~~~~~~~~~~ At top level: doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^~~~~~~~~~~ "C:/rtools40/mingw64/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o "C:/rtools40/mingw64/bin/"gcc -I"C:/Users/BIOCBU~1/BBS-3~1.13-/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c init_package.c -o init_package.o C:/rtools40/mingw64/bin/gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/extsoft/lib/x64 -LC:/extsoft/lib -LC:/Users/BIOCBU~1/BBS-3~1.13-/R/bin/x64 -lR installing to C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.buildbin-libdir/BufferedMatrix/libs/x64 ** testing if installed package can be loaded * MD5 sums packaged installation of 'BufferedMatrix' as BufferedMatrix_1.56.0.zip * DONE (BufferedMatrix) * installing to library 'C:/Users/biocbuild/bbs-3.13-bioc/R/library' package 'BufferedMatrix' successfully unpacked and MD5 sums checked
BufferedMatrix.Rcheck/tests_i386/c_code_level_tests.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.53 0.10 0.60 |
BufferedMatrix.Rcheck/tests_x64/c_code_level_tests.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.48 0.04 0.51 |
BufferedMatrix.Rcheck/tests_i386/objectTesting.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 436478 13.4 923344 28.2 647471 19.8 Vcells 500011 3.9 8388608 64.0 1649572 12.6 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Thu Oct 14 20:29:23 2021" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Thu Oct 14 20:29:23 2021" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x03f0a410> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Thu Oct 14 20:29:25 2021" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Thu Oct 14 20:29:26 2021" > > ColMode(tmp2) <pointer: 0x03f0a410> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 99.1087361 -0.10937721 0.3130854 1.2211581 [2,] -0.9413282 -1.23707063 0.0258911 -1.6437836 [3,] 1.4679012 -0.07710761 -1.2555935 0.9102179 [4,] -1.1329666 0.65188715 -0.4563682 -0.0258986 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 99.1087361 0.10937721 0.3130854 1.2211581 [2,] 0.9413282 1.23707063 0.0258911 1.6437836 [3,] 1.4679012 0.07710761 1.2555935 0.9102179 [4,] 1.1329666 0.65188715 0.4563682 0.0258986 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 9.9553371 0.3307223 0.5595403 1.1050602 [2,] 0.9702207 1.1122368 0.1609071 1.2821012 [3,] 1.2115697 0.2776826 1.1205327 0.9540534 [4,] 1.0644091 0.8073953 0.6755503 0.1609304 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 223.66211 28.41660 30.90849 37.27176 [2,] 35.64354 37.35944 26.63496 39.46480 [3,] 38.58360 27.85393 37.46092 35.45075 [4,] 36.77706 33.72584 32.21187 26.63520 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x02cf2210> > exp(tmp5) <pointer: 0x02cf2210> > log(tmp5,2) <pointer: 0x02cf2210> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 465.5234 > Min(tmp5) [1] 54.32603 > mean(tmp5) [1] 72.18829 > Sum(tmp5) [1] 14437.66 > Var(tmp5) [1] 845.406 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 89.03465 69.56728 70.45660 69.20637 70.33832 72.49678 72.59108 69.50694 [9] 67.32104 71.36384 > rowSums(tmp5) [1] 1780.693 1391.346 1409.132 1384.127 1406.766 1449.936 1451.822 1390.139 [9] 1346.421 1427.277 > rowVars(tmp5) [1] 7913.27767 64.35818 68.20901 43.67546 77.38962 59.45463 [7] 53.19102 87.46439 38.32446 93.59297 > rowSd(tmp5) [1] 88.956606 8.022355 8.258874 6.608741 8.797137 7.710683 7.293217 [8] 9.352240 6.190675 9.674346 > rowMax(tmp5) [1] 465.52337 82.14080 85.50850 81.31771 86.98667 84.18625 85.02542 [8] 83.06853 76.99740 92.12320 > rowMin(tmp5) [1] 55.90425 54.40341 56.61471 55.43768 54.32603 59.91456 60.29454 55.26136 [9] 56.98548 58.28644 > > colMeans(tmp5) [1] 109.42709 68.03702 66.98526 71.24005 72.44265 68.62411 72.63156 [8] 68.62579 68.66935 69.67981 69.09487 75.09564 67.40236 71.18496 [15] 69.73413 73.15408 70.30146 73.19252 67.49784 70.74523 > colSums(tmp5) [1] 1094.2709 680.3702 669.8526 712.4005 724.4265 686.2411 726.3156 [8] 686.2579 686.6935 696.7981 690.9487 750.9564 674.0236 711.8496 [15] 697.3413 731.5408 703.0146 731.9252 674.9784 707.4523 > colVars(tmp5) [1] 15695.94598 81.93472 70.41065 67.23984 87.30677 34.07494 [7] 90.41093 50.31189 100.58442 29.67757 83.29062 86.03565 [13] 63.91886 99.95291 26.76935 46.66054 82.36871 78.23537 [19] 57.71851 33.56889 > colSd(tmp5) [1] 125.283463 9.051780 8.391105 8.199990 9.343809 5.837375 [7] 9.508466 7.093087 10.029178 5.447712 9.126370 9.275540 [13] 7.994927 9.997645 5.173911 6.830852 9.075721 8.845076 [19] 7.597270 5.793866 > colMax(tmp5) [1] 465.52337 81.17477 78.78928 82.14080 85.02542 79.33717 86.98667 [8] 77.73962 85.50850 77.46001 82.51631 89.09134 82.24562 92.12320 [15] 78.65130 81.87022 82.54317 84.47545 80.30353 79.22618 > colMin(tmp5) [1] 57.82424 55.64806 55.43718 55.43768 55.58788 58.28644 56.94768 56.61471 [9] 58.41574 62.70793 55.26136 60.98963 56.95717 55.90425 63.38267 57.67152 [17] 54.32603 57.30828 54.40341 60.72611 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 89.03465 69.56728 NA 69.20637 70.33832 72.49678 72.59108 69.50694 [9] 67.32104 71.36384 > rowSums(tmp5) [1] 1780.693 1391.346 NA 1384.127 1406.766 1449.936 1451.822 1390.139 [9] 1346.421 1427.277 > rowVars(tmp5) [1] 7913.27767 64.35818 71.35012 43.67546 77.38962 59.45463 [7] 53.19102 87.46439 38.32446 93.59297 > rowSd(tmp5) [1] 88.956606 8.022355 8.446900 6.608741 8.797137 7.710683 7.293217 [8] 9.352240 6.190675 9.674346 > rowMax(tmp5) [1] 465.52337 82.14080 NA 81.31771 86.98667 84.18625 85.02542 [8] 83.06853 76.99740 92.12320 > rowMin(tmp5) [1] 55.90425 54.40341 NA 55.43768 54.32603 59.91456 60.29454 55.26136 [9] 56.98548 58.28644 > > colMeans(tmp5) [1] 109.42709 68.03702 66.98526 NA 72.44265 68.62411 72.63156 [8] 68.62579 68.66935 69.67981 69.09487 75.09564 67.40236 71.18496 [15] 69.73413 73.15408 70.30146 73.19252 67.49784 70.74523 > colSums(tmp5) [1] 1094.2709 680.3702 669.8526 NA 724.4265 686.2411 726.3156 [8] 686.2579 686.6935 696.7981 690.9487 750.9564 674.0236 711.8496 [15] 697.3413 731.5408 703.0146 731.9252 674.9784 707.4523 > colVars(tmp5) [1] 15695.94598 81.93472 70.41065 NA 87.30677 34.07494 [7] 90.41093 50.31189 100.58442 29.67757 83.29062 86.03565 [13] 63.91886 99.95291 26.76935 46.66054 82.36871 78.23537 [19] 57.71851 33.56889 > colSd(tmp5) [1] 125.283463 9.051780 8.391105 NA 9.343809 5.837375 [7] 9.508466 7.093087 10.029178 5.447712 9.126370 9.275540 [13] 7.994927 9.997645 5.173911 6.830852 9.075721 8.845076 [19] 7.597270 5.793866 > colMax(tmp5) [1] 465.52337 81.17477 78.78928 NA 85.02542 79.33717 86.98667 [8] 77.73962 85.50850 77.46001 82.51631 89.09134 82.24562 92.12320 [15] 78.65130 81.87022 82.54317 84.47545 80.30353 79.22618 > colMin(tmp5) [1] 57.82424 55.64806 55.43718 NA 55.58788 58.28644 56.94768 56.61471 [9] 58.41574 62.70793 55.26136 60.98963 56.95717 55.90425 63.38267 57.67152 [17] 54.32603 57.30828 54.40341 60.72611 > > Max(tmp5,na.rm=TRUE) [1] 465.5234 > Min(tmp5,na.rm=TRUE) [1] 54.32603 > mean(tmp5,na.rm=TRUE) [1] 72.18026 > Sum(tmp5,na.rm=TRUE) [1] 14363.87 > Var(tmp5,na.rm=TRUE) [1] 849.6628 > > rowMeans(tmp5,na.rm=TRUE) [1] 89.03465 69.56728 70.28136 69.20637 70.33832 72.49678 72.59108 69.50694 [9] 67.32104 71.36384 > rowSums(tmp5,na.rm=TRUE) [1] 1780.693 1391.346 1335.346 1384.127 1406.766 1449.936 1451.822 1390.139 [9] 1346.421 1427.277 > rowVars(tmp5,na.rm=TRUE) [1] 7913.27767 64.35818 71.35012 43.67546 77.38962 59.45463 [7] 53.19102 87.46439 38.32446 93.59297 > rowSd(tmp5,na.rm=TRUE) [1] 88.956606 8.022355 8.446900 6.608741 8.797137 7.710683 7.293217 [8] 9.352240 6.190675 9.674346 > rowMax(tmp5,na.rm=TRUE) [1] 465.52337 82.14080 85.50850 81.31771 86.98667 84.18625 85.02542 [8] 83.06853 76.99740 92.12320 > rowMin(tmp5,na.rm=TRUE) [1] 55.90425 54.40341 56.61471 55.43768 54.32603 59.91456 60.29454 55.26136 [9] 56.98548 58.28644 > > colMeans(tmp5,na.rm=TRUE) [1] 109.42709 68.03702 66.98526 70.95715 72.44265 68.62411 72.63156 [8] 68.62579 68.66935 69.67981 69.09487 75.09564 67.40236 71.18496 [15] 69.73413 73.15408 70.30146 73.19252 67.49784 70.74523 > colSums(tmp5,na.rm=TRUE) [1] 1094.2709 680.3702 669.8526 638.6144 724.4265 686.2411 726.3156 [8] 686.2579 686.6935 696.7981 690.9487 750.9564 674.0236 711.8496 [15] 697.3413 731.5408 703.0146 731.9252 674.9784 707.4523 > colVars(tmp5,na.rm=TRUE) [1] 15695.94598 81.93472 70.41065 74.74449 87.30677 34.07494 [7] 90.41093 50.31189 100.58442 29.67757 83.29062 86.03565 [13] 63.91886 99.95291 26.76935 46.66054 82.36871 78.23537 [19] 57.71851 33.56889 > colSd(tmp5,na.rm=TRUE) [1] 125.283463 9.051780 8.391105 8.645490 9.343809 5.837375 [7] 9.508466 7.093087 10.029178 5.447712 9.126370 9.275540 [13] 7.994927 9.997645 5.173911 6.830852 9.075721 8.845076 [19] 7.597270 5.793866 > colMax(tmp5,na.rm=TRUE) [1] 465.52337 81.17477 78.78928 82.14080 85.02542 79.33717 86.98667 [8] 77.73962 85.50850 77.46001 82.51631 89.09134 82.24562 92.12320 [15] 78.65130 81.87022 82.54317 84.47545 80.30353 79.22618 > colMin(tmp5,na.rm=TRUE) [1] 57.82424 55.64806 55.43718 55.43768 55.58788 58.28644 56.94768 56.61471 [9] 58.41574 62.70793 55.26136 60.98963 56.95717 55.90425 63.38267 57.67152 [17] 54.32603 57.30828 54.40341 60.72611 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 89.03465 69.56728 NaN 69.20637 70.33832 72.49678 72.59108 69.50694 [9] 67.32104 71.36384 > rowSums(tmp5,na.rm=TRUE) [1] 1780.693 1391.346 0.000 1384.127 1406.766 1449.936 1451.822 1390.139 [9] 1346.421 1427.277 > rowVars(tmp5,na.rm=TRUE) [1] 7913.27767 64.35818 NA 43.67546 77.38962 59.45463 [7] 53.19102 87.46439 38.32446 93.59297 > rowSd(tmp5,na.rm=TRUE) [1] 88.956606 8.022355 NA 6.608741 8.797137 7.710683 7.293217 [8] 9.352240 6.190675 9.674346 > rowMax(tmp5,na.rm=TRUE) [1] 465.52337 82.14080 NA 81.31771 86.98667 84.18625 85.02542 [8] 83.06853 76.99740 92.12320 > rowMin(tmp5,na.rm=TRUE) [1] 55.90425 54.40341 NA 55.43768 54.32603 59.91456 60.29454 55.26136 [9] 56.98548 58.28644 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] 112.66269 69.15510 65.76474 NaN 71.69443 68.86643 72.86327 [8] 69.96036 66.79833 70.45446 70.22283 74.41966 67.54207 72.10702 [15] 70.05362 72.79693 70.32752 72.88318 67.36297 70.72124 > colSums(tmp5,na.rm=TRUE) [1] 1013.9642 622.3959 591.8826 0.0000 645.2499 619.7979 655.7694 [8] 629.6432 601.1850 634.0901 632.0054 669.7769 607.8786 648.9632 [15] 630.4826 655.1724 632.9476 655.9486 606.2667 636.4911 > colVars(tmp5,na.rm=TRUE) [1] 17540.16185 78.11292 62.45304 NA 91.92206 37.67374 [7] 101.10829 36.56391 73.77452 26.63629 79.38887 91.64940 [13] 71.68914 102.88229 28.96716 51.05811 92.65716 86.93827 [19] 64.72869 37.75852 > colSd(tmp5,na.rm=TRUE) [1] 132.439276 8.838152 7.902723 NA 9.587599 6.137894 [7] 10.055262 6.046810 8.589210 5.161036 8.910043 9.573369 [13] 8.466944 10.143091 5.382115 7.145496 9.625859 9.324069 [19] 8.045414 6.144797 > colMax(tmp5,na.rm=TRUE) [1] 465.52337 81.17477 78.78928 -Inf 85.02542 79.33717 86.98667 [8] 77.73962 80.66776 77.46001 82.51631 89.09134 82.24562 92.12320 [15] 78.65130 81.87022 82.54317 84.47545 80.30353 79.22618 > colMin(tmp5,na.rm=TRUE) [1] 57.82424 55.64806 55.43718 Inf 55.58788 58.28644 56.94768 60.69079 [9] 58.41574 63.46254 55.26136 60.98963 56.95717 55.90425 63.38267 57.67152 [17] 54.32603 57.30828 54.40341 60.72611 > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 383.9486 231.7916 254.9219 280.0638 189.6591 248.2555 228.0855 206.0093 [9] 352.3648 117.2050 > apply(copymatrix,1,var,na.rm=TRUE) [1] 383.9486 231.7916 254.9219 280.0638 189.6591 248.2555 228.0855 206.0093 [9] 352.3648 117.2050 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] 1.421085e-14 -1.989520e-13 5.684342e-14 -5.684342e-14 0.000000e+00 [6] -5.684342e-14 5.684342e-14 0.000000e+00 0.000000e+00 -1.278977e-13 [11] 1.705303e-13 7.105427e-14 -8.526513e-14 7.105427e-14 8.526513e-14 [16] -5.684342e-14 8.526513e-14 -1.421085e-13 1.136868e-13 -1.989520e-13 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 6 1 7 17 4 8 2 1 4 3 10 20 1 20 5 17 10 20 6 12 8 19 9 14 5 10 7 11 8 5 9 7 5 7 6 12 6 16 10 7 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 2.336277 > Min(tmp) [1] -2.958178 > mean(tmp) [1] -0.009007844 > Sum(tmp) [1] -0.9007844 > Var(tmp) [1] 1.027373 > > rowMeans(tmp) [1] -0.009007844 > rowSums(tmp) [1] -0.9007844 > rowVars(tmp) [1] 1.027373 > rowSd(tmp) [1] 1.013594 > rowMax(tmp) [1] 2.336277 > rowMin(tmp) [1] -2.958178 > > colMeans(tmp) [1] 0.1962574300 1.1920669790 -0.6626257145 0.4725487948 -1.2186934965 [6] 1.0351393321 -1.8386290182 1.1283327816 0.9171174872 0.5009712930 [11] -0.1216367214 0.0076109558 0.9194434135 1.1648655744 1.6488365642 [16] -2.0188326593 1.1753794373 1.5350202020 0.7206188620 -0.0690453720 [21] -1.3735873397 -0.6100906850 0.3163685051 1.1669670171 0.6075458236 [26] -0.9137106358 1.5442426446 -0.4756454148 0.7268936176 1.9191014641 [31] 0.3194202595 -0.0413341531 0.1495576325 -1.8372268154 0.2980314230 [36] 0.9673386887 -1.5055380480 1.0537238868 -0.8320616003 -0.6348908713 [41] 0.2786741328 0.1939762009 0.9477836638 0.9943109986 2.3362768741 [46] 0.7896215122 0.1793512320 -0.0642937389 -0.8975961164 -1.1015530283 [51] -1.0601079048 1.9600163058 1.5524125812 -0.1397562031 0.6783558681 [56] 1.1732302603 0.5185022325 0.8954781714 0.4128933583 -0.2276166890 [61] -0.1080451197 -2.0702627417 -1.4470852587 -0.1758287422 -2.1123267531 [66] -0.9950771154 -0.7921032117 0.6842536749 0.2093707781 -2.9581778696 [71] -0.0008490057 -0.9679108199 -0.5477978273 -1.6710080925 0.4973721412 [76] -0.8483982251 0.3348772304 -0.2002162622 -0.2851429325 0.0604623107 [81] -0.0515323684 -0.5483314988 -0.1756486187 -0.4221690840 0.2296194998 [86] -1.1845940329 -0.0123354917 0.2792240461 -0.4916246808 0.3286666253 [91] 0.3857465429 0.6739269748 0.3266892462 -0.2322819288 1.2391328976 [96] -1.1092638592 -1.2572362783 -0.5236749871 -1.0077473259 -0.9032675162 > colSums(tmp) [1] 0.1962574300 1.1920669790 -0.6626257145 0.4725487948 -1.2186934965 [6] 1.0351393321 -1.8386290182 1.1283327816 0.9171174872 0.5009712930 [11] -0.1216367214 0.0076109558 0.9194434135 1.1648655744 1.6488365642 [16] -2.0188326593 1.1753794373 1.5350202020 0.7206188620 -0.0690453720 [21] -1.3735873397 -0.6100906850 0.3163685051 1.1669670171 0.6075458236 [26] -0.9137106358 1.5442426446 -0.4756454148 0.7268936176 1.9191014641 [31] 0.3194202595 -0.0413341531 0.1495576325 -1.8372268154 0.2980314230 [36] 0.9673386887 -1.5055380480 1.0537238868 -0.8320616003 -0.6348908713 [41] 0.2786741328 0.1939762009 0.9477836638 0.9943109986 2.3362768741 [46] 0.7896215122 0.1793512320 -0.0642937389 -0.8975961164 -1.1015530283 [51] -1.0601079048 1.9600163058 1.5524125812 -0.1397562031 0.6783558681 [56] 1.1732302603 0.5185022325 0.8954781714 0.4128933583 -0.2276166890 [61] -0.1080451197 -2.0702627417 -1.4470852587 -0.1758287422 -2.1123267531 [66] -0.9950771154 -0.7921032117 0.6842536749 0.2093707781 -2.9581778696 [71] -0.0008490057 -0.9679108199 -0.5477978273 -1.6710080925 0.4973721412 [76] -0.8483982251 0.3348772304 -0.2002162622 -0.2851429325 0.0604623107 [81] -0.0515323684 -0.5483314988 -0.1756486187 -0.4221690840 0.2296194998 [86] -1.1845940329 -0.0123354917 0.2792240461 -0.4916246808 0.3286666253 [91] 0.3857465429 0.6739269748 0.3266892462 -0.2322819288 1.2391328976 [96] -1.1092638592 -1.2572362783 -0.5236749871 -1.0077473259 -0.9032675162 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] 0.1962574300 1.1920669790 -0.6626257145 0.4725487948 -1.2186934965 [6] 1.0351393321 -1.8386290182 1.1283327816 0.9171174872 0.5009712930 [11] -0.1216367214 0.0076109558 0.9194434135 1.1648655744 1.6488365642 [16] -2.0188326593 1.1753794373 1.5350202020 0.7206188620 -0.0690453720 [21] -1.3735873397 -0.6100906850 0.3163685051 1.1669670171 0.6075458236 [26] -0.9137106358 1.5442426446 -0.4756454148 0.7268936176 1.9191014641 [31] 0.3194202595 -0.0413341531 0.1495576325 -1.8372268154 0.2980314230 [36] 0.9673386887 -1.5055380480 1.0537238868 -0.8320616003 -0.6348908713 [41] 0.2786741328 0.1939762009 0.9477836638 0.9943109986 2.3362768741 [46] 0.7896215122 0.1793512320 -0.0642937389 -0.8975961164 -1.1015530283 [51] -1.0601079048 1.9600163058 1.5524125812 -0.1397562031 0.6783558681 [56] 1.1732302603 0.5185022325 0.8954781714 0.4128933583 -0.2276166890 [61] -0.1080451197 -2.0702627417 -1.4470852587 -0.1758287422 -2.1123267531 [66] -0.9950771154 -0.7921032117 0.6842536749 0.2093707781 -2.9581778696 [71] -0.0008490057 -0.9679108199 -0.5477978273 -1.6710080925 0.4973721412 [76] -0.8483982251 0.3348772304 -0.2002162622 -0.2851429325 0.0604623107 [81] -0.0515323684 -0.5483314988 -0.1756486187 -0.4221690840 0.2296194998 [86] -1.1845940329 -0.0123354917 0.2792240461 -0.4916246808 0.3286666253 [91] 0.3857465429 0.6739269748 0.3266892462 -0.2322819288 1.2391328976 [96] -1.1092638592 -1.2572362783 -0.5236749871 -1.0077473259 -0.9032675162 > colMin(tmp) [1] 0.1962574300 1.1920669790 -0.6626257145 0.4725487948 -1.2186934965 [6] 1.0351393321 -1.8386290182 1.1283327816 0.9171174872 0.5009712930 [11] -0.1216367214 0.0076109558 0.9194434135 1.1648655744 1.6488365642 [16] -2.0188326593 1.1753794373 1.5350202020 0.7206188620 -0.0690453720 [21] -1.3735873397 -0.6100906850 0.3163685051 1.1669670171 0.6075458236 [26] -0.9137106358 1.5442426446 -0.4756454148 0.7268936176 1.9191014641 [31] 0.3194202595 -0.0413341531 0.1495576325 -1.8372268154 0.2980314230 [36] 0.9673386887 -1.5055380480 1.0537238868 -0.8320616003 -0.6348908713 [41] 0.2786741328 0.1939762009 0.9477836638 0.9943109986 2.3362768741 [46] 0.7896215122 0.1793512320 -0.0642937389 -0.8975961164 -1.1015530283 [51] -1.0601079048 1.9600163058 1.5524125812 -0.1397562031 0.6783558681 [56] 1.1732302603 0.5185022325 0.8954781714 0.4128933583 -0.2276166890 [61] -0.1080451197 -2.0702627417 -1.4470852587 -0.1758287422 -2.1123267531 [66] -0.9950771154 -0.7921032117 0.6842536749 0.2093707781 -2.9581778696 [71] -0.0008490057 -0.9679108199 -0.5477978273 -1.6710080925 0.4973721412 [76] -0.8483982251 0.3348772304 -0.2002162622 -0.2851429325 0.0604623107 [81] -0.0515323684 -0.5483314988 -0.1756486187 -0.4221690840 0.2296194998 [86] -1.1845940329 -0.0123354917 0.2792240461 -0.4916246808 0.3286666253 [91] 0.3857465429 0.6739269748 0.3266892462 -0.2322819288 1.2391328976 [96] -1.1092638592 -1.2572362783 -0.5236749871 -1.0077473259 -0.9032675162 > colMedians(tmp) [1] 0.1962574300 1.1920669790 -0.6626257145 0.4725487948 -1.2186934965 [6] 1.0351393321 -1.8386290182 1.1283327816 0.9171174872 0.5009712930 [11] -0.1216367214 0.0076109558 0.9194434135 1.1648655744 1.6488365642 [16] -2.0188326593 1.1753794373 1.5350202020 0.7206188620 -0.0690453720 [21] -1.3735873397 -0.6100906850 0.3163685051 1.1669670171 0.6075458236 [26] -0.9137106358 1.5442426446 -0.4756454148 0.7268936176 1.9191014641 [31] 0.3194202595 -0.0413341531 0.1495576325 -1.8372268154 0.2980314230 [36] 0.9673386887 -1.5055380480 1.0537238868 -0.8320616003 -0.6348908713 [41] 0.2786741328 0.1939762009 0.9477836638 0.9943109986 2.3362768741 [46] 0.7896215122 0.1793512320 -0.0642937389 -0.8975961164 -1.1015530283 [51] -1.0601079048 1.9600163058 1.5524125812 -0.1397562031 0.6783558681 [56] 1.1732302603 0.5185022325 0.8954781714 0.4128933583 -0.2276166890 [61] -0.1080451197 -2.0702627417 -1.4470852587 -0.1758287422 -2.1123267531 [66] -0.9950771154 -0.7921032117 0.6842536749 0.2093707781 -2.9581778696 [71] -0.0008490057 -0.9679108199 -0.5477978273 -1.6710080925 0.4973721412 [76] -0.8483982251 0.3348772304 -0.2002162622 -0.2851429325 0.0604623107 [81] -0.0515323684 -0.5483314988 -0.1756486187 -0.4221690840 0.2296194998 [86] -1.1845940329 -0.0123354917 0.2792240461 -0.4916246808 0.3286666253 [91] 0.3857465429 0.6739269748 0.3266892462 -0.2322819288 1.2391328976 [96] -1.1092638592 -1.2572362783 -0.5236749871 -1.0077473259 -0.9032675162 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.1962574 1.192067 -0.6626257 0.4725488 -1.218693 1.035139 -1.838629 [2,] 0.1962574 1.192067 -0.6626257 0.4725488 -1.218693 1.035139 -1.838629 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] 1.128333 0.9171175 0.5009713 -0.1216367 0.007610956 0.9194434 1.164866 [2,] 1.128333 0.9171175 0.5009713 -0.1216367 0.007610956 0.9194434 1.164866 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] 1.648837 -2.018833 1.175379 1.53502 0.7206189 -0.06904537 -1.373587 [2,] 1.648837 -2.018833 1.175379 1.53502 0.7206189 -0.06904537 -1.373587 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] -0.6100907 0.3163685 1.166967 0.6075458 -0.9137106 1.544243 -0.4756454 [2,] -0.6100907 0.3163685 1.166967 0.6075458 -0.9137106 1.544243 -0.4756454 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] 0.7268936 1.919101 0.3194203 -0.04133415 0.1495576 -1.837227 0.2980314 [2,] 0.7268936 1.919101 0.3194203 -0.04133415 0.1495576 -1.837227 0.2980314 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] 0.9673387 -1.505538 1.053724 -0.8320616 -0.6348909 0.2786741 0.1939762 [2,] 0.9673387 -1.505538 1.053724 -0.8320616 -0.6348909 0.2786741 0.1939762 [,43] [,44] [,45] [,46] [,47] [,48] [,49] [1,] 0.9477837 0.994311 2.336277 0.7896215 0.1793512 -0.06429374 -0.8975961 [2,] 0.9477837 0.994311 2.336277 0.7896215 0.1793512 -0.06429374 -0.8975961 [,50] [,51] [,52] [,53] [,54] [,55] [,56] [1,] -1.101553 -1.060108 1.960016 1.552413 -0.1397562 0.6783559 1.17323 [2,] -1.101553 -1.060108 1.960016 1.552413 -0.1397562 0.6783559 1.17323 [,57] [,58] [,59] [,60] [,61] [,62] [,63] [1,] 0.5185022 0.8954782 0.4128934 -0.2276167 -0.1080451 -2.070263 -1.447085 [2,] 0.5185022 0.8954782 0.4128934 -0.2276167 -0.1080451 -2.070263 -1.447085 [,64] [,65] [,66] [,67] [,68] [,69] [,70] [1,] -0.1758287 -2.112327 -0.9950771 -0.7921032 0.6842537 0.2093708 -2.958178 [2,] -0.1758287 -2.112327 -0.9950771 -0.7921032 0.6842537 0.2093708 -2.958178 [,71] [,72] [,73] [,74] [,75] [,76] [1,] -0.0008490057 -0.9679108 -0.5477978 -1.671008 0.4973721 -0.8483982 [2,] -0.0008490057 -0.9679108 -0.5477978 -1.671008 0.4973721 -0.8483982 [,77] [,78] [,79] [,80] [,81] [,82] [1,] 0.3348772 -0.2002163 -0.2851429 0.06046231 -0.05153237 -0.5483315 [2,] 0.3348772 -0.2002163 -0.2851429 0.06046231 -0.05153237 -0.5483315 [,83] [,84] [,85] [,86] [,87] [,88] [,89] [1,] -0.1756486 -0.4221691 0.2296195 -1.184594 -0.01233549 0.279224 -0.4916247 [2,] -0.1756486 -0.4221691 0.2296195 -1.184594 -0.01233549 0.279224 -0.4916247 [,90] [,91] [,92] [,93] [,94] [,95] [,96] [1,] 0.3286666 0.3857465 0.673927 0.3266892 -0.2322819 1.239133 -1.109264 [2,] 0.3286666 0.3857465 0.673927 0.3266892 -0.2322819 1.239133 -1.109264 [,97] [,98] [,99] [,100] [1,] -1.257236 -0.523675 -1.007747 -0.9032675 [2,] -1.257236 -0.523675 -1.007747 -0.9032675 > > > Max(tmp2) [1] 2.902248 > Min(tmp2) [1] -2.932855 > mean(tmp2) [1] 0.01432395 > Sum(tmp2) [1] 1.432395 > Var(tmp2) [1] 0.8339915 > > rowMeans(tmp2) [1] -0.459284838 0.750525928 -0.485726798 -0.386536976 -0.344389267 [6] -1.111621590 0.324256156 -0.415482636 0.289933204 -0.265410830 [11] 0.484150906 -1.388632197 0.234516603 1.462334779 -1.373693345 [16] -1.197282757 -0.519558894 1.904413733 1.164541699 -1.023092992 [21] 0.594696347 -0.986951868 -1.032098706 0.630368631 -0.339409334 [26] -0.592556884 0.382575642 0.677890925 -0.471765007 -0.792215859 [31] -0.295914767 -0.559557500 -0.903640105 -0.576720187 0.538285317 [36] 0.120255548 0.821049648 1.370497254 0.688425661 1.070390390 [41] -0.442931693 -0.218595393 -2.932855265 0.290106856 -0.682577330 [46] 0.216434478 -1.288634127 2.506488333 0.381104961 -0.093695930 [51] -0.636887005 0.973309753 -0.230798966 0.907791412 0.086375163 [56] -0.309180092 -0.478484929 0.887341797 -0.002841889 0.839819508 [61] -0.222806166 -0.320153386 2.902247828 0.601834204 0.368945088 [66] 1.053907794 -0.239431638 0.157214363 -0.854815947 0.689679050 [71] -0.020617979 -0.865371960 -0.235282091 -0.118047091 -1.886420088 [76] -0.327626873 -0.046391142 0.851612203 -0.084339573 -1.107922114 [81] -0.606212637 -1.677679629 1.180292307 -0.357317456 -0.067270528 [86] -0.165960955 0.829958089 -0.589948733 1.023248490 -0.292203181 [91] 0.586122366 0.155865243 0.790850672 -0.874378684 -0.437898380 [96] 0.767319863 -0.596017821 1.136330497 1.997962175 0.574264080 > rowSums(tmp2) [1] -0.459284838 0.750525928 -0.485726798 -0.386536976 -0.344389267 [6] -1.111621590 0.324256156 -0.415482636 0.289933204 -0.265410830 [11] 0.484150906 -1.388632197 0.234516603 1.462334779 -1.373693345 [16] -1.197282757 -0.519558894 1.904413733 1.164541699 -1.023092992 [21] 0.594696347 -0.986951868 -1.032098706 0.630368631 -0.339409334 [26] -0.592556884 0.382575642 0.677890925 -0.471765007 -0.792215859 [31] -0.295914767 -0.559557500 -0.903640105 -0.576720187 0.538285317 [36] 0.120255548 0.821049648 1.370497254 0.688425661 1.070390390 [41] -0.442931693 -0.218595393 -2.932855265 0.290106856 -0.682577330 [46] 0.216434478 -1.288634127 2.506488333 0.381104961 -0.093695930 [51] -0.636887005 0.973309753 -0.230798966 0.907791412 0.086375163 [56] -0.309180092 -0.478484929 0.887341797 -0.002841889 0.839819508 [61] -0.222806166 -0.320153386 2.902247828 0.601834204 0.368945088 [66] 1.053907794 -0.239431638 0.157214363 -0.854815947 0.689679050 [71] -0.020617979 -0.865371960 -0.235282091 -0.118047091 -1.886420088 [76] -0.327626873 -0.046391142 0.851612203 -0.084339573 -1.107922114 [81] -0.606212637 -1.677679629 1.180292307 -0.357317456 -0.067270528 [86] -0.165960955 0.829958089 -0.589948733 1.023248490 -0.292203181 [91] 0.586122366 0.155865243 0.790850672 -0.874378684 -0.437898380 [96] 0.767319863 -0.596017821 1.136330497 1.997962175 0.574264080 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] -0.459284838 0.750525928 -0.485726798 -0.386536976 -0.344389267 [6] -1.111621590 0.324256156 -0.415482636 0.289933204 -0.265410830 [11] 0.484150906 -1.388632197 0.234516603 1.462334779 -1.373693345 [16] -1.197282757 -0.519558894 1.904413733 1.164541699 -1.023092992 [21] 0.594696347 -0.986951868 -1.032098706 0.630368631 -0.339409334 [26] -0.592556884 0.382575642 0.677890925 -0.471765007 -0.792215859 [31] -0.295914767 -0.559557500 -0.903640105 -0.576720187 0.538285317 [36] 0.120255548 0.821049648 1.370497254 0.688425661 1.070390390 [41] -0.442931693 -0.218595393 -2.932855265 0.290106856 -0.682577330 [46] 0.216434478 -1.288634127 2.506488333 0.381104961 -0.093695930 [51] -0.636887005 0.973309753 -0.230798966 0.907791412 0.086375163 [56] -0.309180092 -0.478484929 0.887341797 -0.002841889 0.839819508 [61] -0.222806166 -0.320153386 2.902247828 0.601834204 0.368945088 [66] 1.053907794 -0.239431638 0.157214363 -0.854815947 0.689679050 [71] -0.020617979 -0.865371960 -0.235282091 -0.118047091 -1.886420088 [76] -0.327626873 -0.046391142 0.851612203 -0.084339573 -1.107922114 [81] -0.606212637 -1.677679629 1.180292307 -0.357317456 -0.067270528 [86] -0.165960955 0.829958089 -0.589948733 1.023248490 -0.292203181 [91] 0.586122366 0.155865243 0.790850672 -0.874378684 -0.437898380 [96] 0.767319863 -0.596017821 1.136330497 1.997962175 0.574264080 > rowMin(tmp2) [1] -0.459284838 0.750525928 -0.485726798 -0.386536976 -0.344389267 [6] -1.111621590 0.324256156 -0.415482636 0.289933204 -0.265410830 [11] 0.484150906 -1.388632197 0.234516603 1.462334779 -1.373693345 [16] -1.197282757 -0.519558894 1.904413733 1.164541699 -1.023092992 [21] 0.594696347 -0.986951868 -1.032098706 0.630368631 -0.339409334 [26] -0.592556884 0.382575642 0.677890925 -0.471765007 -0.792215859 [31] -0.295914767 -0.559557500 -0.903640105 -0.576720187 0.538285317 [36] 0.120255548 0.821049648 1.370497254 0.688425661 1.070390390 [41] -0.442931693 -0.218595393 -2.932855265 0.290106856 -0.682577330 [46] 0.216434478 -1.288634127 2.506488333 0.381104961 -0.093695930 [51] -0.636887005 0.973309753 -0.230798966 0.907791412 0.086375163 [56] -0.309180092 -0.478484929 0.887341797 -0.002841889 0.839819508 [61] -0.222806166 -0.320153386 2.902247828 0.601834204 0.368945088 [66] 1.053907794 -0.239431638 0.157214363 -0.854815947 0.689679050 [71] -0.020617979 -0.865371960 -0.235282091 -0.118047091 -1.886420088 [76] -0.327626873 -0.046391142 0.851612203 -0.084339573 -1.107922114 [81] -0.606212637 -1.677679629 1.180292307 -0.357317456 -0.067270528 [86] -0.165960955 0.829958089 -0.589948733 1.023248490 -0.292203181 [91] 0.586122366 0.155865243 0.790850672 -0.874378684 -0.437898380 [96] 0.767319863 -0.596017821 1.136330497 1.997962175 0.574264080 > > colMeans(tmp2) [1] 0.01432395 > colSums(tmp2) [1] 1.432395 > colVars(tmp2) [1] 0.8339915 > colSd(tmp2) [1] 0.9132313 > colMax(tmp2) [1] 2.902248 > colMin(tmp2) [1] -2.932855 > colMedians(tmp2) [1] -0.1058715 > colRanges(tmp2) [,1] [1,] -2.932855 [2,] 2.902248 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] 3.2299792 3.6827812 5.5056680 1.1611501 1.3315201 1.6405146 [7] -2.7579670 6.6151358 -0.7411873 3.9880066 > colApply(tmp,quantile)[,1] [,1] [1,] -1.48421911 [2,] 0.02328631 [3,] 0.46491302 [4,] 1.07636300 [5,] 1.32744728 > > rowApply(tmp,sum) [1] -0.3490820 4.3139793 5.8434829 -0.2264226 1.9022795 4.4617592 [7] 1.4264619 0.5683988 3.0202025 2.6945417 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 10 1 3 10 7 1 4 8 9 5 [2,] 1 10 2 5 3 9 1 10 10 6 [3,] 8 9 9 6 5 3 9 6 5 8 [4,] 2 5 1 8 1 8 8 2 6 9 [5,] 6 3 8 1 8 4 2 7 8 10 [6,] 4 2 5 7 9 10 3 4 2 2 [7,] 7 6 4 3 6 2 5 1 1 4 [8,] 5 8 7 9 10 5 10 5 4 7 [9,] 3 4 6 2 2 7 7 9 3 1 [10,] 9 7 10 4 4 6 6 3 7 3 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] 1.02201548 -2.46824858 -2.23007712 1.84180850 -2.90238755 2.67216635 [7] 2.46200738 -1.23534619 0.08477978 1.55722667 -1.23290789 3.91828661 [13] -1.42866823 3.30271743 -1.68877245 -0.98719889 3.08792067 0.49509653 [19] 1.24588006 -1.76879722 > colApply(tmp,quantile)[,1] [,1] [1,] -0.76693098 [2,] 0.01003249 [3,] 0.16740266 [4,] 0.58709249 [5,] 1.02441883 > > rowApply(tmp,sum) [1] 0.2001266 -0.6684293 8.1066441 -2.0996334 0.2087934 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 5 15 6 11 17 [2,] 8 12 5 2 11 [3,] 20 7 8 1 5 [4,] 9 9 7 15 20 [5,] 10 1 15 4 4 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.76693098 -0.42578203 1.8593907 -0.326451040 -0.3231693 -0.4708931 [2,] 0.58709249 0.36280742 -0.5099476 0.004546392 -1.6933396 1.5991475 [3,] 0.01003249 -0.25779002 0.1223678 0.010252886 1.0133850 -0.5463674 [4,] 0.16740266 -2.20553211 -2.9507026 0.556405785 -1.0483490 0.7842144 [5,] 1.02441883 0.05804816 -0.7511854 1.597054476 -0.8509146 1.3060649 [,7] [,8] [,9] [,10] [,11] [,12] [1,] 0.1502556 1.0239821 0.8737005 0.6702871 -0.9449865 0.46575519 [2,] 0.6447218 -1.6246714 -0.8871998 -0.4650789 1.9532455 0.72652393 [3,] 0.3146337 1.5441658 1.1571466 1.4180498 -1.0816357 2.17342620 [4,] 1.6427027 -0.9600824 0.2368986 1.0583158 -1.4283057 -0.02877397 [5,] -0.2903064 -1.2187403 -1.2957662 -1.1243471 0.2687746 0.58135526 [,13] [,14] [,15] [,16] [,17] [,18] [1,] -0.8253777 1.1508768 -0.4551649 -1.7370523 1.68268481 0.1133482 [2,] -0.8465502 0.4553135 -1.6717449 0.6279475 0.06133148 0.2637922 [3,] -0.9412202 0.4539309 0.6892583 0.7009333 -0.62589482 0.3573949 [4,] 0.8172246 -0.2176170 0.2793858 -0.1449590 1.64989448 0.4580881 [5,] 0.3672553 1.4602133 -0.5305067 -0.4340684 0.31990472 -0.6975268 [,19] [,20] [1,] -0.2434207 -1.2709260 [2,] 0.4574857 -0.7138522 [3,] 1.0320711 0.5625036 [4,] -0.8674083 0.1015639 [5,] 0.8671522 -0.4480865 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 640 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 549 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 0.01497092 -1.214286 -0.8723593 -1.548518 -1.266891 -0.1713348 -0.8634605 col8 col9 col10 col11 col12 col13 col14 row1 0.3550915 0.3209907 0.1305177 -0.09909073 0.2555922 1.44523 1.095108 col15 col16 col17 col18 col19 col20 row1 -0.1737415 0.7698723 -1.322104 1.285581 -0.5441176 0.9972037 > tmp[,"col10"] col10 row1 0.13051773 row2 -0.10392839 row3 0.33515714 row4 -0.05359823 row5 -0.68394873 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 row1 0.01497092 -1.2142862 -0.87235934 -1.548518 -1.2668911 -0.1713348 row5 -0.70203849 0.9649253 0.06186075 1.681426 -0.2724239 0.1283039 col7 col8 col9 col10 col11 col12 col13 row1 -0.8634605 0.35509147 0.3209907 0.1305177 -0.09909073 0.2555922 1.445230 row5 2.2280883 0.07619185 -0.9666862 -0.6839487 -0.12102079 1.2132561 1.075014 col14 col15 col16 col17 col18 col19 col20 row1 1.095108 -0.1737415 0.7698723 -1.322104 1.285581 -0.5441176 0.9972037 row5 -1.087368 -1.2668302 -1.7970715 -1.568385 1.130248 -1.0319130 1.1076554 > tmp[,c("col6","col20")] col6 col20 row1 -0.17133484 0.99720368 row2 -0.52400969 0.09778323 row3 -0.12176634 -0.14612107 row4 0.09576932 0.56287477 row5 0.12830395 1.10765540 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 -0.1713348 0.9972037 row5 0.1283039 1.1076554 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 52.33435 49.79158 49.99019 50.95634 50.43928 104.6309 49.97516 49.21179 col9 col10 col11 col12 col13 col14 col15 col16 row1 48.04458 50.28751 49.5727 49.88763 49.77105 49.14976 50.03553 50.09002 col17 col18 col19 col20 row1 50.2535 50.36756 49.20589 104.8282 > tmp[,"col10"] col10 row1 50.28751 row2 30.24661 row3 28.45761 row4 30.91310 row5 49.61837 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 52.33435 49.79158 49.99019 50.95634 50.43928 104.6309 49.97516 49.21179 row5 50.01853 49.95654 47.97624 50.90571 51.74068 105.8867 50.68276 50.73057 col9 col10 col11 col12 col13 col14 col15 col16 row1 48.04458 50.28751 49.57270 49.88763 49.77105 49.14976 50.03553 50.09002 row5 51.95328 49.61837 49.92034 50.52902 50.65070 52.59777 50.52210 51.32623 col17 col18 col19 col20 row1 50.25350 50.36756 49.20589 104.8282 row5 50.24411 49.79270 49.09441 106.6193 > tmp[,c("col6","col20")] col6 col20 row1 104.63087 104.82820 row2 75.12681 75.65947 row3 74.28947 75.58772 row4 74.77384 76.75751 row5 105.88668 106.61929 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 104.6309 104.8282 row5 105.8867 106.6193 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 104.6309 104.8282 row5 105.8867 106.6193 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] 0.2529571 [2,] 0.6662293 [3,] 0.5788226 [4,] -1.1947176 [5,] 0.9718349 > tmp[,c("col17","col7")] col17 col7 [1,] -2.03525459 0.7783711 [2,] 0.06454483 -1.4831236 [3,] 1.49340682 -0.6614458 [4,] 0.70098600 1.7600674 [5,] -0.02861509 -0.3390379 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] -0.5063740 -0.4758445 [2,] 0.4181958 0.1850712 [3,] 0.5128238 -0.8975972 [4,] 0.7431411 0.6272666 [5,] -0.0216570 -0.7019472 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] -0.506374 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] -0.5063740 [2,] 0.4181958 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row3 -0.1927414 0.6255873 0.6706920 0.04985099 0.1349279 -0.2217587 -1.304488 row1 1.2995952 -1.0561779 0.7019986 0.84591613 -0.4599499 -1.0030122 -0.352546 [,8] [,9] [,10] [,11] [,12] [,13] row3 -0.5411637 -0.7798136 -0.03234898 0.5609988 0.05297872 -0.2584116 row1 0.0627374 -0.4629697 -0.91365450 -0.6531546 -1.94376276 -1.4067876 [,14] [,15] [,16] [,17] [,18] [,19] row3 -1.550110 0.5124765 0.07493072 -0.1958771 0.4348926 1.931056 row1 -1.033714 -0.5426949 -0.42194501 -0.3156500 -1.8859628 -1.212884 [,20] row3 -0.02007186 row1 0.07953666 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row2 0.442303 0.6831472 1.15023 0.05190265 -0.1905737 -0.01316271 0.8297985 [,8] [,9] [,10] row2 0.06369043 -0.3041375 0.2371334 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 0.4500488 -1.466985 0.8803412 -0.7176589 1.062843 -0.2198679 -1.348544 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 -0.2989396 1.462258 -1.082832 -1.366828 -1.648989 0.2144462 1.353907 [,15] [,16] [,17] [,18] [,19] [,20] row5 -0.06089805 0.2500398 -1.717735 -1.946186 -0.577143 -1.00232 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x02edf8b8> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e845ea12f3" [2] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e845e11c91" [3] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e84351e52" [4] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e82a782714" [5] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e861782f73" [6] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e876737d3a" [7] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e837d33f77" [8] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e84f8c4038" [9] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e818c713e" [10] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e86ec9323" [11] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e89802c4" [12] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e8ca316f1" [13] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e8178b8b1" [14] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e8586752a0" [15] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e84305182b" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x020f54f0> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x020f54f0> Warning message: In dir.create(new.directory) : 'C:\Users\biocbuild\bbs-3.13-bioc\meat\BufferedMatrix.Rcheck\tests_i386' already exists > > > RowMode(tmp) <pointer: 0x020f54f0> > rowMedians(tmp) [1] -0.1754725305 0.4462039481 0.3195771408 0.1151937435 0.4769301517 [6] -0.2739067910 0.5325936254 -0.1302364476 0.0130763755 -0.2458427971 [11] 0.6651885630 -0.0388918239 0.2061137942 0.2904596504 -0.4555535840 [16] -0.5538197689 0.3183020297 -0.2261618889 0.1144203295 0.1357338852 [21] -0.0199614024 0.1560818002 -0.1596942769 -0.0624525284 0.5997906375 [26] 0.3891853857 0.0979756300 0.0007678650 -0.2833274840 0.0386625634 [31] -0.3443006016 -0.2898641788 -0.2670218233 0.2079076408 -0.2000286694 [36] -0.4108077622 0.0540642294 0.0987676277 -0.1008097438 0.0983397868 [41] -0.2229167621 -0.0953278317 0.0236605520 0.1614976960 -0.4606988248 [46] 0.0992586114 -0.4790973417 0.1694426581 -0.0812062217 -0.1255330573 [51] -0.3802018694 -0.0033699307 -0.5335065297 0.5398028786 0.1585626655 [56] -0.2506933428 -0.0457420934 -0.4100669443 -0.4203771113 -0.0792502848 [61] 0.4307015161 -0.4569409407 0.2993910081 0.0873487338 0.3369678737 [66] -0.0364263878 -0.0119289667 -0.1305611576 0.3343590179 0.1116285467 [71] 0.2302488819 0.0214384927 -0.1540582047 1.0524259155 -0.4443006427 [76] -0.2415044517 -0.5645626504 -0.0727189661 -0.1007535981 -0.5140419965 [81] -0.4912604545 0.5750969599 0.1929234831 -0.1422835829 0.2695951089 [86] -0.1238194004 -0.1767539672 0.0574558664 -0.0038393728 0.2212246304 [91] 0.1499891878 -0.0695683617 0.3179283379 0.4311469352 -0.0443922008 [96] 0.2759059091 -0.3095211208 0.0012169434 -0.2408482897 0.0721263048 [101] -0.2478998866 -0.1685919370 0.4067268104 -0.0249687790 -0.1894836699 [106] 0.3466987202 0.0884472079 -0.0569655299 -0.4022914906 -0.2462817022 [111] -0.4312890988 -0.6667034590 -0.1671446757 -0.1667974603 -0.3841016507 [116] 0.2224314551 0.3842987172 0.0270173751 -0.0014932053 0.0703443666 [121] -0.0241788047 -0.0350975344 -0.2519983262 -0.0017863380 -0.2510156609 [126] 0.1320767353 0.2026276239 0.4385717146 0.0194364476 0.4103798840 [131] -0.2725922652 0.2210422132 -0.2542664433 -0.0062384869 0.2629350474 [136] -0.0123883522 -0.0525239016 -0.2152046145 -0.1917594574 -0.1716866182 [141] 0.6527775063 0.4387123879 0.0567175415 -0.0001637879 -0.0769683290 [146] 0.3418274321 0.0046281547 0.2726080865 0.2922123977 0.1038506608 [151] 0.1184931288 -0.2800227980 0.3838218961 0.2782947570 -0.0679200395 [156] 0.1265816308 0.3747977365 -0.5557796168 -0.0359621759 -0.1619775044 [161] -0.3429895372 -0.1465726031 0.2192149363 -0.1592980164 0.7114533126 [166] 0.1502485517 0.2001593398 0.1871841193 -0.6022944898 -0.3729151026 [171] 0.1956509526 0.0625388584 -0.3265097158 0.3538311157 0.2280320728 [176] 0.0956619882 -0.2411305318 0.3795005771 0.3124534182 0.1689424204 [181] 0.0833712361 -0.1716322373 -0.2812892199 0.2049856756 0.2315698627 [186] 0.2025784341 -0.5719495616 -0.0470030515 0.0267896496 0.2190747791 [191] -0.1247153912 -0.4719030572 -0.0514710901 -0.0022164894 -0.2360491575 [196] 0.4562876617 -0.1885762826 0.6370976144 0.4136226317 -0.1627103735 [201] 0.3030303301 0.6671490284 0.0590331875 0.1171779199 -0.4793906240 [206] 0.2846547449 0.0051816580 0.6880696369 0.9271778696 -0.4065587066 [211] -0.5371036496 -0.7840938678 0.4562477344 0.2097489525 -0.3277936500 [216] 0.1259377562 0.4080943338 -0.8109666308 0.2044135660 0.3275765436 [221] 0.0432563925 0.3952863644 -0.0999571320 0.1628577679 0.2334299005 [226] 0.5830244003 -0.1484620519 -0.2558180813 -0.0607058570 0.1008066679 > > proc.time() user system elapsed 2.96 7.31 10.43 |
BufferedMatrix.Rcheck/tests_x64/objectTesting.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 436479 23.4 923334 49.4 647497 34.6 Vcells 756611 5.8 8388608 64.0 1965424 15.0 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Thu Oct 14 20:29:35 2021" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Thu Oct 14 20:29:35 2021" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x0000000006f35930> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Thu Oct 14 20:29:38 2021" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Thu Oct 14 20:29:39 2021" > > ColMode(tmp2) <pointer: 0x0000000006f35930> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 99.3521701 1.7624177 -0.03417708 0.08859713 [2,] 1.1037884 0.3835711 1.09301831 -0.47167898 [3,] 0.4157516 0.6276918 0.84952062 1.00201412 [4,] 0.4132148 0.4475044 0.90714960 -1.28449744 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2.1 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 99.3521701 1.7624177 0.03417708 0.08859713 [2,] 1.1037884 0.3835711 1.09301831 0.47167898 [3,] 0.4157516 0.6276918 0.84952062 1.00201412 [4,] 0.4132148 0.4475044 0.90714960 1.28449744 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2.1 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 9.9675559 1.3275608 0.1848705 0.2976527 [2,] 1.0506133 0.6193312 1.0454752 0.6867889 [3,] 0.6447880 0.7922700 0.9216944 1.0010066 [4,] 0.6428179 0.6689577 0.9524440 1.1333567 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2.1 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 224.02773 40.03803 26.88288 28.06512 [2,] 36.60992 31.57688 36.54777 32.33957 [3,] 31.86363 33.55039 35.06646 36.01208 [4,] 31.84139 32.13708 35.43159 37.61806 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x0000000005d2c3e0> > exp(tmp5) <pointer: 0x0000000005d2c3e0> > log(tmp5,2) <pointer: 0x0000000005d2c3e0> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 466.2844 > Min(tmp5) [1] 54.25374 > mean(tmp5) [1] 74.25696 > Sum(tmp5) [1] 14851.39 > Var(tmp5) [1] 853.5459 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 92.88862 69.74604 71.24397 74.73882 70.35783 75.34128 73.68023 73.30303 [9] 69.27298 71.99677 > rowSums(tmp5) [1] 1857.772 1394.921 1424.879 1494.776 1407.157 1506.826 1473.605 1466.061 [9] 1385.460 1439.935 > rowVars(tmp5) [1] 7840.47133 51.31765 47.23450 47.70105 86.75298 111.85684 [7] 94.58806 53.66058 68.62000 90.86451 > rowSd(tmp5) [1] 88.546436 7.163634 6.872736 6.906595 9.314128 10.576239 9.725640 [8] 7.325338 8.283719 9.532288 > rowMax(tmp5) [1] 466.28437 83.30266 83.72946 87.10950 89.27607 88.82243 92.02846 [8] 89.13274 87.16848 86.09795 > rowMin(tmp5) [1] 55.95320 59.53969 58.21794 62.31814 56.91018 54.95793 56.57219 59.48685 [9] 55.59141 54.25374 > > colMeans(tmp5) [1] 110.99564 72.57616 72.59270 73.30479 76.07744 72.36030 72.36060 [8] 67.79001 73.00375 70.03794 73.86896 73.92471 72.21979 72.60164 [15] 71.48541 76.13565 67.05245 72.06188 73.40881 71.28049 > colSums(tmp5) [1] 1109.9564 725.7616 725.9270 733.0479 760.7744 723.6030 723.6060 [8] 677.9001 730.0375 700.3794 738.6896 739.2471 722.1979 726.0164 [15] 714.8541 761.3565 670.5245 720.6188 734.0881 712.8049 > colVars(tmp5) [1] 15644.92473 129.22845 63.80402 39.05753 148.47554 113.85408 [7] 62.44515 41.15421 74.03597 92.88758 62.98265 142.42852 [13] 85.28443 77.80475 25.76666 100.45191 36.84690 87.77347 [19] 72.78221 90.19743 > colSd(tmp5) [1] 125.079674 11.367869 7.987742 6.249603 12.185054 10.670243 [7] 7.902224 6.415155 8.604416 9.637820 7.936161 11.934342 [13] 9.234957 8.820700 5.076087 10.022570 6.070165 9.368750 [19] 8.531249 9.497233 > colMax(tmp5) [1] 466.28437 89.13274 82.27266 79.72361 89.17303 87.16848 83.06541 [8] 78.83099 84.61861 84.53975 83.72946 85.01431 89.04314 84.12729 [15] 82.07156 92.02846 78.08193 89.27607 86.09795 90.63698 > colMin(tmp5) [1] 62.12115 54.25374 55.95320 58.41388 58.38722 54.95793 60.47598 59.67427 [9] 62.08941 57.97166 64.09704 55.59141 58.60633 56.57219 65.91597 60.04672 [17] 58.16787 59.76575 62.31814 62.85152 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 92.88862 69.74604 71.24397 74.73882 70.35783 NA 73.68023 73.30303 [9] 69.27298 71.99677 > rowSums(tmp5) [1] 1857.772 1394.921 1424.879 1494.776 1407.157 NA 1473.605 1466.061 [9] 1385.460 1439.935 > rowVars(tmp5) [1] 7840.47133 51.31765 47.23450 47.70105 86.75298 111.40590 [7] 94.58806 53.66058 68.62000 90.86451 > rowSd(tmp5) [1] 88.546436 7.163634 6.872736 6.906595 9.314128 10.554899 9.725640 [8] 7.325338 8.283719 9.532288 > rowMax(tmp5) [1] 466.28437 83.30266 83.72946 87.10950 89.27607 NA 92.02846 [8] 89.13274 87.16848 86.09795 > rowMin(tmp5) [1] 55.95320 59.53969 58.21794 62.31814 56.91018 NA 56.57219 59.48685 [9] 55.59141 54.25374 > > colMeans(tmp5) [1] 110.99564 72.57616 72.59270 73.30479 76.07744 72.36030 72.36060 [8] 67.79001 73.00375 70.03794 73.86896 73.92471 NA 72.60164 [15] 71.48541 76.13565 67.05245 72.06188 73.40881 71.28049 > colSums(tmp5) [1] 1109.9564 725.7616 725.9270 733.0479 760.7744 723.6030 723.6060 [8] 677.9001 730.0375 700.3794 738.6896 739.2471 NA 726.0164 [15] 714.8541 761.3565 670.5245 720.6188 734.0881 712.8049 > colVars(tmp5) [1] 15644.92473 129.22845 63.80402 39.05753 148.47554 113.85408 [7] 62.44515 41.15421 74.03597 92.88758 62.98265 142.42852 [13] NA 77.80475 25.76666 100.45191 36.84690 87.77347 [19] 72.78221 90.19743 > colSd(tmp5) [1] 125.079674 11.367869 7.987742 6.249603 12.185054 10.670243 [7] 7.902224 6.415155 8.604416 9.637820 7.936161 11.934342 [13] NA 8.820700 5.076087 10.022570 6.070165 9.368750 [19] 8.531249 9.497233 > colMax(tmp5) [1] 466.28437 89.13274 82.27266 79.72361 89.17303 87.16848 83.06541 [8] 78.83099 84.61861 84.53975 83.72946 85.01431 NA 84.12729 [15] 82.07156 92.02846 78.08193 89.27607 86.09795 90.63698 > colMin(tmp5) [1] 62.12115 54.25374 55.95320 58.41388 58.38722 54.95793 60.47598 59.67427 [9] 62.08941 57.97166 64.09704 55.59141 NA 56.57219 65.91597 60.04672 [17] 58.16787 59.76575 62.31814 62.85152 > > Max(tmp5,na.rm=TRUE) [1] 466.2844 > Min(tmp5,na.rm=TRUE) [1] 54.25374 > mean(tmp5,na.rm=TRUE) [1] 74.30516 > Sum(tmp5,na.rm=TRUE) [1] 14786.73 > Var(tmp5,na.rm=TRUE) [1] 857.3898 > > rowMeans(tmp5,na.rm=TRUE) [1] 92.88862 69.74604 71.24397 74.73882 70.35783 75.90317 73.68023 73.30303 [9] 69.27298 71.99677 > rowSums(tmp5,na.rm=TRUE) [1] 1857.772 1394.921 1424.879 1494.776 1407.157 1442.160 1473.605 1466.061 [9] 1385.460 1439.935 > rowVars(tmp5,na.rm=TRUE) [1] 7840.47133 51.31765 47.23450 47.70105 86.75298 111.40590 [7] 94.58806 53.66058 68.62000 90.86451 > rowSd(tmp5,na.rm=TRUE) [1] 88.546436 7.163634 6.872736 6.906595 9.314128 10.554899 9.725640 [8] 7.325338 8.283719 9.532288 > rowMax(tmp5,na.rm=TRUE) [1] 466.28437 83.30266 83.72946 87.10950 89.27607 88.82243 92.02846 [8] 89.13274 87.16848 86.09795 > rowMin(tmp5,na.rm=TRUE) [1] 55.95320 59.53969 58.21794 62.31814 56.91018 54.95793 56.57219 59.48685 [9] 55.59141 54.25374 > > colMeans(tmp5,na.rm=TRUE) [1] 110.99564 72.57616 72.59270 73.30479 76.07744 72.36030 72.36060 [8] 67.79001 73.00375 70.03794 73.86896 73.92471 73.05917 72.60164 [15] 71.48541 76.13565 67.05245 72.06188 73.40881 71.28049 > colSums(tmp5,na.rm=TRUE) [1] 1109.9564 725.7616 725.9270 733.0479 760.7744 723.6030 723.6060 [8] 677.9001 730.0375 700.3794 738.6896 739.2471 657.5325 726.0164 [15] 714.8541 761.3565 670.5245 720.6188 734.0881 712.8049 > colVars(tmp5,na.rm=TRUE) [1] 15644.92473 129.22845 63.80402 39.05753 148.47554 113.85408 [7] 62.44515 41.15421 74.03597 92.88758 62.98265 142.42852 [13] 88.01871 77.80475 25.76666 100.45191 36.84690 87.77347 [19] 72.78221 90.19743 > colSd(tmp5,na.rm=TRUE) [1] 125.079674 11.367869 7.987742 6.249603 12.185054 10.670243 [7] 7.902224 6.415155 8.604416 9.637820 7.936161 11.934342 [13] 9.381829 8.820700 5.076087 10.022570 6.070165 9.368750 [19] 8.531249 9.497233 > colMax(tmp5,na.rm=TRUE) [1] 466.28437 89.13274 82.27266 79.72361 89.17303 87.16848 83.06541 [8] 78.83099 84.61861 84.53975 83.72946 85.01431 89.04314 84.12729 [15] 82.07156 92.02846 78.08193 89.27607 86.09795 90.63698 > colMin(tmp5,na.rm=TRUE) [1] 62.12115 54.25374 55.95320 58.41388 58.38722 54.95793 60.47598 59.67427 [9] 62.08941 57.97166 64.09704 55.59141 58.60633 56.57219 65.91597 60.04672 [17] 58.16787 59.76575 62.31814 62.85152 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 92.88862 69.74604 71.24397 74.73882 70.35783 NaN 73.68023 73.30303 [9] 69.27298 71.99677 > rowSums(tmp5,na.rm=TRUE) [1] 1857.772 1394.921 1424.879 1494.776 1407.157 0.000 1473.605 1466.061 [9] 1385.460 1439.935 > rowVars(tmp5,na.rm=TRUE) [1] 7840.47133 51.31765 47.23450 47.70105 86.75298 NA [7] 94.58806 53.66058 68.62000 90.86451 > rowSd(tmp5,na.rm=TRUE) [1] 88.546436 7.163634 6.872736 6.906595 9.314128 NA 9.725640 [8] 7.325338 8.283719 9.532288 > rowMax(tmp5,na.rm=TRUE) [1] 466.28437 83.30266 83.72946 87.10950 89.27607 NA 92.02846 [8] 89.13274 87.16848 86.09795 > rowMin(tmp5,na.rm=TRUE) [1] 55.95320 59.53969 58.21794 62.31814 56.91018 NA 56.57219 59.48685 [9] 55.59141 54.25374 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] 114.08414 70.77102 71.95530 72.59159 74.72920 74.29389 71.17118 [8] 68.69176 72.20603 68.96356 72.97534 75.68091 NaN 72.54131 [15] 71.21103 75.16252 67.36880 70.88690 72.29065 72.09522 > colSums(tmp5,na.rm=TRUE) [1] 1026.7573 636.9392 647.5977 653.3243 672.5628 668.6450 640.5406 [8] 618.2259 649.8543 620.6720 656.7781 681.1282 0.0000 652.8718 [15] 640.8993 676.4626 606.3192 637.9821 650.6158 648.8570 > colVars(tmp5,na.rm=TRUE) [1] 17493.22845 108.72349 67.20879 38.21733 146.58517 86.02440 [7] 54.33513 37.15052 76.13145 91.51257 61.87168 125.53446 [13] NA 87.48940 28.14056 102.35483 40.32690 83.21389 [19] 67.81419 94.00447 > colSd(tmp5,na.rm=TRUE) [1] 132.261969 10.427056 8.198096 6.182017 12.107236 9.274934 [7] 7.371236 6.095123 8.725334 9.566220 7.865855 11.204216 [13] NA 9.353577 5.304767 10.117056 6.350346 9.122165 [19] 8.234937 9.695590 > colMax(tmp5,na.rm=TRUE) [1] 466.28437 89.13274 82.27266 78.29707 89.17303 87.16848 82.41234 [8] 78.83099 84.61861 84.53975 83.72946 85.01431 -Inf 84.12729 [15] 82.07156 92.02846 78.08193 89.27607 86.09795 90.63698 > colMin(tmp5,na.rm=TRUE) [1] 62.12115 54.25374 55.95320 58.41388 58.38722 56.91018 60.47598 60.89951 [9] 62.08941 57.97166 64.09704 55.59141 Inf 56.57219 65.91597 60.04672 [17] 58.16787 59.76575 62.31814 62.85152 > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 266.1474 317.1682 289.9741 245.0470 177.1730 180.9033 152.1379 169.1083 [9] 247.3449 109.7263 > apply(copymatrix,1,var,na.rm=TRUE) [1] 266.1474 317.1682 289.9741 245.0470 177.1730 180.9033 152.1379 169.1083 [9] 247.3449 109.7263 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] 1.136868e-13 -2.842171e-14 2.842171e-14 5.684342e-14 -1.421085e-13 [6] -4.263256e-14 -5.684342e-14 -2.842171e-14 2.273737e-13 7.105427e-14 [11] 2.273737e-13 2.842171e-14 -2.842171e-14 0.000000e+00 0.000000e+00 [16] -2.842171e-13 -1.136868e-13 5.684342e-14 8.526513e-14 0.000000e+00 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 8 14 1 4 5 2 6 8 6 13 9 10 4 7 3 7 2 15 3 1 5 9 3 6 8 6 9 8 6 4 6 11 5 12 9 17 4 1 6 12 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 2.935196 > Min(tmp) [1] -2.761901 > mean(tmp) [1] -0.0003193774 > Sum(tmp) [1] -0.03193774 > Var(tmp) [1] 0.9581773 > > rowMeans(tmp) [1] -0.0003193774 > rowSums(tmp) [1] -0.03193774 > rowVars(tmp) [1] 0.9581773 > rowSd(tmp) [1] 0.9788653 > rowMax(tmp) [1] 2.935196 > rowMin(tmp) [1] -2.761901 > > colMeans(tmp) [1] -0.76460457 0.41424256 0.32879458 -0.76865459 0.94475511 -0.19948267 [7] 0.83781616 -0.72759284 -0.78856226 0.43228945 1.41455430 0.62987390 [13] -1.22606947 2.93519601 -1.60419323 -1.50090307 -0.17444528 0.25694969 [19] -2.54996422 0.28445645 -0.40462947 0.83495986 -0.68126930 1.59721372 [25] 1.04848501 0.34756835 0.59668468 -1.70263944 0.63634831 1.28694381 [31] 1.00577153 -1.07406715 0.60063178 0.88568399 -1.20771190 -0.56616376 [37] 0.14410873 0.17450771 0.46374293 0.54482889 0.18193629 -0.93558285 [43] 0.02236019 0.66138710 -0.30255664 -1.26011071 -0.64461296 -0.69137058 [49] -0.23376128 0.07667220 1.67208056 1.22441512 -0.68638918 0.86818905 [55] -1.08027436 0.53273430 -0.20914472 0.46878506 -1.60497901 0.62227925 [61] -0.33984403 -1.74606250 -1.05565026 0.10850961 1.73876633 -0.35915162 [67] 0.44490397 -1.00360441 -0.57711983 1.03102873 -0.50375601 -0.29555656 [73] -1.33593879 0.20993162 0.70157062 1.78602391 -0.02615414 0.35475428 [79] -2.76190050 0.03778768 0.50215531 -0.08619014 0.69831461 0.20111161 [85] -0.42676863 0.27737988 0.91898105 1.50035516 0.09724073 0.67397983 [91] -0.07217963 -0.61931543 0.21144609 -1.07461097 -0.01570590 0.82736839 [97] -0.54181547 -1.71963463 -0.60239341 1.42229457 > colSums(tmp) [1] -0.76460457 0.41424256 0.32879458 -0.76865459 0.94475511 -0.19948267 [7] 0.83781616 -0.72759284 -0.78856226 0.43228945 1.41455430 0.62987390 [13] -1.22606947 2.93519601 -1.60419323 -1.50090307 -0.17444528 0.25694969 [19] -2.54996422 0.28445645 -0.40462947 0.83495986 -0.68126930 1.59721372 [25] 1.04848501 0.34756835 0.59668468 -1.70263944 0.63634831 1.28694381 [31] 1.00577153 -1.07406715 0.60063178 0.88568399 -1.20771190 -0.56616376 [37] 0.14410873 0.17450771 0.46374293 0.54482889 0.18193629 -0.93558285 [43] 0.02236019 0.66138710 -0.30255664 -1.26011071 -0.64461296 -0.69137058 [49] -0.23376128 0.07667220 1.67208056 1.22441512 -0.68638918 0.86818905 [55] -1.08027436 0.53273430 -0.20914472 0.46878506 -1.60497901 0.62227925 [61] -0.33984403 -1.74606250 -1.05565026 0.10850961 1.73876633 -0.35915162 [67] 0.44490397 -1.00360441 -0.57711983 1.03102873 -0.50375601 -0.29555656 [73] -1.33593879 0.20993162 0.70157062 1.78602391 -0.02615414 0.35475428 [79] -2.76190050 0.03778768 0.50215531 -0.08619014 0.69831461 0.20111161 [85] -0.42676863 0.27737988 0.91898105 1.50035516 0.09724073 0.67397983 [91] -0.07217963 -0.61931543 0.21144609 -1.07461097 -0.01570590 0.82736839 [97] -0.54181547 -1.71963463 -0.60239341 1.42229457 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] -0.76460457 0.41424256 0.32879458 -0.76865459 0.94475511 -0.19948267 [7] 0.83781616 -0.72759284 -0.78856226 0.43228945 1.41455430 0.62987390 [13] -1.22606947 2.93519601 -1.60419323 -1.50090307 -0.17444528 0.25694969 [19] -2.54996422 0.28445645 -0.40462947 0.83495986 -0.68126930 1.59721372 [25] 1.04848501 0.34756835 0.59668468 -1.70263944 0.63634831 1.28694381 [31] 1.00577153 -1.07406715 0.60063178 0.88568399 -1.20771190 -0.56616376 [37] 0.14410873 0.17450771 0.46374293 0.54482889 0.18193629 -0.93558285 [43] 0.02236019 0.66138710 -0.30255664 -1.26011071 -0.64461296 -0.69137058 [49] -0.23376128 0.07667220 1.67208056 1.22441512 -0.68638918 0.86818905 [55] -1.08027436 0.53273430 -0.20914472 0.46878506 -1.60497901 0.62227925 [61] -0.33984403 -1.74606250 -1.05565026 0.10850961 1.73876633 -0.35915162 [67] 0.44490397 -1.00360441 -0.57711983 1.03102873 -0.50375601 -0.29555656 [73] -1.33593879 0.20993162 0.70157062 1.78602391 -0.02615414 0.35475428 [79] -2.76190050 0.03778768 0.50215531 -0.08619014 0.69831461 0.20111161 [85] -0.42676863 0.27737988 0.91898105 1.50035516 0.09724073 0.67397983 [91] -0.07217963 -0.61931543 0.21144609 -1.07461097 -0.01570590 0.82736839 [97] -0.54181547 -1.71963463 -0.60239341 1.42229457 > colMin(tmp) [1] -0.76460457 0.41424256 0.32879458 -0.76865459 0.94475511 -0.19948267 [7] 0.83781616 -0.72759284 -0.78856226 0.43228945 1.41455430 0.62987390 [13] -1.22606947 2.93519601 -1.60419323 -1.50090307 -0.17444528 0.25694969 [19] -2.54996422 0.28445645 -0.40462947 0.83495986 -0.68126930 1.59721372 [25] 1.04848501 0.34756835 0.59668468 -1.70263944 0.63634831 1.28694381 [31] 1.00577153 -1.07406715 0.60063178 0.88568399 -1.20771190 -0.56616376 [37] 0.14410873 0.17450771 0.46374293 0.54482889 0.18193629 -0.93558285 [43] 0.02236019 0.66138710 -0.30255664 -1.26011071 -0.64461296 -0.69137058 [49] -0.23376128 0.07667220 1.67208056 1.22441512 -0.68638918 0.86818905 [55] -1.08027436 0.53273430 -0.20914472 0.46878506 -1.60497901 0.62227925 [61] -0.33984403 -1.74606250 -1.05565026 0.10850961 1.73876633 -0.35915162 [67] 0.44490397 -1.00360441 -0.57711983 1.03102873 -0.50375601 -0.29555656 [73] -1.33593879 0.20993162 0.70157062 1.78602391 -0.02615414 0.35475428 [79] -2.76190050 0.03778768 0.50215531 -0.08619014 0.69831461 0.20111161 [85] -0.42676863 0.27737988 0.91898105 1.50035516 0.09724073 0.67397983 [91] -0.07217963 -0.61931543 0.21144609 -1.07461097 -0.01570590 0.82736839 [97] -0.54181547 -1.71963463 -0.60239341 1.42229457 > colMedians(tmp) [1] -0.76460457 0.41424256 0.32879458 -0.76865459 0.94475511 -0.19948267 [7] 0.83781616 -0.72759284 -0.78856226 0.43228945 1.41455430 0.62987390 [13] -1.22606947 2.93519601 -1.60419323 -1.50090307 -0.17444528 0.25694969 [19] -2.54996422 0.28445645 -0.40462947 0.83495986 -0.68126930 1.59721372 [25] 1.04848501 0.34756835 0.59668468 -1.70263944 0.63634831 1.28694381 [31] 1.00577153 -1.07406715 0.60063178 0.88568399 -1.20771190 -0.56616376 [37] 0.14410873 0.17450771 0.46374293 0.54482889 0.18193629 -0.93558285 [43] 0.02236019 0.66138710 -0.30255664 -1.26011071 -0.64461296 -0.69137058 [49] -0.23376128 0.07667220 1.67208056 1.22441512 -0.68638918 0.86818905 [55] -1.08027436 0.53273430 -0.20914472 0.46878506 -1.60497901 0.62227925 [61] -0.33984403 -1.74606250 -1.05565026 0.10850961 1.73876633 -0.35915162 [67] 0.44490397 -1.00360441 -0.57711983 1.03102873 -0.50375601 -0.29555656 [73] -1.33593879 0.20993162 0.70157062 1.78602391 -0.02615414 0.35475428 [79] -2.76190050 0.03778768 0.50215531 -0.08619014 0.69831461 0.20111161 [85] -0.42676863 0.27737988 0.91898105 1.50035516 0.09724073 0.67397983 [91] -0.07217963 -0.61931543 0.21144609 -1.07461097 -0.01570590 0.82736839 [97] -0.54181547 -1.71963463 -0.60239341 1.42229457 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] -0.7646046 0.4142426 0.3287946 -0.7686546 0.9447551 -0.1994827 0.8378162 [2,] -0.7646046 0.4142426 0.3287946 -0.7686546 0.9447551 -0.1994827 0.8378162 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] -0.7275928 -0.7885623 0.4322895 1.414554 0.6298739 -1.226069 2.935196 [2,] -0.7275928 -0.7885623 0.4322895 1.414554 0.6298739 -1.226069 2.935196 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] -1.604193 -1.500903 -0.1744453 0.2569497 -2.549964 0.2844565 -0.4046295 [2,] -1.604193 -1.500903 -0.1744453 0.2569497 -2.549964 0.2844565 -0.4046295 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] 0.8349599 -0.6812693 1.597214 1.048485 0.3475684 0.5966847 -1.702639 [2,] 0.8349599 -0.6812693 1.597214 1.048485 0.3475684 0.5966847 -1.702639 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] 0.6363483 1.286944 1.005772 -1.074067 0.6006318 0.885684 -1.207712 [2,] 0.6363483 1.286944 1.005772 -1.074067 0.6006318 0.885684 -1.207712 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] -0.5661638 0.1441087 0.1745077 0.4637429 0.5448289 0.1819363 -0.9355828 [2,] -0.5661638 0.1441087 0.1745077 0.4637429 0.5448289 0.1819363 -0.9355828 [,43] [,44] [,45] [,46] [,47] [,48] [,49] [1,] 0.02236019 0.6613871 -0.3025566 -1.260111 -0.644613 -0.6913706 -0.2337613 [2,] 0.02236019 0.6613871 -0.3025566 -1.260111 -0.644613 -0.6913706 -0.2337613 [,50] [,51] [,52] [,53] [,54] [,55] [,56] [1,] 0.0766722 1.672081 1.224415 -0.6863892 0.8681891 -1.080274 0.5327343 [2,] 0.0766722 1.672081 1.224415 -0.6863892 0.8681891 -1.080274 0.5327343 [,57] [,58] [,59] [,60] [,61] [,62] [,63] [1,] -0.2091447 0.4687851 -1.604979 0.6222793 -0.339844 -1.746063 -1.05565 [2,] -0.2091447 0.4687851 -1.604979 0.6222793 -0.339844 -1.746063 -1.05565 [,64] [,65] [,66] [,67] [,68] [,69] [,70] [1,] 0.1085096 1.738766 -0.3591516 0.444904 -1.003604 -0.5771198 1.031029 [2,] 0.1085096 1.738766 -0.3591516 0.444904 -1.003604 -0.5771198 1.031029 [,71] [,72] [,73] [,74] [,75] [,76] [,77] [1,] -0.503756 -0.2955566 -1.335939 0.2099316 0.7015706 1.786024 -0.02615414 [2,] -0.503756 -0.2955566 -1.335939 0.2099316 0.7015706 1.786024 -0.02615414 [,78] [,79] [,80] [,81] [,82] [,83] [,84] [1,] 0.3547543 -2.761901 0.03778768 0.5021553 -0.08619014 0.6983146 0.2011116 [2,] 0.3547543 -2.761901 0.03778768 0.5021553 -0.08619014 0.6983146 0.2011116 [,85] [,86] [,87] [,88] [,89] [,90] [,91] [1,] -0.4267686 0.2773799 0.918981 1.500355 0.09724073 0.6739798 -0.07217963 [2,] -0.4267686 0.2773799 0.918981 1.500355 0.09724073 0.6739798 -0.07217963 [,92] [,93] [,94] [,95] [,96] [,97] [,98] [1,] -0.6193154 0.2114461 -1.074611 -0.0157059 0.8273684 -0.5418155 -1.719635 [2,] -0.6193154 0.2114461 -1.074611 -0.0157059 0.8273684 -0.5418155 -1.719635 [,99] [,100] [1,] -0.6023934 1.422295 [2,] -0.6023934 1.422295 > > > Max(tmp2) [1] 2.520331 > Min(tmp2) [1] -2.230705 > mean(tmp2) [1] -0.05851101 > Sum(tmp2) [1] -5.851101 > Var(tmp2) [1] 0.9004922 > > rowMeans(tmp2) [1] 0.09339625 0.28401245 -0.90332986 1.09121177 -2.02421763 0.32558882 [7] -0.90201639 -0.73461592 -1.13898431 1.25704351 -1.48576923 0.93730908 [13] 0.38407943 1.20229146 0.04869182 -2.23070469 -1.04019998 0.59307968 [19] -1.17658111 0.10163099 -0.15224948 -0.03701826 -1.29244853 -0.05258691 [25] -0.41620153 -0.80459229 -1.09613754 -1.40198645 -0.61054296 1.02309334 [31] 1.02419540 0.47305545 -0.03078181 -0.85982105 0.22012370 0.70398082 [37] -0.52061240 1.57339705 -1.35482051 -0.89419679 -0.37707181 -0.53533547 [43] -0.26992426 1.06573772 0.71426325 -1.74057715 -0.55798191 0.83283157 [49] -1.54036093 -1.27479051 -0.97826879 0.50566292 1.29980780 0.28722990 [55] -0.29964459 -0.14332847 -0.06777376 -0.02697959 0.96274876 2.52033135 [61] 0.70319415 0.68297590 0.08960544 1.32835137 0.77824532 -0.65310894 [67] 1.80685682 0.92869132 -0.94155945 -2.14730053 -0.54874646 0.90859928 [73] 0.28330663 0.30804615 1.06832648 -1.18093450 0.33706675 0.73866646 [79] -1.15830315 0.65960628 0.57140159 -0.97061536 -0.56178145 1.00821935 [85] -0.77743993 0.69803274 -1.01958045 0.62435718 0.59360792 1.16533126 [91] 0.23760940 0.75948792 -0.10922917 -1.30647908 -0.01480610 0.20694979 [97] -0.60232088 -0.87277057 -0.66660889 0.64160657 > rowSums(tmp2) [1] 0.09339625 0.28401245 -0.90332986 1.09121177 -2.02421763 0.32558882 [7] -0.90201639 -0.73461592 -1.13898431 1.25704351 -1.48576923 0.93730908 [13] 0.38407943 1.20229146 0.04869182 -2.23070469 -1.04019998 0.59307968 [19] -1.17658111 0.10163099 -0.15224948 -0.03701826 -1.29244853 -0.05258691 [25] -0.41620153 -0.80459229 -1.09613754 -1.40198645 -0.61054296 1.02309334 [31] 1.02419540 0.47305545 -0.03078181 -0.85982105 0.22012370 0.70398082 [37] -0.52061240 1.57339705 -1.35482051 -0.89419679 -0.37707181 -0.53533547 [43] -0.26992426 1.06573772 0.71426325 -1.74057715 -0.55798191 0.83283157 [49] -1.54036093 -1.27479051 -0.97826879 0.50566292 1.29980780 0.28722990 [55] -0.29964459 -0.14332847 -0.06777376 -0.02697959 0.96274876 2.52033135 [61] 0.70319415 0.68297590 0.08960544 1.32835137 0.77824532 -0.65310894 [67] 1.80685682 0.92869132 -0.94155945 -2.14730053 -0.54874646 0.90859928 [73] 0.28330663 0.30804615 1.06832648 -1.18093450 0.33706675 0.73866646 [79] -1.15830315 0.65960628 0.57140159 -0.97061536 -0.56178145 1.00821935 [85] -0.77743993 0.69803274 -1.01958045 0.62435718 0.59360792 1.16533126 [91] 0.23760940 0.75948792 -0.10922917 -1.30647908 -0.01480610 0.20694979 [97] -0.60232088 -0.87277057 -0.66660889 0.64160657 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] 0.09339625 0.28401245 -0.90332986 1.09121177 -2.02421763 0.32558882 [7] -0.90201639 -0.73461592 -1.13898431 1.25704351 -1.48576923 0.93730908 [13] 0.38407943 1.20229146 0.04869182 -2.23070469 -1.04019998 0.59307968 [19] -1.17658111 0.10163099 -0.15224948 -0.03701826 -1.29244853 -0.05258691 [25] -0.41620153 -0.80459229 -1.09613754 -1.40198645 -0.61054296 1.02309334 [31] 1.02419540 0.47305545 -0.03078181 -0.85982105 0.22012370 0.70398082 [37] -0.52061240 1.57339705 -1.35482051 -0.89419679 -0.37707181 -0.53533547 [43] -0.26992426 1.06573772 0.71426325 -1.74057715 -0.55798191 0.83283157 [49] -1.54036093 -1.27479051 -0.97826879 0.50566292 1.29980780 0.28722990 [55] -0.29964459 -0.14332847 -0.06777376 -0.02697959 0.96274876 2.52033135 [61] 0.70319415 0.68297590 0.08960544 1.32835137 0.77824532 -0.65310894 [67] 1.80685682 0.92869132 -0.94155945 -2.14730053 -0.54874646 0.90859928 [73] 0.28330663 0.30804615 1.06832648 -1.18093450 0.33706675 0.73866646 [79] -1.15830315 0.65960628 0.57140159 -0.97061536 -0.56178145 1.00821935 [85] -0.77743993 0.69803274 -1.01958045 0.62435718 0.59360792 1.16533126 [91] 0.23760940 0.75948792 -0.10922917 -1.30647908 -0.01480610 0.20694979 [97] -0.60232088 -0.87277057 -0.66660889 0.64160657 > rowMin(tmp2) [1] 0.09339625 0.28401245 -0.90332986 1.09121177 -2.02421763 0.32558882 [7] -0.90201639 -0.73461592 -1.13898431 1.25704351 -1.48576923 0.93730908 [13] 0.38407943 1.20229146 0.04869182 -2.23070469 -1.04019998 0.59307968 [19] -1.17658111 0.10163099 -0.15224948 -0.03701826 -1.29244853 -0.05258691 [25] -0.41620153 -0.80459229 -1.09613754 -1.40198645 -0.61054296 1.02309334 [31] 1.02419540 0.47305545 -0.03078181 -0.85982105 0.22012370 0.70398082 [37] -0.52061240 1.57339705 -1.35482051 -0.89419679 -0.37707181 -0.53533547 [43] -0.26992426 1.06573772 0.71426325 -1.74057715 -0.55798191 0.83283157 [49] -1.54036093 -1.27479051 -0.97826879 0.50566292 1.29980780 0.28722990 [55] -0.29964459 -0.14332847 -0.06777376 -0.02697959 0.96274876 2.52033135 [61] 0.70319415 0.68297590 0.08960544 1.32835137 0.77824532 -0.65310894 [67] 1.80685682 0.92869132 -0.94155945 -2.14730053 -0.54874646 0.90859928 [73] 0.28330663 0.30804615 1.06832648 -1.18093450 0.33706675 0.73866646 [79] -1.15830315 0.65960628 0.57140159 -0.97061536 -0.56178145 1.00821935 [85] -0.77743993 0.69803274 -1.01958045 0.62435718 0.59360792 1.16533126 [91] 0.23760940 0.75948792 -0.10922917 -1.30647908 -0.01480610 0.20694979 [97] -0.60232088 -0.87277057 -0.66660889 0.64160657 > > colMeans(tmp2) [1] -0.05851101 > colSums(tmp2) [1] -5.851101 > colVars(tmp2) [1] 0.9004922 > colSd(tmp2) [1] 0.9489427 > colMax(tmp2) [1] 2.520331 > colMin(tmp2) [1] -2.230705 > colMedians(tmp2) [1] -0.02089285 > colRanges(tmp2) [,1] [1,] -2.230705 [2,] 2.520331 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] 2.57386600 -2.78857284 -0.05046111 1.36853067 3.18798399 0.90512671 [7] 4.68943174 -5.27762065 -3.93726052 -4.21843949 > colApply(tmp,quantile)[,1] [,1] [1,] -0.6474529 [2,] -0.2952567 [3,] 0.1234115 [4,] 0.4724194 [5,] 1.8953911 > > rowApply(tmp,sum) [1] 1.502056 3.632128 -2.283560 -2.289566 2.077098 1.142226 4.114282 [8] -6.293839 0.517435 -5.665677 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 4 7 8 10 4 5 5 6 8 3 [2,] 8 5 3 8 6 1 3 7 2 7 [3,] 10 4 2 6 8 8 9 3 1 8 [4,] 3 8 9 3 10 10 2 1 9 9 [5,] 5 10 6 2 2 9 10 10 10 2 [6,] 1 6 5 9 9 4 7 5 3 10 [7,] 9 9 10 1 7 6 6 9 7 6 [8,] 2 1 1 5 5 2 8 2 5 4 [9,] 7 2 4 7 1 7 1 8 4 5 [10,] 6 3 7 4 3 3 4 4 6 1 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] -0.84197925 0.00783741 0.19496764 0.29335996 2.66708418 -0.17425641 [7] 0.07223587 1.97947817 1.79400210 4.15575779 -0.36476038 -0.78779178 [13] 3.47133556 0.12379482 -1.91690206 5.03412294 -1.00795143 1.96744742 [19] -4.51861260 0.75026175 > colApply(tmp,quantile)[,1] [,1] [1,] -1.11806338 [2,] -0.32969053 [3,] -0.26873607 [4,] 0.08478018 [5,] 0.78973055 > > rowApply(tmp,sum) [1] -1.0920483 8.3345731 -1.2628359 0.7544036 6.1653391 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 2 8 11 16 4 [2,] 3 11 7 13 13 [3,] 1 9 6 19 12 [4,] 11 6 15 17 2 [5,] 13 15 18 5 19 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] -1.11806338 -1.1172151 -2.2102251 -0.17215032 0.001272753 -0.8667937 [2,] 0.08478018 0.4401658 0.2434431 0.01366488 0.811631998 -0.2459704 [3,] -0.26873607 -0.6095722 -0.6109428 0.51221753 1.619432266 -0.5279206 [4,] 0.78973055 0.6535620 2.1885346 0.87564594 -1.053353460 0.7552047 [5,] -0.32969053 0.6408970 0.5841578 -0.93601806 1.288100628 0.7112237 [,7] [,8] [,9] [,10] [,11] [,12] [1,] 0.7858339 -0.4713956 -0.4719794 -1.0164124 1.78641390 0.4010339 [2,] -0.2601756 2.0873562 0.8216987 0.6380212 0.08395761 -0.2373661 [3,] -1.8756777 0.3604177 0.5966284 1.9933156 -0.32880292 -1.0337592 [4,] 0.7737130 -1.1630413 0.1554924 0.1680193 -1.21160334 0.3811632 [5,] 0.6485423 1.1661411 0.6921621 2.3728141 -0.69472563 -0.2988636 [,13] [,14] [,15] [,16] [,17] [,18] [1,] -0.11727274 3.310533120 -0.24852397 -1.0550005 1.3016208 1.0710056 [2,] 0.41336468 -2.340623411 0.70483496 1.7681435 -0.6662174 1.6012640 [3,] 2.25730902 0.006664272 -1.31155876 1.5660172 -0.5805195 -0.7870558 [4,] 0.93535582 -0.963949785 -0.99783601 2.6466905 -1.8834002 -0.3871414 [5,] -0.01742123 0.111170627 -0.06381828 0.1082722 0.8205649 0.4693750 [,19] [,20] [1,] -0.9712130 0.08648286 [2,] 0.5142695 1.85832971 [3,] -2.5926661 0.35237389 [4,] -1.7746898 -0.13369296 [5,] 0.3056868 -1.41323175 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 685 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 591 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 1.219455 -1.699551 0.8115596 2.522122 2.158123 0.2537905 0.1260021 col8 col9 col10 col11 col12 col13 col14 row1 -0.03272168 -2.028571 -0.03722561 1.884112 0.2976319 -0.8645679 -1.886554 col15 col16 col17 col18 col19 col20 row1 0.8706965 0.9295181 -0.6269355 1.693972 -1.1185 1.941626 > tmp[,"col10"] col10 row1 -0.03722561 row2 2.21944201 row3 1.44339461 row4 -0.07621294 row5 0.27111523 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 row1 1.219455 -1.699551 0.8115596 2.5221224 2.158123 0.2537905 0.1260021 row5 -1.381746 -1.257792 2.4088728 -0.3811673 -1.673583 -0.6900219 -1.4236768 col8 col9 col10 col11 col12 col13 row1 -0.03272168 -2.028571 -0.03722561 1.8841122 0.2976319 -0.8645679 row5 -0.88546223 0.388285 0.27111523 0.9717742 1.6184777 -0.2575651 col14 col15 col16 col17 col18 col19 row1 -1.8865540 0.8706965 0.9295181 -0.6269355 1.6939722 -1.1184998 row5 0.4055304 -1.6939956 -1.1452020 -0.9718392 0.4940527 0.3809668 col20 row1 1.94162602 row5 0.05840571 > tmp[,c("col6","col20")] col6 col20 row1 0.2537905 1.94162602 row2 -1.1691951 -1.02739785 row3 0.2490669 0.23712395 row4 1.5975734 0.01397553 row5 -0.6900219 0.05840571 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 0.2537905 1.94162602 row5 -0.6900219 0.05840571 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 50.1547 51.14957 52.37495 48.62488 50.60148 104.6578 48.19236 50.35973 col9 col10 col11 col12 col13 col14 col15 col16 row1 47.98821 48.47707 49.51774 49.94565 49.47144 50.53862 49.57455 51.05475 col17 col18 col19 col20 row1 49.13332 50.32038 52.17425 102.9641 > tmp[,"col10"] col10 row1 48.47707 row2 31.62305 row3 27.93122 row4 29.35670 row5 50.66880 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 50.15470 51.14957 52.37495 48.62488 50.60148 104.6578 48.19236 50.35973 row5 50.26165 51.04387 51.71254 51.91788 51.33966 104.2456 48.66357 50.60696 col9 col10 col11 col12 col13 col14 col15 col16 row1 47.98821 48.47707 49.51774 49.94565 49.47144 50.53862 49.57455 51.05475 row5 51.76556 50.66880 50.69194 50.61556 48.84813 50.03624 48.38273 50.61621 col17 col18 col19 col20 row1 49.13332 50.32038 52.17425 102.9641 row5 49.19351 48.72150 48.63081 104.9494 > tmp[,c("col6","col20")] col6 col20 row1 104.65783 102.96409 row2 73.04280 76.56993 row3 75.11258 73.75526 row4 74.06008 74.20788 row5 104.24561 104.94943 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 104.6578 102.9641 row5 104.2456 104.9494 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 104.6578 102.9641 row5 104.2456 104.9494 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] -0.3805378 [2,] -0.2409139 [3,] -1.3326672 [4,] -0.2602142 [5,] -1.2710049 > tmp[,c("col17","col7")] col17 col7 [1,] 0.1124810 0.1895087 [2,] 0.8478620 -0.2703570 [3,] 1.2189454 -0.5894409 [4,] -0.2673245 -1.3170636 [5,] 0.4938136 -1.0003124 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] 0.6431239 0.2802621 [2,] 1.0253028 0.2857162 [3,] -1.1546607 0.5378846 [4,] 0.5492393 -0.9242754 [5,] 0.2224960 -0.6191770 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] 0.6431239 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] 0.6431239 [2,] 1.0253028 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row3 -1.612654 0.8498280 -0.6472232 -0.4654773 -2.844473 0.06912742 1.0093722 row1 -1.304102 0.4087952 -1.3211966 1.3906285 -0.257615 -0.81852088 0.4031956 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row3 1.959277 2.632377 -0.7466098 1.41950781 0.3572662 0.9391746 0.9169250 row1 2.199745 1.251372 1.2402437 -0.07116192 0.9776682 -0.5984622 0.8989347 [,15] [,16] [,17] [,18] [,19] [,20] row3 0.8425545 0.1897725 -1.2802621 0.3807423 1.4085932 -0.2043043 row1 1.0894719 -1.2909831 0.2976932 -0.4696575 0.4343414 -1.4969689 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row2 0.5432444 -0.2427843 2.913471 1.535998 -0.5143765 0.02843307 -0.7402486 [,8] [,9] [,10] row2 -0.8533027 0.6607227 -0.3415851 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 0.1287483 1.049695 -0.5751243 -0.6905166 -0.6415959 -0.4797008 -2.078052 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 0.9412111 1.288326 1.628679 1.024299 0.4021431 1.188873 1.273444 [,15] [,16] [,17] [,18] [,19] [,20] row5 -0.9119359 1.667223 0.761628 -1.881672 1.297499 0.7857588 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x00000000071af230> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c6b54e16" [2] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c69b7619a" [3] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c14dd11c5" [4] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c4ada247c" [5] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c6dfc3840" [6] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c43c634b0" [7] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c34b65c1f" [8] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c3b412ebb" [9] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c3ad541d" [10] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145cbad2640" [11] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c47ea1127" [12] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c46e754bc" [13] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c43d962b3" [14] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c716e2074" [15] "C:/Users/biocbuild/bbs-3.13-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM145c43955553" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x000000000c889670> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x000000000c889670> Warning message: In dir.create(new.directory) : 'C:\Users\biocbuild\bbs-3.13-bioc\meat\BufferedMatrix.Rcheck\tests_x64' already exists > > > RowMode(tmp) <pointer: 0x000000000c889670> > rowMedians(tmp) [1] 0.107284989 -0.079893188 -0.227818493 0.146550198 -0.078862751 [6] -0.098195458 0.207716164 0.516085869 -0.717504938 0.067895979 [11] 0.003381237 -0.424279738 0.294066203 0.567385848 -0.394028850 [16] 0.189740353 -0.217434954 0.141411562 0.135766237 0.139675090 [21] -0.404903899 -0.390192082 -0.000630674 -0.253543837 0.359872544 [26] -0.273408696 0.053013390 0.382052108 -0.252940740 0.034154760 [31] 0.618702511 0.337549301 -0.298024144 -0.063302005 -0.507636054 [36] -0.206389499 0.288301063 0.055797719 0.536427524 -0.251957202 [41] -0.344957517 0.303457379 0.018838547 -0.138579005 0.325532260 [46] 0.221883359 0.334191887 -0.246739755 -0.249794335 -0.105022977 [51] 0.501936676 0.659517726 0.538686020 0.258772366 0.499373024 [56] -0.147731100 0.864567813 0.021302000 0.096012775 -0.163860351 [61] -0.183877674 0.086113544 0.444078894 -0.016355117 -0.271287764 [66] -0.331997797 -0.182096507 -0.033133156 -0.410945749 -0.107117063 [71] 0.105225671 0.712325117 -0.602873188 0.279836710 -0.134098740 [76] -0.016787943 0.718810423 0.230851841 -0.224752265 0.065610551 [81] -0.507356084 0.125720680 0.232947017 0.448388504 0.092243663 [86] 0.302992761 -0.303681470 -0.069006614 -0.202799496 0.020013558 [91] -0.042189516 0.425509990 0.343235180 0.388609566 -0.115678015 [96] 0.098377093 -0.305884644 0.069202043 -0.389351471 0.080057050 [101] -0.099733465 0.401529274 0.344805154 0.219561963 0.048848914 [106] 0.465905702 -0.424103404 0.131460902 -0.127286967 -0.062501769 [111] 0.205012855 -0.365135309 -0.093791526 0.510634615 0.520116143 [116] -0.071962372 0.029131061 -0.361393282 0.456265437 0.062217220 [121] -0.678886488 -0.363425058 -0.986412080 0.022243923 0.581581880 [126] 0.104343636 0.073801999 0.285063005 -0.405060798 0.314616330 [131] -0.104727957 -0.034741701 0.164096237 0.166251916 0.230197761 [136] -0.479399495 -0.008142733 0.124386091 -0.158074193 -0.017451768 [141] 0.130487069 -0.040572099 0.258383566 0.052063340 -0.015450822 [146] 0.384291820 0.342371921 -0.099749470 -0.134908518 0.058995009 [151] 0.253335180 -0.209771318 -0.199200079 -0.333048860 -0.699093364 [156] 0.245591485 0.534010678 -0.032830239 0.094138301 -0.404630622 [161] 0.426356099 0.458291052 -0.166690176 -0.157992890 -0.083387035 [166] 0.038280374 -0.140648526 -0.408741052 -0.125934241 0.080120906 [171] 0.291013306 0.111167438 0.157878207 -0.175194676 -0.474136651 [176] 0.064035268 0.249505692 0.195700093 -0.364964868 -0.175344842 [181] 0.163600422 -0.071043055 -0.711548669 0.178688187 -0.298129269 [186] -0.028318394 0.349548417 0.221771718 0.441407067 0.020702203 [191] -0.390404134 -0.019803847 -0.070700025 -0.104878244 0.124634528 [196] 0.267766256 -0.234457362 -0.150925269 -0.015500507 -0.576972933 [201] -0.072229675 0.160792105 0.384147961 0.287374666 -0.061056148 [206] -0.045895937 0.266863441 -0.632919031 0.100231791 0.064252946 [211] 0.609480740 -0.006375427 0.155587913 0.049323657 0.230760688 [216] -0.304749180 -0.021351742 0.092621643 0.153097170 0.102269196 [221] 0.018359615 0.091233349 -0.341446314 0.604283248 0.069018085 [226] 0.197310797 0.418441746 -0.552627589 -0.173253631 0.302046885 > > proc.time() user system elapsed 2.59 7.59 10.32 |
BufferedMatrix.Rcheck/tests_i386/rawCalltesting.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02169df8> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02169df8> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02169df8> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x02169df8> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x03f0e648> > .Call("R_bm_AddColumn",P) <pointer: 0x03f0e648> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x03f0e648> > .Call("R_bm_AddColumn",P) <pointer: 0x03f0e648> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x03f0e648> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x03eff940> > .Call("R_bm_AddColumn",P) <pointer: 0x03eff940> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x03eff940> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x03eff940> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x03eff940> > > .Call("R_bm_RowMode",P) <pointer: 0x03eff940> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x03eff940> > > .Call("R_bm_ColMode",P) <pointer: 0x03eff940> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x03eff940> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x024ba568> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x024ba568> > .Call("R_bm_AddColumn",P) <pointer: 0x024ba568> > .Call("R_bm_AddColumn",P) <pointer: 0x024ba568> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile538573274a1" "BufferedMatrixFile53858b766e5" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile538573274a1" "BufferedMatrixFile53858b766e5" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0292ae70> > .Call("R_bm_AddColumn",P) <pointer: 0x0292ae70> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x0292ae70> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x0292ae70> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x0292ae70> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x0292ae70> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x024f64f0> > .Call("R_bm_AddColumn",P) <pointer: 0x024f64f0> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x024f64f0> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x024f64f0> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x01e72b48> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x01e72b48> > rm(P) > > proc.time() user system elapsed 0.59 0.07 0.65 |
BufferedMatrix.Rcheck/tests_x64/rawCalltesting.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006f67940> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006f67940> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006f67940> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006f67940> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x0000000007726ad0> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000007726ad0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000007726ad0> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000007726ad0> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000007726ad0> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006279150> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000006279150> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006279150> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x0000000006279150> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006279150> > > .Call("R_bm_RowMode",P) <pointer: 0x0000000006279150> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006279150> > > .Call("R_bm_ColMode",P) <pointer: 0x0000000006279150> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006279150> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000004d5f888> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x0000000004d5f888> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000004d5f888> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000004d5f888> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile15542dc523fe" "BufferedMatrixFile155477034ff6" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile15542dc523fe" "BufferedMatrixFile155477034ff6" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005dfe4f8> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005dfe4f8> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x0000000005dfe4f8> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x0000000005dfe4f8> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x0000000005dfe4f8> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x0000000005dfe4f8> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x00000000058eecd0> > .Call("R_bm_AddColumn",P) <pointer: 0x00000000058eecd0> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x00000000058eecd0> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x00000000058eecd0> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x00000000063d69e0> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x00000000063d69e0> > rm(P) > > proc.time() user system elapsed 0.57 0.07 0.64 |
BufferedMatrix.Rcheck/tests_i386/Rcodetesting.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.43 0.10 0.53 |
BufferedMatrix.Rcheck/tests_x64/Rcodetesting.Rout R version 4.1.1 (2021-08-10) -- "Kick Things" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.48 0.06 0.53 |