The main function to calculate the quality metrics is sesameQC_calcStats
. This function takes a SigDF, calculates the QC statistics, and returns a single S4 sesameQC
object, which can be printed directly to the console. To calculate QC metrics on a given list of samples or all IDATs in a folder, one can use sesameQC_calcStats
within the standard openSesame
pipeline. When used with openSesame
, a list of sesameQC
s will be returned. Note that one should turn off preprocessing using prep=""
:
## calculate metrics on all IDATs in a specific folder
qcs = openSesame(idat_dir, prep="", func=sesameQC_calcStats)
SeSAMe divides sample quality metrics into multiple groups. These groups are listed below and can be referred to by short keys. For example, “intensity” generates signal intensity-related quality metrics.
Short.Key | Description |
---|---|
detection | Signal Detection |
numProbes | Number of Probes |
intensity | Signal Intensity |
channel | Color Channel |
dyeBias | Dye Bias |
betas | Beta Value |
By default, sesameQC_calcStats
calculates all QC groups. To save time, one can compute a specific QC group by specifying one or multiple short keys in the funs=
argument:
sdfs <- sesameDataGet("EPIC.5.SigDF.normal")[1:2] # get two examples
## only compute signal detection stats
qcs = openSesame(sdfs, prep="", func=sesameQC_calcStats, funs="detection")
qcs[[1]]
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 838020 (num_dt)
## % Detection Success : 96.7 % (frac_dt)
## N. Detection Succ. (after masking) : 838020 (num_dt_mk)
## % Detection Succ. (after masking) : 96.7 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 835491 (num_dt_cg)
## % Detection Success (cg) : 96.7 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2471 (num_dt_ch)
## % Detection Success (ch) : 84.3 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
We consider signal detection the most important QC metric.
One can retrieve the actual stat numbers from sesameQC
using the sesameQC_getStats (the following generates the fraction of probes with detection success):
## [1] 0.9666915
After computing the QCs, one can optionally combine the sesameQC
objects into a data frame for easy comparison.
Note that when the input is an SigDF
object, calling sesameQC_calcStats
within openSesame
and as a standalone function are equivalent.
sdf <- sesameDataGet('EPIC.1.SigDF')
qc = openSesame(sdf, prep="", func=sesameQC_calcStats, funs=c("detection"))
## equivalent direct call
qc = sesameQC_calcStats(sdf, c("detection"))
qc
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 834922 (num_dt)
## % Detection Success : 96.3 % (frac_dt)
## N. Detection Succ. (after masking) : 834922 (num_dt_mk)
## % Detection Succ. (after masking) : 96.3 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 832046 (num_dt_cg)
## % Detection Success (cg) : 96.4 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2616 (num_dt_ch)
## % Detection Success (ch) : 89.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
SeSAMe features comparison of your sample with public data sets. The sesameQC_rankStats()
function ranks the input sesameQC
object with sesameQC
calculated from public datasets. It shows the rank percentage of the input sample as well as the number of datasets compared.
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity) - Rank 15.7% (N=636)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii) - Rank 15.6% (N=636)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn) - Rank 7.5% (N=636)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red) - Rank 21.2% (N=636)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn) - Rank 4.2% (N=636)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red) - Rank 3.6% (N=636)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
SeSAMe provides functions to create QC plots. Some functions takes sesameQC as input while others directly plot the SigDF objects. Here are some examples:
sesameQC_plotBar()
takes a list of sesameQC objects and creates bar plot for each metric calculated.
sesameQC_plotRedGrnQQ()
graphs the dye bias between the two color channels.
sesameQC_plotIntensVsBetas()
plots the relationship between β values and signal intensity and can be used to diagnose artificial readout and influence of signal background.
sesameQC_plotHeatSNPs()
plots SNP probes and can be used to detect sample swaps.
More about quality control plots can be found in Supplemental Vignette.
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggplot2_3.4.4 tibble_3.2.1
## [3] SummarizedExperiment_1.32.0 Biobase_2.62.0
## [5] MatrixGenerics_1.14.0 matrixStats_1.0.0
## [7] knitr_1.44 S4Vectors_0.40.0
## [9] IRanges_2.36.0 GenomicRanges_1.54.0
## [11] sesame_1.20.0 sesameData_1.19.0
## [13] ExperimentHub_2.10.0 AnnotationHub_3.10.0
## [15] BiocFileCache_2.10.0 dbplyr_2.3.4
## [17] BiocGenerics_0.48.0
##
## loaded via a namespace (and not attached):
## [1] DBI_1.1.3 bitops_1.0-7
## [3] rlang_1.1.1 magrittr_2.0.3
## [5] compiler_4.3.1 RSQLite_2.3.1
## [7] png_0.1-8 vctrs_0.6.4
## [9] reshape2_1.4.4 stringr_1.5.0
## [11] pkgconfig_2.0.3 crayon_1.5.2
## [13] fastmap_1.1.1 XVector_0.42.0
## [15] ellipsis_0.3.2 fontawesome_0.5.2
## [17] labeling_0.4.3 utf8_1.2.4
## [19] promises_1.2.1 rmarkdown_2.25
## [21] tzdb_0.4.0 preprocessCore_1.64.0
## [23] purrr_1.0.2 bit_4.0.5
## [25] xfun_0.40 zlibbioc_1.48.0
## [27] cachem_1.0.8 GenomeInfoDb_1.38.0
## [29] jsonlite_1.8.7 blob_1.2.4
## [31] later_1.3.1 DelayedArray_0.28.0
## [33] BiocParallel_1.36.0 interactiveDisplayBase_1.40.0
## [35] parallel_4.3.1 R6_2.5.1
## [37] bslib_0.5.1 stringi_1.7.12
## [39] RColorBrewer_1.1-3 jquerylib_0.1.4
## [41] Rcpp_1.0.11 wheatmap_0.2.0
## [43] readr_2.1.4 httpuv_1.6.12
## [45] Matrix_1.6-1.1 tidyselect_1.2.0
## [47] abind_1.4-5 yaml_2.3.7
## [49] codetools_0.2-19 curl_5.1.0
## [51] lattice_0.22-5 plyr_1.8.9
## [53] shiny_1.7.5.1 withr_2.5.1
## [55] KEGGREST_1.42.0 evaluate_0.22
## [57] Biostrings_2.70.0 pillar_1.9.0
## [59] BiocManager_1.30.22 filelock_1.0.2
## [61] stats4_4.3.1 generics_0.1.3
## [63] RCurl_1.98-1.12 BiocVersion_3.18.0
## [65] hms_1.1.3 munsell_0.5.0
## [67] scales_1.2.1 BiocStyle_2.30.0
## [69] xtable_1.8-4 glue_1.6.2
## [71] tools_4.3.1 grid_4.3.1
## [73] AnnotationDbi_1.64.0 colorspace_2.1-0
## [75] GenomeInfoDbData_1.2.11 cli_3.6.1
## [77] rappdirs_0.3.3 fansi_1.0.5
## [79] S4Arrays_1.2.0 dplyr_1.1.3
## [81] gtable_0.3.4 sass_0.4.7
## [83] digest_0.6.33 SparseArray_1.2.0
## [85] ggrepel_0.9.4 farver_2.1.1
## [87] memoise_2.0.1 htmltools_0.5.6.1
## [89] lifecycle_1.0.3 httr_1.4.7
## [91] mime_0.12 bit64_4.0.5