pyspark.sql.functions.nanvl#
- pyspark.sql.functions.nanvl(col1, col2)[source]#
Returns col1 if it is not NaN, or col2 if col1 is NaN.
Both inputs should be floating point columns (
DoubleType
orFloatType
).New in version 1.6.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- Returns
Column
value from first column or second if first is NaN .
Examples
>>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).collect() [Row(r1=1.0, r2=1.0), Row(r1=2.0, r2=2.0)]