#+date: \today #+latex_class: tiet-question-paper #+latex_class_options: [11pt] #+options: num:nil toc:nil author:nil email:nil #+latex_header_extra: \hypersetup{% #+latex_header_extra: colorlinks,% #+latex_header_extra: breaklinks,% #+latex_header_extra: urlcolor=[rgb]{0,0.35,0.65},% #+latex_header_extra: linkcolor=[rgb]{0,0.35,0.65}% #+latex_header_extra: } #+latex_header_extra: \usepackage{libertinus} #+latex_header_extra: \instlogo{images/tiet-logo.pdf} #+latex_header_extra: \schoolordepartment{% #+latex_header_extra: Computer Science \& Engineering Department} #+latex_header_extra: \examname{End Semester Examination} #+latex_header_extra: \coursecode{UCS505} #+latex_header_extra: \coursename{Computer Graphics} #+latex_header_extra: \timeduration{3 hours} #+latex_header_extra: \maxmarks{45} #+latex_header_extra: \faculty{ANG,AMK,HPS,YDS,RGB} #+latex: \maketitle *Instructions:* 1. Attempt any 5 questions; 2. Attempt all the subparts of a question at one place. #+latex: \bvrhrule\bvrskipline 1. 1. Given the control polygon $\textbf{b}_0, \textbf{b}_1, \textbf{b}_2, \textbf{b}_3$ of a Cubic Bezier curve; determine the vertex coordinates for parameter values $\forall t\in T$. \hfill [7 marks] \begin{align*} T \equiv & \{0, 0.15, 0.35, 0.5, 0.65, 0.85, 1\} \\ \begin{bmatrix} \textbf{b}_0 &\textbf{b}_1& \textbf{b}_2& \textbf{b}_3 \end{bmatrix} \equiv& \begin{bmatrix} 1&2&4&3\\ 1&3&3&1 \end{bmatrix} \end{align*} 2. Explain the role of convex hull in curves. \hfill[2 marks] #+latex: \bvrhrule #+ATTR_LATEX: :options [resume] 1. 1. Describe the continuity conditions for curvilinear geometry. \hfill[5 marks] 2. Define formally, a B-Spline curve. \hfill [2 marks] 3. How is a Bezier curve different from a B-Spline curve? \hfill [2 marks] #+latex: \bvrhrule #+ATTR_LATEX: :options [resume] 1. 1. Given a triangle, with vertices defined by column vectors of $P$; find its vertices after reflection across XZ plane. \hfill [3 marks] \begin{align*} P\equiv &\begin{bmatrix} 3&6&5 \\ 4&4&6 \\ 1&2&3 \end{bmatrix} \end{align*} 2. Given a pyramid with vertices defined by the column vectors of $P$, and an axis of rotation $A$ with direction $\textbf{v}$ and passing through $\textbf{p}$. Find the coordinates of the vertices after rotation about $A$ by an angle of $\theta=\pi/4$.\hfill [6 marks] \begin{align*} P\equiv &\begin{bmatrix} 0&1&0&0 \\ 0&0&1&0 \\0&0&0&1 \end{bmatrix} \\ \begin{bmatrix} \mathbf{v} & \mathbf{p} \end{bmatrix}\equiv &\begin{bmatrix} 0&0 \\1&1\\1&0 \end{bmatrix} \end{align*} #+latex: \bvrhrule #+ATTR_LATEX: :options [resume] 1. 1. Explain the two winding number rules for inside outside tests. \hfill [4 marks] 2. Explain the working principle of a CRT. \hfill [5 marks] #+latex: \bvrhrule #+ATTR_LATEX: :options [resume] 1. 1. Given a projection plane $P$ defined by normal $\textbf{n}$ and a reference point $\textbf{a}$; and the centre of projection as $\mathbf{p}_0$; find the perspective projection of the point $\textbf{x}$ on $P$. \hfill [5 marks] \begin{align*} \begin{bmatrix} \mathbf{a}&\mathbf{n}&\mathbf{p}_0&\mathbf{x} \end{bmatrix}\equiv & \begin{bmatrix} 3&-1&1&8\\4&2&1&10\\5&-1&3&6 \end{bmatrix} \end{align*} 2. Given a geometry $G$, which is a standard unit cube scaled uniformly by half and viewed through a Cavelier projection bearing $\theta=\pi/4$ wrt. $X$ axis. \hfill [2 marks] 3. Given a view coordinate system (VCS) with origin at $\textbf{p}_v$ and euler angles ZYX as $\boldsymbol{\theta}$ wrt. the world coordinate system (WCS); find the location $\mathbf{x}_v$ in VCS, corresponding to $\textbf{x}_w$ in WCS. \hfill [2 marks] \begin{align*} \begin{bmatrix} \mathbf{p}_v & \boldsymbol{\theta} & \mathbf{x}_w \end{bmatrix}\equiv &\begin{bmatrix} 5&\pi/3&10\\5&0&10\\0&0&0 \end{bmatrix} \end{align*} #+latex: \bvrhrule #+ATTR_LATEX: :options [resume] 1. 1. Describe the visible surface detection problem in about 25 words. \hfill [1 mark] 2. To render a scene with $N$ polygons into a display with height $H$; what are the space and time complexities respectively of a typical image-space method. \hfill [2 marks] 3. Given a 3D space bounded within $[0\quad0\quad0]$ and $[7\quad7\quad-7]$, containing two infinite planes each defined by 3 incident points $\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2$ and $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$ respectively bearing colours (RGB) as $\mathbf{c}_a$ and $\textbf{c}_b$ respectively. \begin{align*} \begin{bmatrix} \mathbf{a}_0&\mathbf{a}_1&\mathbf{a}_2 &\mathbf{b}_0&\mathbf{b}_1&\mathbf{b}_2 &\mathbf{c}_a&\mathbf{c}_b \end{bmatrix}\equiv &\begin{bmatrix} 1&6&1&6&1&6&1&0 \\ 1&3&6&6&3&1&0&0 \\ -1&-6&-1&-1&-6&-1&0&1 \end{bmatrix} \end{align*} Compute and/ or determine using the depth-buffer method, the colour at pixel $\mathbf{x}=(2,4)$ on a display resolved into $7\times7$ pixels. The projection plane is at $Z=0$, looking at $-Z$. \hfill [6 marks] #+latex: \bvrhrule # Local Variables: # org-latex-default-packages-alist: nil # org-latex-packages-alist: nil # End: