Package 'wintime'

December 17, 2025

Type Package

Title Win Time Methods for Time-to-Event Data in Clinical Trials

Version 0.4.2

Description

Performs an analysis of time-to-event clinical trial data using various ``win time" methods, including 'ewt', 'ewtr', 'rmt', 'ewtp', 'rewtpr', 'rewtpr', 'max', 'wtr', 'rwtr', 'pwt', and 'rpwt'. These methods are used to calculate and compare

treatment effects on ordered composite endpoints. The package handles event times, event indicators, and treatment

arm indicators and supports calculations on observed and resampled data. Detailed explanations of each method and

usage examples are provided in ``Use of win time for ordered composite endpoints in clinical trials," by Troendle et al.

(2024)https://pubmed.ncbi.nlm.nih.gov/38417455/. For more information, see the package documentation or the vignette titled `Introduction to wintime."

URL https://pubmed.ncbi.nlm.nih.gov/38417455/

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Imports survival

Suggests testthat (>= 3.0.0), knitr, rmarkdown (>= 2.0)

Config/testthat/edition 3

Depends R (>= 3.5.0)

NeedsCompilation no

Author James Troendle [aut, cre],

Samuel Lawrence [aut]

Maintainer James Troendle < james.troendle@nih.gov>

Repository CRAN

Date/Publication 2025-12-17 16:30:02 UTC

2 bootstrap

Contents

	ootstrap	2
	COMP	4
	WT	4
	WTP	5
	WTPR	7
	WTR	9
	etWintimeIntegral	0
	etWintimeIntegral_rest	1
	m	2
	narkov	3
	erm	5
	WT	6
	EWTP	7
	EWTPR	8
	MT	1
	PWT	_
	WTR	•
	etEventTimes	•
	etKM	
	intime	•
	VTR	7
Index	2	9
		-

Description

bootstrap

This function reruns the desired wintime package method on a given number of bootstrap samples. This resampling method is recommended for all pairwise wintime methods including Win time ratio (WTR), Restricted win time ratio (RWTR), Pairwise win time (PWT), and Restricted Pairwise win time (RPWT). This function is also recommended for the EWTR_composite max test (MAX).

Resample using bootstraps

Usage

```
bootstrap(
   type,
   time_restriction,
   model,
   n,
   m,
   Time,
   Delta,
   trt,
   cov,
```

bootstrap 3

```
z_ewtr,
z_comp,
resample_num,
seed,
nimp
)
```

Arguments

type A string value indicating the wintime package method that will run with resam-

pling.

time_restriction

The time cutoff value (days).

model A string value indicating the model used on observed data ('markov' or 'km').

n The total number of trial participants.

m The number of events in the hierarchy.

Time A m x n matrix of event times (days). Rows should represent events and columns

should represent participants. Event rows should be in increasing order of clini-

cal severity.

Delta A m x n matrix of event indicators. Rows should represent events and columns

should represent participants. Event rows should be in increasing order of clini-

cal severity.

trt A numeric vector of treatment arm indicators (1 for treatment, 0 for control).

cov A n x p matrix of covariate values, where p is the number of covariates. Rows

should represent participants and columns should represent covariate values.

z_ewtr The Z-statistic of EWTR.

z_comp The Z-statistic of the composite event approach.

resample_num The number of desired bootstraps.

seed The seed used for random number generation.

nimp The number of random imputations for Redistribution-to-the-right.

Value

A list of a vector of length resample_num containing the calculated treatment effect estimates (for type='max' these are z-statistics) for each bootstrap, a m x resample_num matrix of the components of the treatment effect.

4 EWT

COMP	Run composite analysis	

Description

This function fits a Cox Model to time-to-event data and calculates the z statistic. In the wintime package, this function is used for the EWTR-composite max test (MAX) method.

Usage

```
COMP(n, Time, Delta, cov, trt)
```

Arguments

n	The total number of trial participants.
Time	A m x n matrix of event times (days), where m is the number of events in the hierarchy. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
Delta	A m x n matrix of event indicators, where m is the number of events in the hierarchy. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
COV	A n x p matrix of covariate values, where p is the number of covariates. Rows should represent participants and columns should represent covariate values.
trt	A vector of length n containing treatment arm indicators (1 for treatment, 0 for control).

Value

A list containing: The z-statistic of the treatment effect from the Cox Model fit, the treatment effect estimate, the variance of the treatment effect estimate, the p-value for treatment effect.

EWT	Expected win time	

Description

Calculates the state space probabilities using a Kaplan-Meier model (recommended) or a Markov model. This function uses these probabilities to compare both arms and calculate the expected win time of the treatment arm.

EWTP 5

Usage

```
EWT(
    m,
    dist_state0,
    dist_state1,
    unique_event_times0,
    unique_event_times1,
    nunique_event_times0,
    nunique_event_times1)
```

Arguments

The number of events in the hierarchy.

dist_state0 A matrix of control arm state probabilities (returned from wintime::km() or win-

time::markov()).

dist_state1 A matrix of treatment arm state probabilities (returned from wintime::km() or

wintime::markov()).

unique_event_times0

A vector of unique control arm event times (days) (returned from wintime::km()

or wintime::markov()).

unique_event_times1

A vector of unique treatment arm event times (days) (returned from wintime::km()

or wintime::markov()).

nunique_event_times0

The number of unique control arm event times (returned from wintime::km() or

wintime::markov()).

nunique_event_times1

The number of unique treatment arm event times (returned from wintime::km()

or wintime::markov()).

Value

A list of the expected win time of the treatment arm, the components of the treatment effect.

EWTP

Expected win time against trial population

Description

Calculates the combined arm state space probabilities using a Markov model or a Kaplan-Meier model (recommended). This function uses these probabilities to compare each participant's clinical state to a distribution of combined arm states.

6 EWTP

Usage

```
EWTP(
    n,
    m,
    nunique,
    maxfollow,
    untimes,
    Time,
    Delta,
    dist,
    markov_ind,
    cov,
    trt
)
```

Arguments

n	The total number of trial participants.
m	The number of events in the hierarchy.
nunique	The number of unique combined arm event times (returned from wintime::markov() or wintime:: $km()$).
maxfollow	The max combined arm follow up time (days) (returned from wintime::markov() or wintime::km()).
untimes	A vector containing unique combined arm event times (days) (returned from wintime::markov() or wintime::km()).
Time	A m x n matrix of event times (days). Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.
Delta	A m x n matrix of event indicators Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.
dist	A matrix of combined arm state probabilities (returned from wintime::markov() or wintime::km()).
markov_ind	An indicator of the model type used (1 for Markov, 0 for Kaplan-Meier).
cov	A n x p matrix of covariate values, where p is the number of covariates.
trt	A vector of length n containing treatment arm indicators (1 for treatment, 0 for control).

Value

A list containing: The estimated treatment effect from the linear regression model, the variance, the Z-statistic, the components of the treatment effect, and the variance of the components.

EWTPR 7

EWTPR

Expected win time against trial population With redistribution to the right

Description

Calculates the combined arm state space probabilities using a Markov model or a Kaplan-Meier model (recommended). This function uses these probabilities to compare each participant's clinical state to a distribution of combined arm states. Calculation is extended by redistribution-to-the-right principles

Usage

```
EWTPR(
  n,
 m,
 nunique2,
 maxfollow2,
 untimes2,
 Time,
 Delta,
 dist2,
 markov_ind,
  cov,
  trt,
  comkm,
  trans_prob2,
  nunique1,
 maxfollow1,
  untimes1,
  dist1,
  trtkm,
  trans_prob1,
  nunique0,
 maxfollow0,
  untimes0,
 dist0,
  conkm,
  trans_prob0,
  nimp
)
```

Arguments

n The total number of trial participants.

m The number of events in the hierarchy.

8 EWTPR

nunique2	The number of unique combined arm event times (returned from wintime::markov() or wintime::km()).
maxfollow2	The max combined arm follow up time (days) (returned from wintime::markov() or wintime::km()).
untimes2	A vector containing unique combined arm event times (days) (returned from wintime::markov() or wintime::km()).
Time	A m x n matrix of event times (days). Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.
Delta	A m x n matrix of event indicators Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.
dist2	A matrix of combined arm state probabilities (returned from wintime::markov() or wintime::km()).
markov_ind	An indicator of the model type used (1 for Markov, 0 for Kaplan-Meier).
cov	A n x p matrix of covariate values, where p is the number of covariates.
trt	A vector of length n containing treatment arm indicators (1 for treatment, 0 for control).
comkm	A m x nunique matrix of combined arm survival probabilities (returned from wintime::markov() or wintime::km()).
trans_prob2	A (m x m x number of combined arm event times) matrix where (i,j,k) 'th value is transition probability from state i to state j at k'th combined arm event time. (returned from wintime::markov() or wintime::km()).
nunique1	The number of unique trt arm event times (returned from wintime::markov() or wintime::km()).
maxfollow1	The max trt arm follow up time (days) (returned from wintime::markov() or wintime::km()).
untimes1	A vector containing unique trt arm event times (days) (returned from wintime::markov() or wintime::km()).
dist1	A matrix of trt arm state probabilities (returned from wintime::markov() or wintime::km()).
trtkm	A m x nunique matrix of trt arm survival probabilities (returned from wintime::markov() or wintime::km()).
trans_prob1	A (m x m x number of trt arm event times) matrix where (i,j,k)'th value is transition probability from state i to state j at k'th trt arm event time. (returned from wintime::markov() or wintime::km()).
nunique0	The number of unique control arm event times (returned from wintime::markov() or wintime::km()).
maxfollow0	The max control arm follow up time (days) (returned from wintime::markov() or wintime::km()).
untimes0	A vector containing unique control arm event times (days) (returned from wintime::markov() or wintime::km()).

EWTR 9

dist0 A matrix of control arm state probabilities (returned from wintime::markov() or

wintime::km()).

conkm A m x nunique matrix of control arm survival probabilities (returned from win-

time::markov() or wintime::km()).

trans_prob0 A (m x m x number of control arm event times) matrix where (i,j,k)'th value

is transition probability from state i to state j at k'th control arm event time.

(returned from wintime::markov() or wintime::km()).

nimp The number of random imputations.

Value

A list containing: The estimated treatment effect from the linear regression model, the variance, the Z-statistic, the components of the treatment effect, and the variance of the components.

EWTR

Expected win time against reference

Description

Calculates the control group state space probabilities using a Markov model (recommended) or a Kaplan-Meier model. This function uses these probabilities to compare each participant's clinical state to a distribution of control group states.

Usage

```
EWTR(
    n,
    m,
    nunique,
    maxfollow,
    untimes,
    Time,
    Delta,
    dist,
    markov_ind,
    cov,
    trt
)
```

Arguments

n The total number of trial participants.m The number of events in the hierarchy.

nunique The number of unique control group event times (returned from wintime::markov()

or wintime::km()).

10 getWintimeIntegral

maxfollow	The max control group follow up time (days) (returned from wintime::markov() or wintime::km()).
untimes	A vector containing unique control group event times (days) (returned from wintime::markov() or wintime::km()).
Time	A m x n matrix of event times (days). Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.
Delta	A m x n matrix of event indicators Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.
dist	A matrix of control group state probabilities (returned from wintime::markov() or wintime::km()).
markov_ind	An indicator of the model type used (1 for Markov, 0 for Kaplan-Meier).
cov	A n x p matrix of covariate values, where p is the number of covariates.
trt	A vector of length n containing treatment arm indicators (1 for treatment, 0 for control).

Value

A list containing: The estimated treatment effect from the linear regression model, the variance, the Z-statistic, the components of the treatment effect, and the variance of the components.

getWintimeIntegral	Helper functions for package functions	

Description

Win time difference

Usage

```
getWintimeIntegral(m, etimes, time0, time1, delta0, delta1)
```

Arguments

etimes A sorted vector of event times (days) (returned from wintime::setEventTimes()). time0 A vector containing the control person's event times (days). time1 A vector containing the treatment person's event times (days). delta0 A vector containing the control person's event indicators. delta1 A vector containing the treatment person's event indicators.	m	The number of events in the hierarchy.
time1 A vector containing the treatment person's event times (days). delta0 A vector containing the control person's event indicators.	etimes	$A \ sorted \ vector \ of \ event \ times \ (days) \ (returned \ from \ wintime::setEventTimes()).$
delta0 A vector containing the control person's event indicators.	time0	A vector containing the control person's event times (days).
·	time1	A vector containing the treatment person's event times (days).
delta1 A vector containing the treatment person's event indicators.	delta0	A vector containing the control person's event indicators.
	delta1	A vector containing the treatment person's event indicators.

Details

This function calculates the win time difference integral for a single pair. This function is used in all pairwise win time methods.

Value

A list of the win time difference integral and its components.

```
getWintimeIntegral_rest
```

Win time difference with time restriction

Description

This function calculates the win time difference integral for a single pair with truncation at time_restriction. This function is used in all pairwise win time methods.

Usage

```
getWintimeIntegral_rest(
   m,
   etimes,
   time0,
   time1,
   delta0,
   delta1,
   time_restriction
)
```

Arguments

```
m The number of events in the hierarchy.

etimes A sorted vector of event times (days) (returned from wintime::setEventTimes()).

time0 A vector containing the control person's event times (days).

time1 A vector containing the treatment person's event times (days).

delta0 A vector containing the control person's event indicators.

delta1 A vector containing the treatment person's event indicators.

time_restriction
```

The time restriction (days) for calculation.

Value

A list of the win time difference integral and its components.

12 km

km	Fit a Kaplan-Meier model

Description

This function fits Kaplan-Meier models to calculate the state probabilities for each arm. In the wintime package, the returned state probability distributions are used in all non-pairwise methods. The Kaplan-Meier model is recommended for the Expected win time (EWT) method and the Restricted mean survival in favor of treatment (RMT) method.

Usage

```
km(n0, n1, m, Time, Delta)
```

Arguments

n0	The number of participants in the control arm.
n1	The number of participants in the treatment arm.
m	The number of events in the hierarchy.
Time	A m \times (n0 + n1) matrix of event times (days). Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
Delta	A m x (n0 + n1) matrix of event indicators. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.

Value

A list containing: a matrix of control arm state probabilities, a matrix of treatment arm state probabilities, a vector of unique control arm event times (days), a vector of unique treatment arm event times (days), the number of unique control arm event times, the number of unique treatment arm event times, the control arm max follow time (days), the treatment arm max follow time (days), a matrix of combined arm state probabilities, a vector of unique combined arm event times (days), the number of unique combined arm event times, the combined arm max follow time (days), a (mx number unique combined arm event times) matrix of combined arm km survival probabilities, matrix of trt arm km survival probabilities.

Examples

```
# ------

# Example inputs

# -------

# Event time vectors

TIME_1 <- c(256,44,29,186,29,80,11,380,102,33)

TIME_2 <- c(128,44,95,186,69,66,153,380,117,33)

TIME_3 <- c(435,44,95,186,69,270,1063,380,117,33)
```

markov 13

```
# Event time matrix
Time <- rbind(TIME_1, TIME_2, TIME_3)</pre>
# Event indicator vectors
DELTA_1 <- c(1,0,1,0,1,1,1,0,1,0)
DELTA_2 <- c(1,0,0,0,0,1,1,0,0,0)
DELTA_3 <- c(0,0,0,0,0,0,0,0,0,0)
# Event indicator matrix
Delta <- rbind(DELTA_1, DELTA_2, DELTA_3)</pre>
# Treatment arm indicator vector
trt <- c(1,1,1,1,1,0,0,0,0,0,0)
# Number of control arm patients
n0 <- sum(trt == 0)</pre>
# Number of treatment arm patients
n1 \leftarrow sum(trt == 1)
# Number of events in the hierarchy
m <- nrow(Time)</pre>
# -----
# km Examples
z \leftarrow km(n0, n1, m, Time, Delta)
print(z)
```

markov

Fit a Markov model

Description

This function fits an extended Markov model to calculate the state probabilities for each arm. In the wintime package, the returned state probability distributions are used in all non-pairwise methods. The extended Markov model is recommended for the Expected win time against reference (EWTR) method and the EWTR-composite max test (MAX) method.

Usage

```
markov(n0, n1, m, Time, Delta)
```

Arguments

no The number of participants in the control arm.

n1 The number of participants in the active treatment arm.

14 markov

m The number of events in the hierarchy.

Time A m x (n0 + n1) matrix of event times (days). Rows should represent events

and columns should represent participants. Event rows should be in increasing

order of clinical severity.

Delta A m x (n0 + n1) matrix of event indicators. Rows should represent events and

columns should represent participants. Event rows should be in increasing order

of clinical severity.

Value

A list containing: a matrix of control arm state probabilities, a matrix of treatment arm state probabilities, a vector of unique control arm event times (days), a vector of unique treatment arm event times (days), the number of unique control arm event times, the number of unique treatment arm event times, the control arm max follow time (days), the treatment arm max follow time (days), a matrix of combined arm state probabilities, a vector of unique combined arm event times (days), the number of unique combined arm event times, the combined arm max follow time (days), a (mx mx number of combined arm event times) matrix where (i,j,k)'th value is transition probability from state i to state j at k'th combined arm event time, matrix where (i,j,k)'th value is transition probability from state i to state j at k'th control arm event time.

Examples

```
# Example inputs
# -----
# Event time vectors
TIME_1 \leftarrow c(256,44,29,186,29,80,11,380,102,33)
TIME_2 \leftarrow c(128,44,95,186,69,66,153,380,117,33)
TIME_3 \leftarrow c(435, 44, 95, 186, 69, 270, 1063, 380, 117, 33)
# Event time matrix
Time <- rbind(TIME_1, TIME_2, TIME_3)
# Event indicator vectors
DELTA_1 <- c(1,0,1,0,1,1,1,0,1,0)
DELTA_2 <- c(1,0,0,0,0,1,1,0,0,0)
DELTA_3 <- c(0,0,0,0,0,0,0,0,0,0,0)
# Event indicator matrix
Delta <- rbind(DELTA_1, DELTA_2, DELTA_3)</pre>
# Treatment arm indicator vector
trt <- c(1,1,1,1,1,0,0,0,0,0,0)
# Number of control arm patients
n0 <- sum(trt == 0)
# Number of treatment arm patients
n1 \leftarrow sum(trt == 1)
```

perm 15

```
# Number of events in the hierarchy
m <- nrow(Time)

# ------
# markov Examples
# ------
z <- markov(n0, n1, m, Time, Delta)
print(z)</pre>
```

perm

Resample using permutations

Description

This function reruns the desired wintime package method on a given number of permutations. This resampling method is recommended for the Expected win time (EWT) and Restricted mean survival in favor of treatment (RMT) methods.

Usage

```
perm(
  type,
  time_restriction,
  model,
  n,
  m,
  Time,
  Delta,
  trt,
  cov,
  z_ewtr,
  z_comp,
  resample_num,
  seed,
  nimp
)
```

Arguments

type

A string value indicating the wintime package method that will run with resampling.

time_restriction

The time cutoff value (days).

model

A string value indicating the model used on observed data ('markov' or 'km').

PWT

n	The total number of trial participants.
m	The number of events in the hierarchy.
Time	A m x n matrix of event times (days). Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
Delta	A m x n matrix of event indicators. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
trt	A numeric vector of treatment arm indicators (1 for treatment, 0 for control).
cov	A n x p matrix of covariate values, where p is the number of covariates. Rows should represent participants and columns should represent covariate values.
z_ewtr	The Z-statistic of EWTR.
z_comp	The Z-statistic of the composite event approach.
resample_num	The number of desired permutations.
seed	The seed used for random number generation.
nimp	The number of random imputations for Redistribution-to-the-right.

Value

A list of a vector of length resample_num containing the treatment effect estimates (for type='max' these are z-statistics) for each permutation, a m x resample_num matrix of the components of the treatment effect..

|--|

Description

This function calculates the sum of each pair's win time difference divided by the total number of pairs.

Usage

```
PWT(n, n0, n1, m, Time, Delta, tg, tau)
```

Arguments

n	The total number of trial participants.
n0	The number of control arm patients.
n1	The number of treatment arm patients.
m	The number of events in the hierarchy.
Time	A m x n matrix of event time (days). Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.

REWTP 17

Delta	A m x n matrix of event indicators. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
tg	A numeric vector containing treatment arm indicators (1 for treatment, 0 for control).
tau	The maximum follow up time (days).

Value

The pairwise win time, and the components of the pairwise win time.

REWTP	Expected win time against trial population	

Description

Calculates the combined arm state space probabilities using a Markov model or a Kaplan-Meier model (recommended). This function uses these probabilities to compare each participant's clinical state to a distribution of combined arm states.

Usage

```
REWTP(
    n,
    m,
    nunique,
    maxfollow,
    untimes,
    Time,
    Delta,
    dist,
    markov_ind,
    cov,
    trt,
    time_restriction
)
```

Arguments

n	The total number of trial participants.
m	The number of events in the hierarchy.
nunique	The number of unique combined arm event times (returned from wintime::markov() or wintime::km()).
maxfollow	The max combined arm follow up time (days) (returned from wintime::markov() or wintime::km()).

18 **REWTPR**

untimes	A vector containing unique combined arm event times (days) (returned from wintime::markov() or wintime::km()).	
Time	A m x n matrix of event times (days). Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.	
Delta	A m x n matrix of event indicators Rows should represent events and columns should represent participants. Rows should be in increasing order of clinical severity.	
dist	A matrix of combined arm state probabilities (returned from wintime::markov() or wintime::km()).	
markov_ind	An indicator of the model type used (1 for Markov, 0 for Kaplan-Meier).	
cov	A n x p matrix of covariate values, where p is the number of covariates.	
trt	A vector of length n containing treatment arm indicators (1 for treatment, 0 for control).	
time_restriction		
	The time restriction (days) for calculation.	

Value

A list containing: The estimated treatment effect from the linear regression model, the variance, the Z-statistic, the components of the treatment effect, and the variance of the components.

REWTPR	Time Restricted Expected win time against trial population With redis-
	tribution to the right

Description

Calculates the combined arm state space probabilities using a Markov model or a Kaplan-Meier model (recommended). This function uses these probabilities to compare each participant's clinical state to a distribution of combined arm states. Calculation is extended by redistribution-to-the-right principles and truncated at the user-specified time_restriction (days).

Usage

```
REWTPR(
 n,
 m,
 nunique2,
 maxfollow2,
 untimes2,
 Time,
 Delta,
 dist2,
 markov_ind,
```

REWTPR 19

```
cov,
  trt,
  comkm,
  trans_prob2,
  time_restriction,
  nunique1,
  maxfollow1,
  untimes1,
  dist1,
  trtkm,
  trans_prob1,
  nunique0,
  maxfollow0,
  untimes0,
  dist0,
  conkm,
  trans_prob0,
  nimp
)
```

Arguments

m The number of events in the hierarchy.

nunique2 The number of unique combined arm event times (returned from wintime::markov()

or wintime::km()).

maxfollow2 The max combined arm follow up time (days) (returned from wintime::markov()

or wintime::km()).

untimes2 A vector containing unique combined arm event times (days) (returned from

wintime::markov() or wintime::km()).

Time A m x n matrix of event times (days). Rows should represent events and columns

should represent participants. Rows should be in increasing order of clinical

severity.

Delta A m x n matrix of event indicators Rows should represent events and columns

should represent participants. Rows should be in increasing order of clinical

severity.

dist2 A matrix of combined arm state probabilities (returned from wintime::markov()

or wintime::km()).

markov_ind An indicator of the model type used (1 for Markov, 0 for Kaplan-Meier).

cov A n x p matrix of covariate values, where p is the number of covariates.

trt A vector of length n containing treatment arm indicators (1 for treatment, 0 for

control).

comkm A m x nunique matrix of combined arm survival probabilities (returned from

wintime::markov() or wintime::km()).

20 REWTPR

A (m x m x number of combined arm event times) matrix where (i,j,k)'th value

is transition probability from state i to state j at k'th combined arm event time. (returned from wintime::markov() or wintime::km()). time restriction The time restriction (days) for calculation. The number of unique trt arm event times (returned from wintime::markov() or nunique1 wintime::km()). maxfollow1 The max trt arm follow up time (days) (returned from wintime::markov() or wintime::km()). A vector containing unique trt arm event times (days) (returned from wintime::markov() untimes1 or wintime::km()). dist1 A matrix of trt arm state probabilities (returned from wintime::markov() or wintime::km()). trtkm A m x nunique matrix of trt arm survival probabilities (returned from wintime::markov() or wintime::km()). trans_prob1 A (m x m x number of trt arm event times) matrix where (i,j,k)'th value is transition probability from state i to state j at k'th trt arm event time. (returned from wintime::markov() or wintime::km()). nunique0 The number of unique control arm event times (returned from wintime::markov() or wintime::km()). maxfollow0 The max control arm follow up time (days) (returned from wintime::markov() or wintime::km()). A vector containing unique control arm event times (days) (returned from winuntimes0 time::markov() or wintime::km()).

dist0 A matrix of control arm state probabilities (returned from wintime::markov() or

wintime::km()).

conkm A m x nunique matrix of control arm survival probabilities (returned from win-

time::markov() or wintime::km()).

trans_prob0 A (m x m x number of control arm event times) matrix where (i,j,k)'th value

is transition probability from state i to state j at k'th control arm event time.

(returned from wintime::markov() or wintime::km()).

nimp The number of random imputations.

Value

trans_prob2

A list containing: The estimated treatment effect from the linear regression model, the variance, the Z-statistic, the components of the treatment effect, and the variance of the components.

RMT 21

RMT

Restricted mean survival in favor of treatment

Description

Calculates the state space probabilities using a Kaplan-Meier model (recommended) or a Markov model. This function uses these probabilities to compare both arms and calculate the expected win time of the treatment arm up to a given time point.

Usage

```
RMT(
    m,
    time_restriction,
    dist_state0,
    dist_state1,
    unique_event_times0,
    unique_event_times1,
    nunique_event_times0,
    nunique_event_times1)
```

Arguments

The number of events in the hierarchy.

time_restriction

The cutoff time point (days) for the calculation.

dist_state0 A matrix of control arm state probabilities (returned from wintime::km() or win-

time::markov()).

dist_state1 A matrix of treatment arm state probabilities (returned from wintime::km() or

wintime::markov()).

unique_event_times0

A vector of unique control arm event times (days) (returned from wintime::km()

or wintime::markov()).

unique_event_times1

A vector of unique treatment arm event times (days) (returned from wintime::km()

or wintime::markov()).

nunique_event_times0

The number of unique control arm event times (returned from wintime::km() or wintime::markov()).

nunique_event_times1

The number of unique treatment arm event times (returned from wintime::km() or wintime::markov()).

22 RPWT

Value

A list containing: The restricted mean survival in favor of the treatment arm, the components of the treatment effect.

RPWT	Time Restricted Pairwise win time

Description

This function calculates the sum of each pair's win time difference (truncated at the user-specified time_restriction (days)) divided by the total number of pairs.

Usage

```
RPWT(n, n0, n1, m, Time, Delta, tg, tau, time_restriction)
```

Arguments

n	The total number of trial participants.	
n0	The number of control arm patients.	
n1	The number of treatment arm patients.	
m	The number of events in the hierarchy.	
Time	A m x n matrix of event time (days). Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.	
Delta	A m x n matrix of event indicators. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.	
tg	A numeric vector containing treatment arm indicators (1 for treatment, 0 for control).	
tau	The maximum follow up time (days).	
time_restriction		
	The time restriction (days) for calculation.	

Value

The pairwise win time, and the components of the pairwise win time.

RWTR 23

RWTR	Restricted win time ratio	
------	---------------------------	--

Description

This function calculates the ratio of losses to wins on treatment. It iterates through all pairs of treatment and control patients and uses their time-to-death (or most severe clinical event) to determine a win or loss. If death is inconclusive, then a winner is determined based on wintime.

Usage

```
RWTR(n, m, tau, tg, Time, Delta)
```

Arguments

n	The total number of trial participants.
m	The number of events in the hierarchy.
tau	The maximum follow up time (days).
tg	A numeric vector containing treatment arm indicators (1 for treatment, 0 for control).
Time	A m x n matrix of event times (days), where m is the number of events in the hierarchy, and n is the total number of trial participants. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
Delta	A m x n matrix of event indicators, where m is the number of events in the hierarchy, and n is the total number of trial participants. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.

Value

A list containing: The ratio of losses to wins on treatment, the total number of wins, and the total number of losses.

created a sorted vector of event times
--

Description

This function creates a sorted vector of event times for a pair. This function is used in all pairwise functions.

Usage

```
setEventTimes(m, delta0, delta1, time0, time1, follow)
```

24 setKM

Arguments

m	The number of events in the hierarchy.
delta0	A vector of event indicators for the control person.
delta1	A vector of event indicators for the treatment person.
time0	A vector of event times (days) for the control person.
time1	A vector of event times (days) for the treatment person.
follow	The maximum follow up time (days).

Value

A sorted vector of event times (days) for a given pair.

setKM	Set event times and indicators used in the Kaplan-Meier survival curve calculation
	calculation

Description

This function creates the time_km and delta_km matrices used for wintime::km().

Usage

```
setKM(n, m, time, delta)
```

Arguments

n	The total number of trial participants.
m	The number of events in the hierarchy.
time	The row reversal of the Time matrix (days) (created inside wintime::km()).
delta	The row reversal of the Delta matrix (created inside wintime::km()).

Value

A list containing the event time matrix and the event indicator matrix used in wintime::km().

wintime 25

wintime

Run a win time calculation

Description

This function runs one of the win time methods on observed and resampled data.

Usage

```
wintime(
  type,
  Time,
  Delta,
  trt,
  cov = NULL,
  model = NULL,
  resample = NULL,
  resample_num = 0,
  time_restriction = NA,
  seed = NA,
  nimp = 0
)
```

Arguments

type	A string value indicating the desired win time method. Methods include 'ewt', 'ewtr', 'rmt', 'max', 'wtr', 'rwtr', 'pwt', 'ewtp', 'rewtp', 'ewtpr', 'rewtpr', and 'rpwt'.
Time	A m x n matrix of event times (days), where m is the number of events in the hierarchy, and n is the total number of trial participants. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
Delta	A m \times n matrix of event indicators, where m is the number of events in the hierarchy, and n is the total number of trial participants. Rows should represent events and columns should represent participants. Event rows should be in increasing order of clinical severity.
trt	A numeric vector containing treatment arm indicators (1 for treatment, 0 for control).
cov	Optional. A n x p matrix of covariate values, where n is the total number of trial participants and p is the number of covariates. Rows should represent participants and columns should represent covariate values.
model	Optional. String value. The type of model used to calculate state distributions. Options include 'km' and 'markov'. Default depends on type.
resample	Optional. String value. The resampling method run after the observed data calculation. Options include 'boot' and 'perm'. Default depends on type.

26 wintime

resample_num Optional. The number of desired resamples. Default is 0.

time_restriction

Required only for type = 'rmt','rewtp','rewtpr', and 'rpwt'. The cutoff time (days).

seed Optional. Seed used for random number generation in resampling.

Required only for type = 'ewtpr','rewtpr'. The number of random imputations for Redistribution-to-the-right.

Details

The type parameter specifies the procedure you would like to run. 'ewt' is Expected Win Time. 'ewtr' is Expected Win Time Against Reference (Control Arm). 'rmt' is Restricted Mean Time in Favor of Treatment. 'max' is the MAX procedure (max(COMP,EWTR)). 'wtr' is Win Time Ratio. 'rwtr' is Restricted Win Time Ratio. 'pwt' is Pairwise Win Time. 'ewtp' is Expected Win Time Against Trial Population. 'rewtpr' is Expected Win Time Against Trial Population. 'rewtpr' is Time Restricted Expected Win Time Against Trial Population. 'rpwt' is Time Restricted Expected Win Time Against Trial Population. 'rpwt' is Time Restricted Pairwise Win Time.

Value

A list containing: the observed treatment effect, a vector of length resample_num containing resampled treatment effects, a message indicating the method ran and the type of resampling done, the variance, the p-value (one-sided for treatment benefit), the total wins on treatment (pairwise methods only), the total losses on treatment (pairwise methods only), a vector of length 'm' with the components of the treatment effect, a vector of length 'm' with the variance of the components. A warning message will be printed for combinations of type and model/resample that are not recommended.

Examples

```
# Example Inputs
# ------
# Event time vectors

TIME_1 <- c(256,44,29,186,29,80,11,380,102,33)

TIME_2 <- c(128,44,95,186,69,66,153,380,117,33)

TIME_3 <- c(435,44,95,186,69,270,1063,380,117,33)

# Event time matrix

Time <- rbind(TIME_1, TIME_2, TIME_3)

# Event indicator vectors

DELTA_1 <- c(1,0,1,0,1,1,1,0,1,0)

DELTA_2 <- c(1,0,0,0,0,1,1,0,0,0)

DELTA_3 <- c(0,0,0,0,0,0,0,0,0)

# Event indicator matrix

Delta <- rbind(DELTA_1, DELTA_2, DELTA_3)
```

WTR 27

```
# Treatment arm indicator vector
trt <- c(1,1,1,1,1,0,0,0,0,0,0)
# Covariate vectors
cov1 <- c(54,53,55,61,73,65,63,63,82,58,66,66)
cov2 <- c(34.4,32.1,34.7,54.1,55.7,43.6,32.1,44.8,85.2,12.5,33.4,21.4)
# Covariate vectors
cov1 <- c(66,67,54,68,77,65,55,66,77,54)
cov2 \leftarrow c(3,6,4,2,3,5,8,5,3,5)
cov3 \leftarrow c(34.6, 543.6, 45.8, 54.7, 44.3, 55.6, 65.9, 54.7, 77.9, 31.2)
# Covariate matrix
cov <- cbind(cov1, cov2, cov3)</pre>
# -----
# wintime Examples
# Run WTR
z <- wintime("wtr", Time, Delta, trt)</pre>
print(z)
# Run EWT with default settings and 10 resamples
z <- wintime("ewt", Time, Delta, trt, resample_num = 10)</pre>
print(z)
# Run EWTR with default settings
z <- wintime("ewtr", Time, Delta, trt, cov = cov)</pre>
print(z)
# Run EWTR with KM model (This will produce a warning message)
z <- wintime("ewtr", Time, Delta, trt, cov = cov, model = "km")</pre>
print(z)
```

WTR

Win time ratio

Description

This function calculates the ratio of losses to wins on treatment. It iterates through all pairs of treatment and control patients and uses their win time difference as the deciding factor of a win or loss.

Usage

```
WTR(n, m, tau, tg, Time, Delta)
```

28 WTR

Arguments

n The total number of trial participants.m The number of events in the hierarchy.tau The maximum follow up time (days).

A numeric vector containing treatment arm indicators (1 for treatment, 0 for

control).

Time A m x n matrix of event times (days). Rows should represent events and columns

should represent participants. Event rows should be in increasing order of clini-

cal severity.

Delta A m x n matrix of event indicators. Rows should represent events and columns

should represent participants. Event rows should be in increasing order of clini-

cal severity.

Value

A list containing: The ratio of losses to wins on treatment, the total number of wins, and the total number of losses.

Index

```
bootstrap, 2
COMP, 4
EWT, 4
EWTP, 5
EWTPR, 7
EWTR, 9
{\tt getWintimeIntegral}, \\ 10
{\tt getWintimeIntegral\_rest, 11}
km, 12
markov, 13
perm, 15
PWT, 16
REWTP, 17
REWTPR, 18
RMT, 21
RPWT, 22
RWTR, 23
setEventTimes, 23
setKM, 24
wintime, 25
WTR, 27
```