
Package ‘tidychangepoint’
January 12, 2026

Title A Tidy Framework for Changepoint Detection Analysis

Version 1.0.3

Description Changepoint detection algorithms for R are widespread but have
different interfaces and reporting conventions.
This makes the comparative analysis of results difficult.
We solve this problem by providing a tidy, unified interface for several
different changepoint detection algorithms.
We also provide consistent numerical and graphical reporting leveraging
the 'broom' and 'ggplot2' packages.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

Imports changepoint, changepointGA, cli, dplyr, GA, generics, ggplot2,
lifecycle, lubridate, memoise, methods, prettyunits, purrr,
rlang, scales, segmented, stringr, strucchange, tibble, tidyr,
tsibble, vctrs, wbs, xts, zoo

Depends R (>= 4.2)

LazyData true

Suggests bench, broom, knitr, here, multitaper, patchwork, readr,
rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://beanumber.github.io/tidychangepoint/

NeedsCompilation no

Author Benjamin S. Baumer [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-3279-0516>),

Biviana Marcela Suárez Sierra [aut] (ORCID:
<https://orcid.org/0000-0003-2151-3537>),

Arrigo Coen [aut] (ORCID: <https://orcid.org/0000-0001-7798-7104>),
Carlos A. Taimal [aut] (ORCID: <https://orcid.org/0000-0002-8716-1282>),
Xueheng Shi [ctb]

1

https://beanumber.github.io/tidychangepoint/
https://orcid.org/0000-0002-3279-0516
https://orcid.org/0000-0003-2151-3537
https://orcid.org/0000-0001-7798-7104
https://orcid.org/0000-0002-8716-1282

2 Contents

Maintainer Benjamin S. Baumer <ben.baumer@gmail.com>

Repository CRAN

Date/Publication 2026-01-12 18:50:02 UTC

Contents
as.model . 3
as.segmenter . 5
as_year . 7
binary2tau . 7
BMDL . 8
bogota_pm . 9
build_gabin_population . 10
CET . 11
changepoints . 12
compare_models . 13
cut_by_tau . 14
DataCPSim . 15
deg_free . 16
diagnose . 17
exceedances . 18
file_name . 19
fitness . 20
fit_arima . 22
fit_lmshift . 23
fit_meanshift . 24
fit_meanvar . 26
fit_nhpp . 27
HQC . 28
italy_grads . 29
iweibull . 29
ls_models . 31
MBIC . 32
mcdf . 33
mde_rain . 34
MDL . 35
mlb_diffs . 36
model_args . 36
model_name . 38
model_variance . 40
new_fun_cpt . 40
new_mod_cpt . 41
new_seg_basket . 43
new_seg_cpt . 44
pad_tau . 45
plot.tidyga . 46
plot_best_chromosome . 47

as.model 3

plot_intensity . 48
regions . 49
segment . 49
segment_cptga . 51
segment_ga . 52
segment_manual . 54
segment_pelt . 55
seg_params . 56
SIC . 57
tau2time . 58
tbl_coef . 59
test_set . 60
tidycpt-class . 60
whomademe . 61

Index 62

as.model Convert, retrieve, or verify a model object

Description

Convert, retrieve, or verify a model object

Usage

as.model(object, ...)

Default S3 method:
as.model(object, ...)

S3 method for class 'tidycpt'
as.model(object, ...)

is_model(x, ...)

Arguments

object A tidycpt object, typically returned by segment()

... currently ignored

x An object, typically returned by fit_*()

4 as.model

Details

tidycpt objects have a model component. The functions documented here are convenience utility
functions for working with the model components. as.model() is especially useful in pipelines to
avoid having to use the $ or [notation for subsetting.

When applied to a tidycpt object, as.model() simply returns the model component of that object.
However, when applied to a segmenter object, as.model() attempts to converts that object into a
mod_cpt model object.

is_model() checks to see if a model object implements all of the S3 methods necessary to be
considered a model.

Value

• as.model() returns a mod_cpt model object

• is_model() a logical vector of length 1

See Also

Other tidycpt-generics: as.segmenter(), changepoints(), diagnose(), fitness(), model_name()

Examples

Segment a time series using PELT
x <- segment(CET, method = "pelt")

Retrieve the model component
x |>

as.model()

Explicitly convert the segmenter to a model
x |>

as.segmenter() |>
as.model()

Is that model valid?
x |>

as.model() |>
is_model()

Fit a model directly, without using [segment()]
x <- fit_nhpp(CET, tau = 330)
is_model(x)

as.segmenter 5

as.segmenter Convert, retrieve, or verify a segmenter object

Description

Convert, retrieve, or verify a segmenter object

Usage

as.segmenter(object, ...)

as.seg_cpt(object, ...)

S3 method for class 'seg_basket'
as.seg_cpt(object, ...)

S3 method for class 'seg_cpt'
as.seg_cpt(object, ...)

S3 method for class 'tidycpt'
as.segmenter(object, ...)

S3 method for class 'ga'
as.seg_cpt(object, ...)

S3 method for class 'cpt'
as.seg_cpt(object, ...)

S3 method for class 'cptga'
as.seg_cpt(object, ...)

S3 method for class 'segmented'
as.seg_cpt(object, ...)

S3 method for class 'breakpointsfull'
as.seg_cpt(object, ...)

S3 method for class 'wbs'
as.seg_cpt(object, ...)

is_segmenter(object, ...)

Arguments

object A tidycpt or segmenter object

... Arguments passed to methods

6 as.segmenter

Details

tidycpt objects have a segmenter component (that is typically created by a class to segment()).
The functions documented here are convenience utility functions for working with the segmenter
components. as.segmenter() is especially useful in pipelines to avoid having to use the $ or [
notation for subsetting.

as.segmenter() simply returns the segmenter of a tidycpt object.

as.seg_cpt() takes a wild-caught segmenter object of arbitrary class and converts it into a seg_cpt
object.

is_segmenter() checks to see if a segmenter object implements all of the S3 methods necessary
to be considered a segmenter.

Value

• as.segmenter() returns the segmenter object of a tidycpt object. Note that this could be
of any class, depending on the class returned by the segmenting function.

• as.seg_cpt() returns a seg_cpt object

• is_segmenter() a logical vector of length 1

See Also

Other tidycpt-generics: as.model(), changepoints(), diagnose(), fitness(), model_name()

Other segmenter-functions: fitness(), model_args(), seg_params()

Examples

Segment a time series using PELT
x <- segment(CET, method = "pelt")

Return the segmenter component
x |>

as.segmenter()

Note the class of this object could be anything
x |>

as.segmenter() |>
class()

Convert the segmenter into the standardized seg_cpt class
x |>

as.segmenter() |>
as.seg_cpt()

Is the segmenter valid?
x |>

as.segmenter() |>
is_segmenter()

as_year 7

as_year Convert a date into a year

Description

Convert a date into a year

Usage

as_year(x)

Arguments

x an object coercible into a base::Date. See base::as.Date().

Value

A character vector representing the years of the input

Examples

Retrieve only the year
as_year("1988-01-01")

binary2tau Convert changepoint sets to binary strings

Description

Convert changepoint sets to binary strings

Usage

binary2tau(x)

tau2binary(tau, n)

Arguments

x A binary string that encodes a changepoint set. See GA::gabin_Population().

tau a numeric vector of changepoint indices

n the length of the original time series

8 BMDL

Details

In order to use GA::ga() in a genetic algorithm, we need to encoude a changepoint set as a binary
string.

binary2tau() takes a binary string representation of a changepoint set and converts it into a set of
changepoint indices.

tau2binary() takes a set of changepoint indices the number of observations in the time series and
converts them into a binary string representation of that changepoint set.

Value

• binary2tau(): an integer vector

• tau2binary(): an integer vector of length n

Examples

Recover changepoint set indices from binary strings
binary2tau(c(0, 0, 1, 0, 1))
binary2tau(round(runif(10)))

Recover binary strings from changepoint set indices
tau2binary(c(7, 17), n = 24)
tau2binary(binary2tau(c(0, 0, 1, 1, 0, 1)), n = 6)

BMDL Bayesian Maximum Descriptive Length

Description

Generic function to compute the Bayesian Maximum Descriptive Length for a changepoint detec-
tion model.

Usage

BMDL(object, ...)

Default S3 method:
BMDL(object, ...)

S3 method for class 'nhpp'
BMDL(object, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-likelihood
value, can be extracted.

... some methods for this generic function require additional arguments.

bogota_pm 9

Details

Currently, the BMDL function is only defined for the NHPP model (see fit_nhpp()). Given a
changepoint set τ , the BMDL is:

BMDL(τ,NHPP (y|θ̂τ) = PMDL(τ)− 2 lnLNHPP (y|θ̂τ)− 2 ln g(θ̂τ)

where PMDL(τ) is the MDL() penalty.

Value

A double vector of length 1

See Also

Other penalty-functions: HQC(), MBIC(), MDL(), SIC()

Examples

Compute the BMDL
BMDL(fit_nhpp(DataCPSim, tau = NULL))
BMDL(fit_nhpp(DataCPSim, tau = c(365, 830)))

bogota_pm Particulate matter in Bogotá, Colombia

Description

Particulate matter of less than 2.5 microns of diameter in Bogotá, Colombia.

Usage

bogota_pm

Format

An object of class xts (inherits from zoo) with 1096 rows and 1 columns.

Details

Daily readings from 2018-2020 are included.

Examples

class(bogota_pm)

10 build_gabin_population

build_gabin_population

Initialize populations in genetic algorithms

Description

Build an initial population set for genetic algorithms

Usage

build_gabin_population(x, ...)

log_gabin_population(x, ...)

Arguments

x a numeric vector coercible into a stats::ts object

... arguments passed to methods

Details

Genetic algorithms require a method for randomly generating initial populations (i.e., a first genera-
tion). The default method used by GA::ga() for changepoint detection is usually GA::gabin_Population(),
which selects candidate changepoints uniformly at random with probability 0.5. This leads to an
initial population with excessively large candidate changepoint sets (on the order of n/2), which
makes the genetic algorithm slow.

• build_gabin_population() takes a ts object and runs several fast changepoint detection
algorithms on it, then sets the initial probability to 3 times the average value of the size of the
changepoint sets returned by those algorithms. This is a conservative guess as to the likely
size of the optimal changepoint set.

• log_gabin_population() takes a ts object and sets the initial probability to the natural
logarithm of the length of the time series.

Value

A function that can be passed to the population argument of GA::ga() (through segment_ga())

See Also

GA::gabin_Population(), segment_ga()

CET 11

Examples

Build a function to generate the population
f <- build_gabin_population(CET)

Segment the time series using the population generation function
segment(CET, method = "ga", population = f, maxiter = 5)
f <- log_gabin_population(CET)
segment(CET, method = "ga", population = f, maxiter = 10)

CET Hadley Centre Central England Temperature

Description

Mean annual temperatures in Central England

Usage

CET

Format

An object of class xts (inherits from zoo) with 366 rows and 1 columns.

Details

The CET time series is perhaps the longest instrumental record of surface temperatures in the world,
commencing in 1659 and spanning 362 years through 2020. The CET series is a benchmark for
European climate studies, as it is sensitive to atmospheric variability in the North Atlantic (Parker
et al. 1992). This record has been previously analyzed for long-term changes (Plaut et al. 1995;
Harvey and Mills 2003; Hillebrand and Proietti 2017); however, to our knowledge, no detailed
changepoint analysis of it has been previously conducted. The length of the CET record affords us
the opportunity to explore a variety of temperature features.

Source

https://www.metoffice.gov.uk/hadobs/hadcet/

References

• Shi, et al. (2022, doi:10.1175/JCLID210489.1),

• Parker, et al. (1992, doi:10.1002/joc.3370120402)

See Also

multitaper::CETmonthly

https://www.metoffice.gov.uk/hadobs/hadcet/
https://doi.org/10.1175/JCLI-D-21-0489.1
https://doi.org/10.1002/joc.3370120402

12 changepoints

changepoints Extract changepoints

Description

Retrieve the indices of the changepoints identified by an algorithm or model.

Usage

changepoints(x, ...)

Default S3 method:
changepoints(x, ...)

S3 method for class 'mod_cpt'
changepoints(x, ...)

S3 method for class 'seg_basket'
changepoints(x, ...)

S3 method for class 'seg_cpt'
changepoints(x, ...)

S3 method for class 'tidycpt'
changepoints(x, use_labels = FALSE, ...)

S3 method for class 'ga'
changepoints(x, ...)

S3 method for class 'cpt'
changepoints(x, ...)

S3 method for class 'cptga'
changepoints(x, ...)

S3 method for class 'segmented'
changepoints(x, ...)

S3 method for class 'breakpointsfull'
changepoints(x, ...)

S3 method for class 'wbs'
changepoints(x, ...)

Arguments

x A tidycpt, segmenter, or mod_cpt object

compare_models 13

... arguments passed to methods

use_labels return the time labels for the changepoints instead of the indices.

Details

tidycpt objects, as well as their segmenter and model components, implement changepoints()
methods.

Note that this function is not to be confused with wbs::changepoints(), which returns different
information.

For the default method, changepoints() will attempt to return the cpt_true attribute, which is
set by test_set().

Value

a numeric vector of changepoint indices, or, if use_labels is TRUE, a character of time labels.

See Also

wbs::changepoints()

Other tidycpt-generics: as.model(), as.segmenter(), diagnose(), fitness(), model_name()

Examples

cpts <- segment(DataCPSim, method = "ga", maxiter = 5)
changepoints(cpts$segmenter)

Segment a times series using a genetic algorithm
cpts <- segment(DataCPSim, method = "cptga")
changepoints(cpts$segmenter)

cpts <- segment(DataCPSim, method = "segmented")
changepoints(cpts$segmenter)

cpts <- segment(DataCPSim, method = "strucchange")
changepoints(cpts$segmenter)

cpts <- segment(DataCPSim, method = "wbs")
changepoints(cpts$segmenter)

compare_models Compare various models or algorithms for a given changepoint set

Description

Compare various models or algorithms for a given changepoint set

14 cut_by_tau

Usage

compare_models(x, ...)

compare_algorithms(x, ...)

Arguments

x A tidycpt object

... currently ignored

Details

A tidycpt object has a set of changepoints returned by the algorithm that segmented the time series.
That changepoint set was obtained using a specific model. Treating this changepoint set as fixed,
the compare_models() function fits several common changepoint models to the time series and
changepoint set, and returns the results of glance(). Comparing the fits of various models could
lead to improved understanding.

Alternatively, compare_algorithms() runs several fast changepoint detection algorithms on the
original time series, and consolidates the results.

Value

A tibble::tbl_df

Examples

Segment a times series using PELT
x <- segment(CET, method = "pelt")

Compare models
compare_models(x)

Compare algorithms
compare_algorithms(x)

cut_by_tau Use a changepoint set to break a time series into regions

Description

Use a changepoint set to break a time series into regions

Usage

cut_by_tau(x, tau)

split_by_tau(x, tau)

DataCPSim 15

Arguments

x A numeric vector

tau a numeric vector of changepoint indices

Details

A changepoint set tau of length k breaks a time series of length n into k + 1 non-empty regions.
These non-empty regions can be defined by half-open intervals, starting with 1 and ending with
n+ 1.

cut_by_tau() splits a set of indices into a base::factor() of half-open intervals

split_by_tau() splits a time series into a named base::list() of numeric vectors

Value

• cut_by_tau() a base::factor() of half-open intervals

• split_by_tau() a named base::list() of numeric vectors

See Also

base::cut()

base::split()

Examples

n <- length(CET)

Return a factor of intervals
cut_by_tau(1:n, tau = pad_tau(c(42, 81, 330), n))

Return a list of observations
split_by_tau(DataCPSim, c(365, 826))

DataCPSim Simulated time series data

Description

Randomly-generated time series data, using the stats::rlnorm() function.

• For rlnorm_ts_1, there is one changepoint located at 826.

• For rlnorm_ts_2, there are two changepoints, located at 366 and 731.

• For rlnorm_ts_3, there are three changepoints, located at 548, 823, and 973.

16 deg_free

Usage

DataCPSim

rlnorm_ts_1

rlnorm_ts_2

rlnorm_ts_3

Format

An object of class numeric of length 1096.

An object of class ts of length 1096.

An object of class ts of length 1096.

An object of class ts of length 1096.

Details

• DataCPSim: Simulated time series of the same length as bogota_pm.

See Also

bogota_pm

stats::ts(), test_set()

Examples

plot(rlnorm_ts_1)
plot(rlnorm_ts_2)
plot(rlnorm_ts_3)
changepoints(rlnorm_ts_1)

deg_free Retrieve the degrees of freedom from a logLik object

Description

Retrieve the degrees of freedom from a logLik object

Usage

deg_free(x)

Arguments

x An object that implements a method for stats::logLik().

diagnose 17

Value

The df attribute of the stats::logLik() of the given object.

Examples

Retrieve the degrees of freedom model a changepoint model
DataCPSim |>

segment() |>
as.model() |>
deg_free()

diagnose Diagnose the fit of a segmented time series

Description

Depending on the input, this function returns a diagnostic plot.

Usage

diagnose(x, ...)

S3 method for class 'mod_cpt'
diagnose(x, ...)

S3 method for class 'seg_basket'
diagnose(x, ...)

S3 method for class 'tidycpt'
diagnose(x, ...)

S3 method for class 'nhpp'
diagnose(x, ...)

Arguments

x A tidycpt object, or a model or segmenter

... currently ignored

Value

A ggplot2::ggplot() object

See Also

Other tidycpt-generics: as.model(), as.segmenter(), changepoints(), fitness(), model_name()

18 exceedances

Examples

For meanshift models, show the distribution of the residuals by region
fit_meanshift_norm(CET, tau = 330) |>
diagnose()

For Coen's algorithm, show the histogram of changepoint selections
x <- segment(DataCPSim, method = "coen", num_generations = 3)
x |>

as.segmenter() |>
diagnose()

Show various iterations of diagnostic plots
diagnose(segment(DataCPSim))
diagnose(segment(DataCPSim, method = "single-best"))
diagnose(segment(DataCPSim, method = "pelt"))

Show diagnostic plots for test sets
diagnose(segment(test_set()))
diagnose(segment(test_set(n = 2, sd = 4), method = "pelt"))

For NHPP models, show the growth in the number of exceedances
diagnose(fit_nhpp(DataCPSim, tau = 826))
diagnose(fit_nhpp(DataCPSim, tau = 826, threshold = 200))

exceedances Compute exceedances of a threshold for a time series

Description

Compute exceedances of a threshold for a time series

Usage

exceedances(x, ...)

Default S3 method:
exceedances(x, ...)

S3 method for class 'nhpp'
exceedances(x, ...)

S3 method for class 'ts'
exceedances(x, ...)

S3 method for class 'double'
exceedances(x, threshold = mean(x, na.rm = TRUE), ...)

file_name 19

Arguments

x a numeric vector coercible into a stats::ts object

... arguments passed to methods

threshold A value above which to exceed. Default is the mean()

Value

An ordered integer vector giving the indices of the values of x that exceed the threshold.

Examples

Retrieve exceedances of the series mean
fit_nhpp(DataCPSim, tau = 826) |>

exceedances()

Retrieve exceedances of a supplied threshold
fit_nhpp(DataCPSim, tau = 826, threshold = 200) |>

exceedances()

file_name Obtain a descriptive filename for a tidycpt object

Description

Obtain a descriptive filename for a tidycpt object

Usage

file_name(x, data_name_slug = "data")

Arguments

x A tidycpt object

data_name_slug character string that will identify the data set used in the file name

Details

file_name() generates a random, unique string indicating the algorithm and fitness() for a
tidycpt object.

Value

A character string giving a unique file name.

20 fitness

Examples

Generate a unique name for the file
DataCPSim |>

segment(method = "pelt") |>
file_name()

fitness Retrieve the optimal fitness (or objective function) value used by an
algorithm

Description

Retrieve the optimal fitness (or objective function) value used by an algorithm

Usage

fitness(object, ...)

S3 method for class 'seg_basket'
fitness(object, ...)

S3 method for class 'seg_cpt'
fitness(object, ...)

S3 method for class 'tidycpt'
fitness(object, ...)

S3 method for class 'ga'
fitness(object, ...)

S3 method for class 'cpt'
fitness(object, ...)

S3 method for class 'cptga'
fitness(object, ...)

S3 method for class 'segmented'
fitness(object, ...)

S3 method for class 'breakpointsfull'
fitness(object, ...)

S3 method for class 'wbs'
fitness(object, ...)

fitness 21

Arguments

object A segmenter object.

... currently ignored

Details

Segmenting algorithms use a fitness metric, typically through the use of a penalized objective func-
tion, to determine which changepoint sets are more or less optimal. This function returns the value
of that metric for the changepoint set implied by the object provided.

Value

A named double vector with the fitness value.

See Also

Other tidycpt-generics: as.model(), as.segmenter(), changepoints(), diagnose(), model_name()

Other segmenter-functions: as.segmenter(), model_args(), seg_params()

Examples

Segment a times series using a genetic algorithm
x <- segment(DataCPSim, method = "ga", maxiter = 10)

Retrieve its fitness value
fitness(x)

Segment a times series using a genetic algorithm
x <- segment(DataCPSim, method = "cptga")

Retrieve its fitness value
fitness(x)

Segment a time series using Segmented
x <- segment(DataCPSim, method = "segmented")

Retrieve its fitness
fitness(x)

Segment a time series using Segmented
x <- segment(DataCPSim, method = "strucchange")

Retrieve its fitness
fitness(x)

Segment a time series using Wild Binary Segmentation
x <- segment(DataCPSim, method = "wbs")

Retrieve its fitness

22 fit_arima

fitness(x)

fit_arima Fit an ARIMA model

Description

Fit an ARIMA model

Usage

fit_arima(x, tau, ...)

Arguments

x A time series

tau a set of indices representing a changepoint set

... currently ignored

Details

Fits an ARIMA model using stats::arima().

Value

A mod_cpt object.

See Also

changepointGA::ARIMA.BIC()

Other model-fitting: fit_lmshift(), fit_meanshift(), fit_meanvar(), fit_nhpp(), model_args(),
model_name(), new_fun_cpt(), whomademe()

Examples

Fit a mean-variance model
fit_arima(CET, tau = c(42, 330))

fit_lmshift 23

fit_lmshift Regression-based model fitting

Description

Regression-based model fitting

Usage

fit_lmshift(x, tau, deg_poly = 0, ...)

fit_lmshift_ar1(x, tau, ...)

fit_trendshift(x, tau, ...)

fit_trendshift_ar1(x, tau, ...)

Arguments

x A time series

tau a set of indices representing a changepoint set

deg_poly integer indicating the degree of the polynomial spline to be fit. Passed to stats::poly().

... arguments passed to stats::lm()

Details

These model-fitting functions use stats::lm() to fit the corresponding regression model to a time
series, using the changepoints specified by the tau argument. Each changepoint is treated as a
categorical fixed-effect, while the deg_poly argument controls the degree of the polynomial that
interacts with those fixed-effects. For example, setting deg_poly equal to 0 will return the same
model as calling fit_meanshift_norm(), but the latter is faster for larger changepoint sets because
it doesn’t have to fit all of the regression models.

Setting deg_poly equal to 1 fits the trendshift model.

• fit_lmshift_ar1(): will apply auto-regressive lag 1 errors

• fit_trendshift(): will fit a line in each region

• fit_trendshift_ar1(): will fit a line in each region and autoregress lag 1 errors

Value

A mod_cpt object

See Also

Other model-fitting: fit_arima(), fit_meanshift(), fit_meanvar(), fit_nhpp(), model_args(),
model_name(), new_fun_cpt(), whomademe()

24 fit_meanshift

Examples

Manually specify a changepoint set
tau <- c(365, 826)

Fit the model
mod <- fit_lmshift(DataCPSim, tau)

Retrieve model parameters
logLik(mod)
deg_free(mod)

Manually specify a changepoint set
cpts <- c(1700, 1739, 1988)
ids <- time2tau(cpts, as_year(time(CET)))

Fit the model
mod <- fit_lmshift(CET, tau = ids)

View model parameters
glance(mod)
glance(fit_lmshift(CET, tau = ids, deg_poly = 1))
glance(fit_lmshift_ar1(CET, tau = ids))
glance(fit_lmshift_ar1(CET, tau = ids, deg_poly = 1))
glance(fit_lmshift_ar1(CET, tau = ids, deg_poly = 2))

Empty changepoint sets are allowed
fit_lmshift(CET, tau = NULL)

Duplicate changepoints are removed
fit_lmshift(CET, tau = c(42, 42))

fit_meanshift Fast implementation of meanshift model

Description

Fast implementation of meanshift model

Usage

fit_meanshift(x, tau, distribution = "norm", ...)

fit_meanshift_norm(x, tau, ...)

fit_meanshift_lnorm(x, tau, ...)

fit_meanshift_norm_ar1(x, tau, ...)

fit_meanshift 25

Arguments

x A time series

tau a set of indices representing a changepoint set

distribution A character indicating the distribution of the data. Should match R distribution
function naming conventions (e.g., "norm" for the Normal distribution, etc.)

... arguments passed to stats::lm()

Details

fit_meanshift_norm() returns the same model as fit_lmshift() with the deg_poly argument
set to 0. However, it is faster on large changepoint sets.

fit_meanshift_lnorm() fit the meanshift model with the assumption of log-normally distributed
data.

fit_meanshift_norm_ar1() applies autoregressive errors.

Value

A mod_cpt object.

Author(s)

Xueheng Shi, Ben Baumer

See Also

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanvar(), fit_nhpp(), model_args(),
model_name(), new_fun_cpt(), whomademe()

Examples

Manually specify a changepoint set
tau <- c(365, 826)

Fit the model
mod <- fit_meanshift_norm_ar1(DataCPSim, tau)

View model parameters
logLik(mod)
deg_free(mod)

Manually specify a changepoint set
cpts <- c(1700, 1739, 1988)
ids <- time2tau(cpts, as_year(time(CET)))

Fit the model
mod <- fit_meanshift_norm(CET, tau = ids)

Review model parameters
glance(mod)

26 fit_meanvar

Fit an autoregressive model
mod <- fit_meanshift_norm_ar1(CET, tau = ids)

Review model parameters
glance(mod)

fit_meanvar Fit a model for mean and variance

Description

Fit a model for mean and variance

Usage

fit_meanvar(x, tau, ...)

Arguments

x A time series

tau a set of indices representing a changepoint set

... currently ignored

Details

In a mean-variance model, both the means and variances are allowed to vary across regions. Thus,
this model fits a separate µj and σj for each region j.

Value

A mod_cpt object.

See Also

changepoint::cpt.meanvar()

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanshift(), fit_nhpp(), model_args(),
model_name(), new_fun_cpt(), whomademe()

Examples

Fit a mean-variance model
fit_meanvar(CET, tau = c(42, 330))

fit_nhpp 27

fit_nhpp Fit a non-homogeneous Poisson process model to the exceedances of
a time series.

Description

Fit a non-homogeneous Poisson process model to the exceedances of a time series.

Usage

fit_nhpp(x, tau, ...)

Arguments

x A time series

tau A vector of changepoints

... currently ignored

Details

Any time series can be modeled as a non-homogeneous Poisson process of the locations of the
exceedances of a threshold in the series. This function uses the BMDL criteria to determine the best
fit parameters for each region defined by the changepoint set tau.

Value

An nhpp object, which inherits from mod_cpt.

See Also

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanshift(), fit_meanvar(), model_args(),
model_name(), new_fun_cpt(), whomademe()

Examples

Fit an NHPP model using the mean as a threshold
fit_nhpp(DataCPSim, tau = 826)

Fit an NHPP model using other thresholds
fit_nhpp(DataCPSim, tau = 826, threshold = 20)
fit_nhpp(DataCPSim, tau = 826, threshold = 200)

Fit an NHPP model using changepoints determined by PELT
fit_nhpp(DataCPSim, tau = changepoints(segment(DataCPSim, method = "pelt")))

28 HQC

HQC Hannan–Quinn information criterion

Description

Hannan–Quinn information criterion

Usage

HQC(object, ...)

Default S3 method:
HQC(object, ...)

S3 method for class 'logLik'
HQC(object, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-likelihood
value, can be extracted.

... some methods for this generic function require additional arguments.

Details

Computes the Hannan-Quinn information criterion for a model M

HQC(τ,M(y|θ̂τ)) = 2k · ln lnn− 2 · LM (y|θ̂τ) ,

where k is the number of parameters and n is the number of observations.

See Also

stats::BIC(), stats::AIC()

Other penalty-functions: BMDL(), MBIC(), MDL(), SIC()

Examples

Compute the HQC
HQC(fit_meanvar(CET, tau = NULL))

HQC(fit_meanshift_norm_ar1(CET, tau = c(42, 330)))
HQC(fit_trendshift(CET, tau = c(42, 81, 330)))

italy_grads 29

italy_grads Italian University graduates by disciplinary groups from 1926-2013

Description

Italian University graduates by disciplinary groups during the years 1926-2013.

Usage

italy_grads

Format

An object of class tbl_ts (inherits from tbl_df, tbl, data.frame) with 88 rows and 17 columns.

Source

https://seriestoriche.istat.it/

Source: Istat- Ministero dell’istruzione pubblica, years 1926-1942

Istat- Rilevazione sulle Università, years 1943-1997

Miur- Rilevazione sulle Università, years 1998-2013

iweibull Weibull distribution functions

Description

Weibull distribution functions

Usage

iweibull(x, shape, scale = 1)

mweibull(x, shape, scale = 1)

parameters_weibull(...)

Arguments

x A numeric vector

shape Shape parameter for Weibull distribution. See stats::dweibull().

scale Scale parameter for Weibull distribution. See stats::dweibull().

... currently ignored

https://seriestoriche.istat.it/

30 iweibull

Details

Intensity function for the Weibull distribution.

iweibull(x) =

(
shape

scale

)
·
(x

scale

)shape−1

Mean intensity function for the Weibull distribution.

mweibull(x) =
(x

scale

)shape

parameters_weibull() returns a list() with two components: shape and scale, each of which
is a list() of distribution parameters. These parameters are used to define the prior distributions
for the hyperparameters.

Value

A numeric vector

See Also

stats::dweibull()

stats::dgamma()

Examples

Compute the intensities and plot them
iweibull(1, shape = 1, scale = 1)
plot(x = 1:10, y = iweibull(1:10, shape = 2, scale = 2))

Compute various values of the distribution
mweibull(1, shape = 1, scale = 1)
plot(x = 1:10, y = mweibull(1:10, shape = 1, scale = 1))
plot(x = 1:10, y = mweibull(1:10, shape = 1, scale = 2))
plot(x = 1:10, y = mweibull(1:10, shape = 0.5, scale = 2))
plot(x = 1:10, y = mweibull(1:10, shape = 0.5, scale = 100))
plot(x = 1:10, y = mweibull(1:10, shape = 2, scale = 2))
plot(x = 1:10, y = mweibull(1:10, shape = 2, scale = 100))

Generate prior distribution hyperparameters
parameters_weibull()

ls_models 31

ls_models Algorithmic coverage through tidychangepoint

Description

Algorithmic coverage through tidychangepoint

Usage

ls_models()

ls_pkgs()

ls_methods()

ls_penalties()

ls_cpt_penalties()

ls_coverage()

Value

A tibble::tibble or character

See Also

segment()

Examples

List all model-fitting functions
ls_models()

List packages supported by tidychangepoint
ls_pkgs()

List methods supported by segment()
ls_methods()

List penalty functions provided by tidychangepoint
ls_penalties()

List penalty functions supported by changepoint
ls_cpt_penalties()

List combinations of method, model, and penalty supported by tidychangepoint
ls_coverage()

32 MBIC

MBIC Modified Bayesian Information Criterion

Description

Generic function to compute the Modified Bayesian Information Criterion for a changepoint detec-
tion model.

Usage

MBIC(object, ...)

Default S3 method:
MBIC(object, ...)

S3 method for class 'logLik'
MBIC(object, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-likelihood
value, can be extracted.

... some methods for this generic function require additional arguments.

Value

A double vector of length 1

References

Zhang and Seigmmund (2007) for MBIC: doi:10.1111/j.15410420.2006.00662.x

See Also

stats::BIC()

Other penalty-functions: BMDL(), HQC(), MDL(), SIC()

https://doi.org/10.1111/j.1541-0420.2006.00662.x

mcdf 33

mcdf Cumulative distribution of the exceedances of a time series

Description

Cumulative distribution of the exceedances of a time series

Usage

mcdf(x, dist = "weibull")

Arguments

x An NHPP model returned by fit_nhpp()

dist Name of the distribution. Currently only weibull is implemented.

Value

a numeric vector of length equal to the exceedances of x

See Also

plot_intensity()

Examples

Fit an NHPP model using the mean as a threshold
nhpp <- fit_nhpp(DataCPSim, tau = 826)

Compute the cumulative exceedances of the mean
mcdf(nhpp)

Fit an NHPP model using another threshold
nhpp <- fit_nhpp(DataCPSim, tau = 826, threshold = 200)

Compute the cumulative exceedances of the threshold
mcdf(nhpp)

34 mde_rain

mde_rain Rainfall in Medellín, Colombia

Description

Rainfall in Medellín, Colombia

Usage

mde_rain

mde_rain_monthly

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 185705 rows and 8
columns.

An object of class xts (inherits from zoo) with 444 rows and 1 columns.

Details

Daily rainfall measurements for 13 different weather stations positioned around Medellín, Colom-
bia. Variables:

• station_id:

• lat, long: latitude and longitude for the weather station

• date, year, month, day: date variables

• rainfall: daily rainfall (in cubic centimeters) as measured by the weather station

• mean_rainfall: average rainfall across all weather stations

References

OpenStreetMap

https://www.openstreetmap.org/?mlat=6.244747&mlon=-75.574828&zoom=12

MDL 35

MDL Maximum Descriptive Length

Description

Generic function to compute the Maximum Descriptive Length for a changepoint detection model.

Usage

MDL(object, ...)

Default S3 method:
MDL(object, ...)

S3 method for class 'logLik'
MDL(object, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-likelihood
value, can be extracted.

... some methods for this generic function require additional arguments.

Details

PMDL(τ) =
a(θτ)

2
·

m∑
j=0

log (τj − τj−1) + 2 lnm+

m∑
j=2

ln τj + (2 + b(θτ)) lnn

where a(θ) is the number of parameters in θ that are fit in each region, and b(θ) is the number of
parameters fit to the model as a whole.

These quantities should be base::attributes() of the object returned by logLik().

Value

A double vector of length 1

See Also

Other penalty-functions: BMDL(), HQC(), MBIC(), SIC()

Examples

MDL(fit_meanshift_norm_ar1(CET, tau = c(42, 330)))
MDL(fit_trendshift(CET, tau = c(42, 81, 330)))

36 model_args

mlb_diffs Differences between leagues in Major League Baseball

Description

The difference in various statistics between the American League and the National League from
1925 to 2023. Statistics include:

• PA: The total number of plate appearances

• hr_rate_diff: The difference in home runs per plate appearance

• bavg_dff: The difference in batting average

• obp_diff: The difference in on-base percentage

• slg_diff: The difference in slugging percentage

Usage

mlb_diffs

Format

An object of class tbl_ts (inherits from tbl_df, tbl, data.frame) with 99 rows and 6 columns.

Source

The Lahman package

model_args Retrieve the arguments that a model-fitting function used

Description

Retrieve the arguments that a model-fitting function used

Usage

model_args(object, ...)

Default S3 method:
model_args(object, ...)

S3 method for class 'seg_cpt'
model_args(object, ...)

S3 method for class 'ga'
model_args(object, ...)

model_args 37

S3 method for class 'cpt'
model_args(object, ...)

S3 method for class 'cptga'
model_args(object, ...)

S3 method for class 'segmented'
model_args(object, ...)

S3 method for class 'breakpointsfull'
model_args(object, ...)

S3 method for class 'wbs'
model_args(object, ...)

Arguments

object A segmenter object.

... currently ignored

Details

Every model is fit by a model-fitting function, and these functions sometimes take arguments.
model_args() recovers the arguments that were passed to the model fitting function when it was
called. These are especially important when using a genetic algorithm.

Value

A named list of arguments, or NULL

See Also

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanshift(), fit_meanvar(), fit_nhpp(),
model_name(), new_fun_cpt(), whomademe()

Other segmenter-functions: as.segmenter(), fitness(), seg_params()

Examples

Segment a time series using Coen's algorithm
x <- segment(CET, method = "ga-coen", maxiter = 3)

Recover the arguments passed to the model-fitting function
x |>

as.segmenter() |>
model_args()

38 model_name

model_name Retrieve the name of the model that a segmenter or model used

Description

Retrieve the name of the model that a segmenter or model used

Usage

model_name(object, ...)

Default S3 method:
model_name(object, ...)

S3 method for class 'character'
model_name(object, ...)

S3 method for class 'mod_cpt'
model_name(object, ...)

S3 method for class 'seg_basket'
model_name(object, ...)

S3 method for class 'seg_cpt'
model_name(object, ...)

S3 method for class 'tidycpt'
model_name(object, ...)

S3 method for class 'ga'
model_name(object, ...)

S3 method for class 'cpt'
model_name(object, ...)

S3 method for class 'cptga'
model_name(object, ...)

S3 method for class 'segmented'
model_name(object, ...)

S3 method for class 'breakpointsfull'
model_name(object, ...)

S3 method for class 'wbs'
model_name(object, ...)

model_name 39

Arguments

object A segmenter object.

... currently ignored

Details

Every segmenter works by fitting a model to the data. model_name() returns the name of a model
that can be passed to whomademe() to retrieve the model fitting function. These functions must
begin with the prefix fit_. Note that the model fitting functions exist in tidychangepoint are are
not necessarily the actual functions used by the segmenter.

Models also implement model_name().

Value

A character vector of length 1.

See Also

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanshift(), fit_meanvar(), fit_nhpp(),
model_args(), new_fun_cpt(), whomademe()

Other tidycpt-generics: as.model(), as.segmenter(), changepoints(), diagnose(), fitness()

Examples

Segment a time series using PELT
x <- segment(CET, method = "pelt")

Retrieve the name of the model from the segmenter
x |>

as.segmenter() |>
model_name()

What function created the model?
x |>

model_name() |>
whomademe()

model_name(x$segmenter)

Retrieve the name of the model from the model
x |>

as.model() |>
model_name()

40 new_fun_cpt

model_variance Compute model variance

Description

Compute model variance

Usage

model_variance(object, ...)

Arguments

object A model object implementing residuals() and nobs()

... currently ignored

Details

Using the generic functions residuals() and nobs(), this function computes the variance of the
residuals.

Note that unlike stats::var(), it does not use n− 1 as the denominator.

Value

A double vector of length 1

new_fun_cpt Class for model-fitting functions

Description

Class for model-fitting functions

Usage

new_fun_cpt(x, ...)

validate_fun_cpt(x)

fun_cpt(x, ...)

Arguments

x a character giving the name of a model-fitting function

... currently ignored

new_mod_cpt 41

Details

All model-fitting functions must be registered through a call to fun_cpt().

All model-fitting functions must take at least three arguments:

• x: a time series,

• tau: a set of changepoint indices

• ...: other arguments passed to methods

See fit_meanshift_norm(),

Value

A fun_cpt object.

See Also

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanshift(), fit_meanvar(), fit_nhpp(),
model_args(), model_name(), whomademe()

Examples

Register a model-fitting function
f <- fun_cpt("fit_meanvar")

Verify that it now has class `fun_cpt`
str(f)

Use it
f(CET, 42)

new_mod_cpt Base class for changepoint models

Description

Create changepoint detection model objects

Usage

new_mod_cpt(
x = numeric(),
tau = integer(),
region_params = tibble::tibble(),
model_params = double(),
fitted_values = double(),
model_name = character(),
...

42 new_mod_cpt

)

validate_mod_cpt(x)

mod_cpt(x, ...)

Arguments

x a numeric vector coercible into a ts object

tau indices of the changepoint set

region_params A tibble::tibble() with one row for each region defined by the changepoint
set tau. Each variable represents a parameter estimated in that region.

model_params A numeric vector of parameters estimated by the model across the entire data
set (not just in each region).

fitted_values Fitted values returned by the model on the original data set.

model_name A character vector giving the model’s name.

... currently ignored

Details

Changepoint detection models know how they were created, on what data set, about the optimal
changepoint set found, and the parameters that were fit to the model. Methods for various generic
reporting functions are provided.

All changepoint detection models inherit from mod_cpt: the base class for changepoint detection
models. These models are created by one of the fit_*() functions, or by as.model().

Value

A mod_cpt object

See Also

as.model()

Examples

cpt <- mod_cpt(CET)
str(cpt)
as.ts(cpt)
changepoints(cpt)

new_seg_basket 43

new_seg_basket Default class for candidate changepoint sets

Description

Default class for candidate changepoint sets

Usage

new_seg_basket(
x = numeric(),
algorithm = NA,
cpt_list = list(),
seg_params = list(),
model_name = "meanshift_norm",
penalty = "BIC",
...

)

seg_basket(x, ...)

Arguments

x a numeric vector coercible into a stats::ts() object

algorithm Algorithm used to find the changepoints

cpt_list a possibly empty list() of candidate changepoints

seg_params a possibly empty list() of segmenter parameters

model_name character indicating the model used to find the changepoints.

penalty character indicating the name of the penalty function used to find the change-
points.

... currently ignored

Value

A seg_basket() object.

Examples

seg <- seg_basket(DataCPSim, cpt_list = list(c(365), c(330, 839)))
str(seg)
as.ts(seg)
changepoints(seg)
fitness(seg)

44 new_seg_cpt

new_seg_cpt Base class for segmenters

Description

Base class for segmenters

Usage

new_seg_cpt(
x = numeric(),
pkg = character(),
base_class = character(),
algorithm = NA,
changepoints = integer(),
fitness = double(),
seg_params = list(),
model_name = "meanshift_norm",
penalty = "BIC",
...

)

seg_cpt(x, ...)

Arguments

x a numeric vector coercible into a stats::ts() object

pkg name of the package providing the segmenter

base_class class of the underlying object

algorithm Algorithm used to find the changepoints

changepoints a possibly empty list() of candidate changepoints

fitness A named double vector whose name reflects the penalty applied

seg_params a possibly empty list() of segmenter parameters

model_name character indicating the model used to find the changepoints.

penalty character indicating the name of the penalty function used to find the change-
points.

... currently ignored

Value

A seg_cpt object.

pad_tau 45

pad_tau Pad and unpad changepoint sets with boundary points

Description

Pad and unpad changepoint sets with boundary points

Usage

pad_tau(tau, n)

unpad_tau(padded_tau)

is_valid_tau(tau, n)

regions_tau(tau, n)

validate_tau(tau, n)

Arguments

tau a numeric vector of changepoint indices
n the length of the original time series
padded_tau Output from pad_tau()

Details

If a time series contains n observations, we label them from 1 to n. Neither the 1st point nor the nth
point can be a changepoint, since the regions they create on one side would be empty. However, for
dividing the time series into non-empty segments, we start with 1, add n + 1, and then divide the
half-open interval [1, n+ 1) into half-open subintervals that define the regions.

pad_tau() ensures that 1 and n+ 1 are included.

unpad_tau() removes 1 and n+ 1, should they exist.

is_valid_tau() checks to see if the supplied set of changepoints is valid

validate_tau() removes duplicates and boundary values.

Value

• pad_tau(): an integer vector that starts with 0 and ends in n.

• unpad_tau(): an integer vector stripped of its first and last entries.

• is_valid_tau(): a logical if all of the entries are between 2 and n− 1.

• regions_tau(): A base::factor()

• validate_tau(): an integer vector with only the base::unique() entries between 2 and
n− 1, inclusive.

46 plot.tidyga

Examples

Anything less than 2 is not allowed
is_valid_tau(0, length(DataCPSim))
is_valid_tau(1, length(DataCPSim))

Duplicates are allowed
is_valid_tau(c(42, 42), length(DataCPSim))
is_valid_tau(826, length(DataCPSim))

Anything greater than \eqn{n} (in this case 1096) is not allowed
is_valid_tau(1096, length(DataCPSim))
is_valid_tau(1097, length(DataCPSim))

Always return a factor with half-open intervals on the right
regions_tau(c(42, 330), 1096)
Anything less than 2 is not allowed
validate_tau(0, length(DataCPSim))
validate_tau(1, length(DataCPSim))
validate_tau(826, length(DataCPSim))

Duplicates are removed
validate_tau(c(826, 826), length(DataCPSim))

Anything greater than \eqn{n} (in this case 1096) is not allowed
validate_tau(1096, length(DataCPSim))
validate_tau(1097, length(DataCPSim))

Fix many problems
validate_tau(c(-4, 0, 1, 4, 5, 5, 824, 1096, 1097, 182384), length(DataCPSim))

plot.tidyga Plot GA information

Description

Plot GA information

Usage

S3 method for class 'tidyga'
plot(x, ...)

Arguments

x A tidyga object

... currently ignored

plot_best_chromosome 47

Value

A ggplot2::ggplot() object.

Examples

x <- segment(DataCPSim, method = "ga-coen", maxiter = 5)
plot(x$segmenter)

plot_best_chromosome Diagnostic plots for seg_basket objects

Description

Diagnostic plots for seg_basket objects

Usage

plot_best_chromosome(x)

plot_cpt_repeated(x, i = nrow(x$basket))

Arguments

x A seg_basket() object

i index of basket to show

Details

seg_basket() objects contain baskets of candidate changepoint sets.

plot_best_chromosome() shows how the size of the candidate changepoint sets change across the
generations of evolution.

plot_cpt_repeated() shows how frequently individual observations appear in the best candidate
changepoint sets in each generation.

Value

A ggplot2::ggplot() object

48 plot_intensity

Examples

Segment a time series using Coen's algorithm
x <- segment(DataCPSim, method = "coen", num_generations = 3)

Plot the size of the sets during the evolution
x |>

as.segmenter() |>
plot_best_chromosome()

Segment a time series using Coen's algorithm
x <- segment(DataCPSim, method = "coen", num_generations = 3)

Plot overall frequency of appearance of changepoints
plot_cpt_repeated(x$segmenter)

Plot frequency of appearance only up to a specific generation
plot_cpt_repeated(x$segmenter, 5)

plot_intensity Plot the intensity of an NHPP fit

Description

Plot the intensity of an NHPP fit

Usage

plot_intensity(x, ...)

Arguments

x An NHPP model returned by fit_nhpp()

... currently ignored

Value

A ggplot2::ggplot() object

Examples

Plot the estimated intensity function
plot_intensity(fit_nhpp(DataCPSim, tau = 826))

Segment a time series using PELT
mod <- segment(bogota_pm, method = "pelt")

Plot the estimated intensity function for the NHPP model using the

regions 49

changepoints found by PELT
plot_intensity(fit_nhpp(bogota_pm, tau = changepoints(mod)))

regions Extract the regions from a tidycpt object

Description

Extract the regions from a tidycpt object

Usage

regions(x, ...)

S3 method for class 'mod_cpt'
regions(x, ...)

S3 method for class 'tidycpt'
regions(x, ...)

Arguments

x An object that has regions

... Currently ignored

Value

A base::factor() of intervals indicating the region

Examples

cpt <- fit_meanshift_norm(CET, tau = 330)
regions(cpt)

segment Segment a time series using a variety of algorithms

Description

A wrapper function that encapsulates various algorithms for detecting changepoint sets in univariate
time series.

50 segment

Usage

segment(x, method = "null", ...)

S3 method for class 'tbl_ts'
segment(x, method = "null", ...)

S3 method for class 'xts'
segment(x, method = "null", ...)

S3 method for class 'numeric'
segment(x, method = "null", ...)

S3 method for class 'ts'
segment(x, method = "null", ...)

Arguments

x a numeric vector coercible into a stats::ts object

method a character string indicating the algorithm to use. See Details.

... arguments passed to methods

Details

Currently, segment() can use the following algorithms, depending on the value of the method
argument:

• pelt: Uses the PELT algorithm as implemented in segment_pelt(), which wraps either
changepoint::cpt.mean() or changepoint::cpt.meanvar(). The segmenter is of class
cpt.

• binseg: Uses the Binary Segmentation algorithm as implemented by changepoint::cpt.meanvar().
The segmenter is of class cpt.

• segneigh: Uses the Segmented Neighborhood algorithm as implemented by changepoint::cpt.meanvar().
The segmenter is of class cpt.

• single-best: Uses the AMOC criteria as implemented by changepoint::cpt.meanvar().
The segmenter is of class cpt.

• wbs: Uses the Wild Binary Segmentation algorithm as implemented by wbs::wbs(). The
segmenter is of class wbs.

• strucchange: Uses the segmented algorithm as implemented by strucchange::breakpoints().
The segmenter is of class breakpoints.

• segmented: Uses the segmented algorithm as implemented by segmented::segmented().
The segmenter is of class segmented.

• cptga: Uses the Genetic algorithm implemented by segment_cptga(), which wraps changepointGA::cptga().
The segmenter is of class tidycptga.

• ga: Uses the Genetic algorithm implemented by segment_ga(), which wraps GA::ga(). The
segmenter is of class tidyga.

segment_cptga 51

• ga-shi: Uses the genetic algorithm implemented by segment_ga_shi(), which wraps segment_ga().
The segmenter is of class tidyga.

• ga-coen: Uses Coen’s heuristic as implemented by segment_ga_coen(). The segmenter is
of class tidyga. This implementation supersedes the following one.

• coen: Uses Coen’s heuristic as implemented by segment_coen(). The segmenter is of class
seg_basket(). Note that this function is deprecated.

• random: Uses a random basket of changepoints as implemented by segment_ga_random().
The segmenter is of class tidyga.

• manual: Uses the vector of changepoints in the tau argument. The segmenter is of class
seg_cpt‘.

• null: The default. Uses no changepoints. The segmenter is of class seg_cpt.

Value

An object of class tidycpt.

See Also

changepoint::cpt.meanvar(), wbs::wbs(), GA::ga(), segment_ga()

Examples

Segment a time series using PELT
segment(DataCPSim, method = "pelt")

Segment a time series using PELT and the BIC penalty
segment(DataCPSim, method = "pelt", penalty = "BIC")

Segment a time series using Binary Segmentation
segment(DataCPSim, method = "binseg", penalty = "BIC")

Segment a time series using a random changepoint set
segment(DataCPSim, method = "random")

Segment a time series using a manually-specified changepoint set
segment(DataCPSim, method = "manual", tau = c(826))

Segment a time series using a null changepoint set
segment(DataCPSim)

segment_cptga Segment a time series using a genetic algorithm

Description

Segmenting functions for various genetic algorithms

52 segment_ga

Usage

segment_cptga(x, ...)

Arguments

x A time series

... arguments passed to changepointGA::cptga()

Details

segment_cptga() uses the genetic algorithm in changepointGA::cptga() to "evolve" a random
set of candidate changepoint sets, using the penalized objective function specified by penalty_fn.
By default, the normal meanshift model is fit (see fit_meanshift_norm()) and the BIC penalty
is applied.

Value

A tidycptga object. This is just a changepointGA::cptga() object with an additional slot for
data (the original time series).

Examples

Segment a time series using a genetic algorithm
res <- segment_cptga(CET)
summary(res)

Segment a time series using changepointGA
x <- segment(CET, method = "cptga")
summary(x)
changepoints(x)

segment_ga Segment a time series using a genetic algorithm

Description

Segmenting functions for various genetic algorithms

Usage

segment_ga(
x,
model_fn = fit_meanshift_norm,
penalty_fn = BIC,
model_fn_args = list(),
...

)

segment_ga 53

segment_ga_shi(x, ...)

segment_ga_coen(x, ...)

segment_ga_random(x, ...)

Arguments

x A time series

model_fn A character or name coercible into a fun_cpt function. See, for example,
fit_meanshift_norm().

penalty_fn A function that evaluates the changepoint set returned by model_fn. We provide
AIC(), BIC(), MBIC(), MDL(), and BMDL().

model_fn_args A list() of parameters passed to model_fn

... arguments passed to GA::ga()

Details

segment_ga() uses the genetic algorithm in GA::ga() to "evolve" a random set of candidate
changepoint sets, using the penalized objective function specified by penalty_fn. By default,
the normal meanshift model is fit (see fit_meanshift_norm()) and the BIC penalty is applied.

• segment_ga_shi(): Shi’s algorithm is the algorithm used in doi:10.1175/JCLID210489.1.
Note that in order to achieve the reported results you have to run the algorithm for a really
long time. Pass the values maxiter = 50000 and run = 10000 to GA::ga() using the dots.

• segment_ga_coen(): Coen’s algorithm is the one used in doi:10.1007/9783031473722_20.
Note that the speed of the algorithm is highly sensitive to the size of the changepoint sets under
consideration, with large changepoint sets being slow. Consider setting the population argu-
ment to GA::ga() to improve performance. Coen’s algorithm uses the build_gabin_population()
function for this purpose by default.

• segment_ga_random(): Randomly select candidate changepoint sets. This is implemented as
a genetic algorithm with only one generation (i.e., maxiter = 1). Note that this function uses
log_gabin_population() by default.

Value

A tidyga object. This is just a GA::ga() object with an additional slot for data (the original time
series) and model_fn_args (captures the model_fn and penalty_fn arguments).

References

Shi, et al. (2022, doi:10.1175/JCLID210489.1)

Taimal, et al. (2023, doi:10.1007/9783031473722_20)

https://doi.org/10.1175/JCLI-D-21-0489.1
https://doi.org/10.1007/978-3-031-47372-2_20
https://doi.org/10.1175/JCLI-D-21-0489.1
https://doi.org/10.1007/978-3-031-47372-2_20

54 segment_manual

See Also

build_gabin_population()

log_gabin_population()

Examples

Segment a time series using a genetic algorithm
res <- segment_ga(CET, maxiter = 5)
summary(res)
str(res)
plot(res)

Segment a time series using Shi's algorithm
x <- segment(CET, method = "ga-shi", maxiter = 5)
str(x)

Segment a time series using Coen's algorithm
y <- segment(CET, method = "ga-coen", maxiter = 5)
changepoints(y)

Segment a time series using Coen's algorithm and an arbitrary threshold
z <- segment(CET, method = "ga-coen", maxiter = 5,

model_fn_args = list(threshold = 2))
changepoints(z)

Not run:
This will take a really long time!
x <- segment(CET, method = "ga-shi", maxiter = 500, run = 100)
changepoints(x)

This will also take a really long time!
y <- segment(CET, method = "ga", model_fn = fit_lmshift, penalty_fn = BIC,

popSize = 200, maxiter = 5000, run = 1000,
model_fn_args = list(trends = TRUE),
population = build_gabin_population(CET)

)

End(Not run)

Not run:
x <- segment(method = "ga-coen", maxiter = 50)

End(Not run)

x <- segment(CET, method = "random")

segment_manual Manually segment a time series

segment_pelt 55

Description

Segment a time series by manually inputting the changepoint set

Usage

segment_manual(x, tau, ...)

Arguments

x A time series

tau a set of indices representing a changepoint set

... arguments passed to seg_cpt

Details

Sometimes you want to see how a manually input set of changepoints performs. This function takes
a time series and a changepoint detection set as inputs and returns a seg_cpt object representing the
segmenter. Note that by default fit_meanshift_norm() is used to fit the model and BIC() is used
as the penalized objective function.

Value

A seg_cpt object

Examples

Segment a time series manually
segment_manual(CET, tau = c(84, 330))
segment_manual(CET, tau = NULL)

segment_pelt Segment a time series using the PELT algorithm

Description

Segmenting functions for the PELT algorithm

Usage

segment_pelt(x, model_fn = fit_meanvar, ...)

Arguments

x A time series

model_fn A character or name coercible into a fun_cpt function. See, for example,
fit_meanshift_norm(). The default is fit_meanvar().

... arguments passed to changepoint::cpt.meanvar() or changepoint::cpt.mean()

56 seg_params

Details

This function wraps either changepoint::cpt.meanvar() or changepoint::cpt.mean().

Value

A cpt object returned by changepoint::cpt.meanvar() or changepoint::cpt.mean()

Examples

Segment a time series using PELT
res <- segment_pelt(DataCPSim)
res
str(res)

Segment as time series while specifying a penalty function
segment_pelt(DataCPSim, penalty = "BIC")

Segment a time series while specifying a meanshift normal model
segment_pelt(DataCPSim, model_fn = fit_meanshift_norm, penalty = "BIC")

seg_params Retrieve parameters from a segmenter

Description

Retrieve parameters from a segmenter

Usage

seg_params(object, ...)

S3 method for class 'seg_cpt'
seg_params(object, ...)

S3 method for class 'ga'
seg_params(object, ...)

S3 method for class 'cpt'
seg_params(object, ...)

S3 method for class 'cptga'
seg_params(object, ...)

S3 method for class 'segmented'
seg_params(object, ...)

S3 method for class 'breakpointsfull'

SIC 57

seg_params(object, ...)

S3 method for class 'wbs'
seg_params(object, ...)

Arguments

object A segmenter object.

... currently ignored

Details

Most segmenting algorithms have parameters. This function retrieves an informative set of those
parameter values.

Value

A named list of parameters with their values.

See Also

Other segmenter-functions: as.segmenter(), fitness(), model_args()

Examples

Segment a time series using PELT
x <- segment(CET, method = "pelt")
x |>

as.segmenter() |>
seg_params()

SIC Schwarz information criterion

Description

Schwarz information criterion

Usage

SIC(object, ...)

Arguments

object a fitted model object for which there exists a logLik method to extract the cor-
responding log-likelihood, or an object inheriting from class logLik.

... optionally more fitted model objects.

58 tau2time

Value

The value of stats::BIC()

See Also

stats::BIC(), stats::AIC()

Other penalty-functions: BMDL(), HQC(), MBIC(), MDL()

Examples

The SIC is just the BIC
SIC(fit_meanvar(CET, tau = NULL))
BIC(fit_meanvar(CET, tau = NULL))

tau2time Convert changepoint sets to time indices

Description

Convert changepoint sets to time indices

Usage

tau2time(tau, index)

time2tau(cpts, index)

Arguments

tau a numeric vector of changepoint indices

index Index of times, typically returned by stats::time()

cpts Time series observation labels to be converted to indices

Value

• tau2time(): a character of time labels

• time2tau(): an integer vector of changepoint indices

See Also

stats::time(), as_year()

tbl_coef 59

Examples

Recover the years from a set of changepoint indices
tau2time(c(42, 81, 330), index = as_year(time(CET)))

Recover the changepoint set indices from the years
time2tau(c(1700, 1739, 1988), index = as_year(time(CET)))

tbl_coef Format the coefficients from a linear model as a tibble

Description

Format the coefficients from a linear model as a tibble

Usage

tbl_coef(mod, ...)

Arguments

mod An lm model object

... currently ignored

Value

A tibble::tbl_df object containing the fitted coefficients.

Examples

Convert a time series into a data frame with indices
ds <- data.frame(y = as.ts(CET), t = 1:length(CET))

Retrieve the coefficients from a null model
tbl_coef(lm(y ~ 1, data = ds))

Retrieve the coefficients from a two changepoint model
tbl_coef(lm(y ~ (t >= 42) + (t >= 81), data = ds))

Retrieve the coefficients from a trendshift model
tbl_coef(lm(y ~ poly(t, 1, raw = TRUE) * (t >= 42) + poly(t, 1, raw = TRUE) * (t >= 81), data = ds))

Retrieve the coefficients from a quadratic model
tbl_coef(lm(y ~ poly(t, 2, raw = TRUE) * (t >= 42) + poly(t, 2, raw = TRUE) * (t >= 81), data = ds))

60 tidycpt-class

test_set Simulate time series with known changepoint sets

Description

Simulate time series with known changepoint sets

Usage

test_set(n = 1, sd = 1, seed = NULL)

Arguments

n Number of true changepoints in set
sd Standard deviation passed to stats::rnorm()

seed Value passed to base::set.seed()

Value

A stats::ts() object

See Also

DataCPSim

Examples

x <- test_set()
plot(x)
changepoints(x)

tidycpt-class Container class for tidycpt objects

Description

Container class for tidycpt objects

Details

Every tidycpt object contains:

• segmenter: The object returned by the underlying changepoint detection algorithm. These
can be of arbitrary class. Use as.segmenter() to retrieve them.

• model: A model object inheriting from mod_cpt, as created by as.model() when called on
the segmenter.

• elapsed_time: The clock time that passed while the algorithm was running.
• time_index: If available, the labels for the time indices of the time series.

whomademe 61

Value

A tidycpt object.

Examples

Segment a time series using PELT
x <- segment(CET, method = "pelt")
class(x)
str(x)

whomademe Recover the function that created a model

Description

Recover the function that created a model

Usage

whomademe(x, ...)

Arguments

x A character giving the name of a model. To be passed to model_name().

... currently ignored

Details

Model objects (inheriting from mod_cpt) know the name of the function that created them. whomademe()
returns that function.

Value

A function

See Also

Other model-fitting: fit_arima(), fit_lmshift(), fit_meanshift(), fit_meanvar(), fit_nhpp(),
model_args(), model_name(), new_fun_cpt()

Examples

Get the function that made a model
f <- whomademe(fit_meanshift_norm(CET, tau = 42))
str(f)

Index

∗ datasets
bogota_pm, 9
CET, 11
DataCPSim, 15
italy_grads, 29
mde_rain, 34
mlb_diffs, 36

∗ model-fitting
fit_arima, 22
fit_lmshift, 23
fit_meanshift, 24
fit_meanvar, 26
fit_nhpp, 27
model_args, 36
model_name, 38
new_fun_cpt, 40
whomademe, 61

∗ penalty-functions
BMDL, 8
HQC, 28
MBIC, 32
MDL, 35
SIC, 57

∗ segmenter-functions
as.segmenter, 5
fitness, 20
model_args, 36
seg_params, 56

∗ tidycpt-generics
as.model, 3
as.segmenter, 5
changepoints, 12
diagnose, 17
fitness, 20
model_name, 38

AIC(), 53
as.model, 3, 6, 13, 17, 21, 39
as.model(), 4, 42, 60
as.seg_cpt (as.segmenter), 5

as.seg_cpt(), 6
as.segmenter, 4, 5, 13, 17, 21, 37, 39, 57
as.segmenter(), 6, 60
as_year, 7
as_year(), 58

base::as.Date(), 7
base::attributes(), 35
base::cut(), 15
base::Date, 7
base::factor(), 15, 45, 49
base::list(), 15
base::set.seed(), 60
base::split(), 15
base::unique(), 45
BIC, 52, 53
BIC(), 53, 55
binary2tau, 7
binary2tau(), 8
BMDL, 8, 27, 28, 32, 35, 58
BMDL(), 53
bogota_pm, 9, 16
build_gabin_population, 10
build_gabin_population(), 10, 53, 54

CET, 11
changepoint::cpt.mean(), 50, 55, 56
changepoint::cpt.meanvar(), 26, 50, 51,

55, 56
changepointGA::ARIMA.BIC(), 22
changepointGA::cptga(), 50, 52
changepoints, 4, 6, 12, 17, 21, 39
changepoints(), 13
compare_algorithms (compare_models), 13
compare_algorithms(), 14
compare_models, 13
compare_models(), 14
cut_by_tau, 14
cut_by_tau(), 15

62

INDEX 63

DataCPSim, 15, 60
deg_free, 16
diagnose, 4, 6, 13, 17, 21, 39

exceedances, 18, 27, 33

file_name, 19
file_name(), 19
fit_arima, 22, 23, 25–27, 37, 39, 41, 61
fit_lmshift, 22, 23, 25–27, 37, 39, 41, 61
fit_lmshift(), 25
fit_lmshift_ar1 (fit_lmshift), 23
fit_lmshift_ar1(), 23
fit_meanshift, 22, 23, 24, 26, 27, 37, 39, 41,

61
fit_meanshift_lnorm (fit_meanshift), 24
fit_meanshift_lnorm(), 25
fit_meanshift_norm (fit_meanshift), 24
fit_meanshift_norm(), 23, 25, 41, 52, 53, 55
fit_meanshift_norm_ar1 (fit_meanshift),

24
fit_meanshift_norm_ar1(), 25
fit_meanvar, 22, 23, 25, 26, 27, 37, 39, 41, 61
fit_meanvar(), 55
fit_nhpp, 22, 23, 25, 26, 27, 37, 39, 41, 61
fit_nhpp(), 9, 33, 48
fit_trendshift (fit_lmshift), 23
fit_trendshift(), 23
fit_trendshift_ar1 (fit_lmshift), 23
fit_trendshift_ar1(), 23
fitness, 4, 6, 13, 17, 20, 37, 39, 57
fitness(), 19
fun_cpt, 41, 53, 55
fun_cpt (new_fun_cpt), 40
fun_cpt(), 41

GA::ga(), 8, 10, 50, 51, 53
GA::gabin_Population(), 7, 10
ggplot2::ggplot(), 17, 47, 48
glance(), 14

HQC, 9, 28, 32, 35, 58

is_model (as.model), 3
is_model(), 4
is_segmenter (as.segmenter), 5
is_segmenter(), 6
is_valid_tau (pad_tau), 45
is_valid_tau(), 45

italy_grads, 29
iweibull, 29

list(), 43, 44, 53
log_gabin_population

(build_gabin_population), 10
log_gabin_population(), 10, 53, 54
logLik(), 35
ls_coverage (ls_models), 31
ls_cpt_penalties (ls_models), 31
ls_methods (ls_models), 31
ls_models, 31
ls_penalties (ls_models), 31
ls_pkgs (ls_models), 31

MBIC, 9, 28, 32, 35, 58
MBIC(), 53
mcdf, 33
mde_rain, 34
mde_rain_monthly (mde_rain), 34
MDL, 9, 28, 32, 35, 58
MDL(), 9, 53
mean(), 19
mlb_diffs, 36
mod_cpt, 4, 12, 22, 23, 25–27, 42, 60, 61
mod_cpt (new_mod_cpt), 41
model_args, 6, 21–23, 25–27, 36, 39, 41, 57,

61
model_args(), 37
model_name, 4, 6, 13, 17, 21–23, 25–27, 37,

38, 41, 61
model_name(), 39, 61
model_variance, 40
multitaper::CETmonthly, 11
mweibull (iweibull), 29

new_fun_cpt, 22, 23, 25–27, 37, 39, 40, 61
new_mod_cpt, 41
new_seg_basket, 43
new_seg_cpt, 44
nobs(), 40

pad_tau, 45
pad_tau(), 45
parameters_weibull (iweibull), 29
parameters_weibull(), 30
plot.tidyga, 46
plot_best_chromosome, 47
plot_best_chromosome(), 47

64 INDEX

plot_cpt_repeated
(plot_best_chromosome), 47

plot_cpt_repeated(), 47
plot_intensity, 48
plot_intensity(), 33

regions, 49
regions_tau (pad_tau), 45
regions_tau(), 45
residuals(), 40
rlnorm_ts_1 (DataCPSim), 15
rlnorm_ts_2 (DataCPSim), 15
rlnorm_ts_3 (DataCPSim), 15

seg_basket (new_seg_basket), 43
seg_basket(), 43, 47, 51
seg_cpt, 6, 44, 51, 55
seg_cpt (new_seg_cpt), 44
seg_params, 6, 21, 37, 56
segment, 49
segment(), 3, 6, 31, 50
segment_coen(), 51
segment_cptga, 51
segment_cptga(), 50, 52
segment_ga, 52
segment_ga(), 10, 50, 51, 53
segment_ga_coen (segment_ga), 52
segment_ga_coen(), 51, 53
segment_ga_random (segment_ga), 52
segment_ga_random(), 51, 53
segment_ga_shi (segment_ga), 52
segment_ga_shi(), 51, 53
segment_manual, 54
segment_pelt, 55
segment_pelt(), 50
segmented::segmented(), 50
SIC, 9, 28, 32, 35, 57
split_by_tau (cut_by_tau), 14
split_by_tau(), 15
stats::AIC(), 28, 58
stats::arima(), 22
stats::BIC(), 28, 32, 58
stats::dgamma(), 30
stats::dweibull(), 29, 30
stats::lm(), 23, 25
stats::logLik(), 16, 17
stats::poly(), 23
stats::rlnorm(), 15
stats::rnorm(), 60

stats::time(), 58
stats::ts, 10, 19, 50
stats::ts(), 16, 43, 44, 60
stats::var(), 40
strucchange::breakpoints(), 50

tau2binary (binary2tau), 7
tau2binary(), 8
tau2time, 58
tau2time(), 58
tbl_coef, 59
test_set, 60
test_set(), 13, 16
tibble::tbl_df, 14, 59
tibble::tibble, 31
tibble::tibble(), 42
tidycpt, 3–6, 12–14, 17, 19, 49, 51, 61
tidycpt-class, 60
time2tau (tau2time), 58
time2tau(), 58

unpad_tau (pad_tau), 45
unpad_tau(), 45

validate_fun_cpt (new_fun_cpt), 40
validate_mod_cpt (new_mod_cpt), 41
validate_tau (pad_tau), 45
validate_tau(), 45

wbs::changepoints(), 13
wbs::wbs(), 50, 51
whomademe, 22, 23, 25–27, 37, 39, 41, 61
whomademe(), 39, 61

	as.model
	as.segmenter
	as_year
	binary2tau
	BMDL
	bogota_pm
	build_gabin_population
	CET
	changepoints
	compare_models
	cut_by_tau
	DataCPSim
	deg_free
	diagnose
	exceedances
	file_name
	fitness
	fit_arima
	fit_lmshift
	fit_meanshift
	fit_meanvar
	fit_nhpp
	HQC
	italy_grads
	iweibull
	ls_models
	MBIC
	mcdf
	mde_rain
	MDL
	mlb_diffs
	model_args
	model_name
	model_variance
	new_fun_cpt
	new_mod_cpt
	new_seg_basket
	new_seg_cpt
	pad_tau
	plot.tidyga
	plot_best_chromosome
	plot_intensity
	regions
	segment
	segment_cptga
	segment_ga
	segment_manual
	segment_pelt
	seg_params
	SIC
	tau2time
	tbl_coef
	test_set
	tidycpt-class
	whomademe
	Index

