## ----eval=FALSE--------------------------------------------------------------- # install.packages("sparsevar", repos = "http://cran.us.r-project.org") ## ----eval=FALSE--------------------------------------------------------------- # install.packages("devtools", repos = "http://cran.us.r-project.org") # devtools::install_github("svazzole/sparsevar") ## ----------------------------------------------------------------------------- library(sparsevar) ## ----cache = TRUE------------------------------------------------------------- set.seed(1) sim <- simulate_var(n = 20, p = 2) ## ----cache = TRUE------------------------------------------------------------- fit <- fit_var(sim$series, p = 2) fit_2 <- fit_var(sim$series, p = 2, threshold = TRUE) ## ----warning=FALSE------------------------------------------------------------ plot_var(sim, fit, fit_2) ## ----eval=FALSE--------------------------------------------------------------- # irf <- impulse_response(fit) # eb <- error_bands_irf(fit, irf) ## ----eval=FALSE--------------------------------------------------------------- # results <- fit_var(rets) ## ----eval=FALSE--------------------------------------------------------------- # results <- fit_var(rets, p = 3, penalty = "ENET", parallel = TRUE, # ncores = 5, alpha = 0.95, type.measure = "mae", # lambda = "lambda.1se") ## ----eval = TRUE-------------------------------------------------------------- irf_2 <- impulse_response(fit_2) eb_2 <- error_bands_irf(fit_2, irf_2, verbose = FALSE) plot_irf_grid(irf_2, eb_2, indexes = c(2, 3, 4, 11)) ## ----eval=FALSE--------------------------------------------------------------- # sim <- simulate_var(n = 100, nobs = 250, rho = 0.75, # sparsity = 0.05, method = "normal")