
Shrinkage in the Time-Varying Parameter Model

Framework Using the R Package shrinkTVP

Peter Knaus

WU Vienna

Angela Bitto-Nemling Annalisa Cadonna

AI CoE, Crayon Austria

Sylvia Frühwirth-Schnatter

WU Vienna

Abstract

Time-varying parameter (TVP) models are widely used in time series analysis to flexi-
bly deal with processes which gradually change over time. However, the risk of overfitting
in TVP models is well known. This issue can be dealt with using appropriate global-local
shrinkage priors, which pull time-varying parameters towards static ones. In this paper,
we introduce the R package shrinkTVP (Knaus, Bitto-Nemling, Cadonna, and Frühwirth-
Schnatter 2020), which provides a fully Bayesian implementation of shrinkage priors for
TVP models, taking advantage of recent developments in the literature, in particular
those of Bitto and Frühwirth-Schnatter (2019) and Cadonna, Frühwirth-Schnatter, and
Knaus (2020). The package shrinkTVP allows for posterior simulation of the parameters
through an efficient Markov Chain Monte Carlo scheme. Moreover, summary and visu-
alization methods, as well as the possibility of assessing predictive performance through
log-predictive density scores, are provided. The computationally intensive tasks have been
implemented in C++ and interfaced with R. The paper includes a brief overview of the
models and shrinkage priors implemented in the package. Furthermore, core functionali-
ties are illustrated, both with simulated and real data.

Keywords: Bayesian inference, Gibbs sampler, Markov chain Monte Carlo (MCMC), normal-
gamma prior, time-varying parameter (TVP) models, log-predictive density scores.

1. Introduction

Time-varying parameter (TVP) models are widely used in time series analysis, because of
their flexibility and ability to capture gradual changes in the model parameters over time.
The popularity of TVP models in macroeconomics and finance is based on the fact that, in
most applications, the influence of certain predictors on the outcome variables varies over time
(Primiceri 2005; Dangl and Halling 2012; Belmonte, Koop, and Korobolis 2014). TVP models,
while capable of reproducing salient features of the data in a very effective way, present a
concrete risk of overfitting, as often only a small subset of the parameters are time-varying.
Hence, in the last decade, there has been a growing need for models and methods able to
discriminate between time-varying and static parameters in TVP models. A key contribution
in this direction was the introduction of the non-centered parameterization of TVP models in

2 Shrinkage for TVP Models Using shrinkTVP

Frühwirth-Schnatter and Wagner (2010), which recasts the problem of variance selection and
shrinkage in terms of variable selection, thus allowing any tool used to this end in multiple
regression models to be used to perform selection or shrinkage of variances. Frühwirth-
Schnatter and Wagner (2010) employ a spike and slab prior, while continuous shrinkage priors
have been utilised as a regularization alternative in, e.g., Belmonte et al. (2014), Bitto and
Frühwirth-Schnatter (2019) and Cadonna et al. (2020). For an excellent review of shrinkage
priors, with a particular focus on high dimensional regression, the reader is directed to Bhadra,
Datta, Polson, and Willard (2017).

In this paper, we describe the R package shrinkTVP (Knaus et al. 2020) for Bayesian TVP
models with shrinkage. The package is available under the general public license (GPL ≥
2) from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/

package=shrinkTVP. The package efficiently implements recent developments in the Bayesian
literature, in particular the ones presented in Bitto and Frühwirth-Schnatter (2019) and
Cadonna et al. (2020). The computationally intensive Markov chain Monte Carlo (MCMC)
algorithms in the package are written in C++ and interfaced with R (R Core Team 2017)
via the Rcpp (Eddelbuettel and Balamuta 2017) and the RcppArmadillo (Eddelbuettel and
Sanderson 2014) packages. This approach combines the ease-of-use of R and its underlying
functional programming paradigm with the computational speed of C++.

The package shrinkTVP is designed to provide an easy entry point for fitting TVP models
with shrinkage priors, while also giving more experienced users the option to adapt the model
to their needs. This is achieved by providing a robust baseline model that can be estimated
by only passing the data, while also allowing the user to specify more advanced options.
Additionally, the shrinkTVP package is designed to ensure compatibility with well-known
times series formats and to complement other packages. As input objects, time series from
the R packages zoo (Zeileis and Grothendieck 2005) and xts (Ryan and Ulrich 2018) as
well as time series formats like ts are supported. Estimation output is compatible with
the popular R package coda (Plummer, Best, Cowles, and Vines 2006) which can be easily
applied for convergence diagnostic tests, among others. Coupled with intuitive summary and
plot methods, shrinkTVP is a package that is easy to use while remaining highly flexible.

shrinkTVP is, to our knowledge, the only R package that combines TVP models with shrink-
age priors on the time-varying components in a Bayesian framework. Several R packages
deal with statistical inference for various specific classes of state space models, of which TVP
models are a special case. The most popular R package in this field is dlm (Petris 2010), a com-
prehensive package providing routines for maximum likelihood estimation, Kalman filtering
and smoothing, and Bayesian analysis for dynamic linear models (DLMs). The accompany-
ing book (Petris, Petrone, and Campagnoli 2009) introduces the methodology and many R

code examples. As of now, priors are not designed to encourage shrinkage and shrinkTVP

complements dlm in this regard.

The R package bvarsv (Krueger 2015) implements Bayesian inference for vector autoregressive
(VAR) models with time-varying parameters (TVP-VAR) and stochastic volatility for multi-
variate time series as introduced by (Primiceri 2005). We refer to (Del Negro and Primiceri
2015) for details on the MCMC algorithm and a later correction of the original scheme. In
addition to the very user friendly estimation function bvar.sv.tvp, bvarsv provides poste-
rior predictive distributions and enables impulse response analysis. The package includes the
macroeconomic data set analysed in (Primiceri 2005) as example data set, usmacro.update,
which we use in our predictive exercise in Section 5 to showcast the effect of introducing

https://cran.r-project.org/package=shrinkTVP
https://cran.r-project.org/package=shrinkTVP

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 3

shrinkage priors on time-varying parameters.

Additional packages emerged very recently. The R package tvReg (Casas and Fernandez-Casal
2019) presents a user friendly compendium of many common linear TVP models, including
standard linear regression as well as autoregressive, seemingly unrelated equation and VAR
models. Estimation is based on kernel smoothing techniques. For an illustrative application,
a TVP-VAR(4) model is fitted to the usmacro.update data set mentioned above, using the
function tvVAR. The R package walker (Helske 2019) facilitates the estimation of DLMs and
generalized DLMs using MCMC algorithms provided by Stan (Carpenter, Gelman, Hoffman,
Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell 2017). For inference, the im-
portance sampling method of (Vihola, Helske, and Franks 2017) is implemented within a
Hamiltonian Monte Carlo framework. The R package bsts (Scott 2019) performs Bayesian
analysis for structural time series models, a highly relevant class of state space models in-
cluding DLMs. bsts is a very powerful package that allows shrinkage for static regression
coefficients using spike and slab priors. However, as for any other packages mentioned above,
variation of the dynamic components is not regularized in bsts.

A main contribution of the package shrinkTVP is bridging the active field of R packages for
state space models with the even more active field of R packages that provide regularization
and shrinkage methods for common regression type models.

Among others, ncvreg (Breheny and Huang 2011) is useful for fitting standard penalized
regression estimators, glmnet (Friedman, Hastie, and Tibshirani 2010) allows elastic-net reg-
ularization for a variety of models, horseshoe (van der Pas, Scott, Chakraborty, and Bhat-
tacharya 2016) implements the horseshoe prior, while shrink (Dunkler, Sauerbrei, and Heinze
2016) provides various shrinkage methods for linear, generalized linear, and Cox regression
models. biglasso (Zeng and Breheny 2017) aims at very fast lasso-type regularization for high-
dimensional linear regression. Recent R packages include NormalBetaPrime (Bai and Ghosh
2019) for Bayesian univariate and MBSP (Bai and Ghosh 2018) for Bayesian multivariate
linear regression analysis using, respectively, the normal-beta prime and the three parameter
beta normal family for inducing shrinkage. The R package monomvn (Gramacy 2019) em-
ploys a normal-gamma prior in the specific situation of Bayesian inference for multivariate
normal and Student-t data with a monotone pattern of missing data.

The remainder of the paper is organized as follows. Section 2 briefly introduces TVP mod-
els and normal-gamma-gamma shrinkage priors, and describes the MCMC algorithms for
posterior simulation. The package shrinkTVP is introduced in Section 3. In particular, we
illustrate how to run the MCMC sampler using the main function shrinkTVP, how to choose a
specific model, and how to conduct posterior inference using the return object of shrinkTVP.
Section 4 explains how to assess model performance by calculating log-predictive density
scores (LPDSs), and how to use LPDSs to compare the predictive performances of different
priors. This is illustrated using the usmacro.update data set. Finally, Section 6 concludes
the paper.

2. Model specification and estimation

4 Shrinkage for TVP Models Using shrinkTVP

2.1. TVP models

Let us recall the state space form of a TVP model. For t = 1, . . . , T , we have that

yt = xtβt + ϵt, ϵt ∼ N (0, σ2
t),

βt = βt−1 +wt, wt ∼ Nd(0, Q),
(1)

where yt is a univariate response variable and xt = (xt1, xt2, . . . , xtd) is a d-dimensional
row vector containing the regressors at time t, with xt1 corresponding to the intercept. For
simplicity, we assume here that Q = Diag(θ1, . . . , θd) is a diagonal matrix, implying that the
state innovations are conditionally independent. Moreover, we assume the initial value follows
a normal distribution, i.e., β0 ∼ Nd(β, Q), with initial mean β = (β1, . . . , βd). Model (1) can
be rewritten equivalently in the non-centered parametrization as

yt = xtβ + xtDiag(
√

θ1, . . . ,
√

θd)β̃t + ϵt, ϵt ∼ N (0, σ2
t),

β̃t = β̃t−1 + ũt, ũt ∼ Nd(0, Id),
(2)

with β̃0 ∼ Nd(0, Id), where Id is the d-dimensional identity matrix.

shrinkTVP is capable of modelling the observation error both homoscedastically, i.e., σ2
t ≡ σ2

for all t = 1, . . . , T and heteroscedastically, via a stochastic volatility (SV) specification. In
the latter case, the log-volatility ht = log σ2

t follows an AR(1) model (Jacquier, Polson, and
Rossi 1994; Kastner and Frühwirth-Schnatter 2014; Kastner 2016). More specifically,

ht|ht−1, µ, ϕ, σ2
η ∼ N

(

µ + ϕ(ht−1 − µ), σ2
η

)

, (3)

with initial state h0 ∼ N
(

µ, σ2
η/(1 − ϕ2)

)

. The stochastic volatility model on the errors can

prevent the detection of spurious variations in the TVP coefficients (Nakajima 2011; Sims
2001) by capturing some of the variability in the error term.

2.2. Prior Specification

Shrinkage priors on variances and model parameters

We place conditionally independent normal-gamma-gamma (NGG) priors (Cadonna et al.
2020; ?), both on the standard deviations of the innovations, that is the

√

θj ’s, and on
the means of the initial value βj , for j = 1, . . . , d. Note that, in the case of the standard
deviations, this can equivalently be seen as a triple gamma prior on the innovation variances
θj , for j = 1, . . . , d. The NGG can be represented as a conditionally normal distribution,
where the component specific variance is itself a compound probability distribution resulting
from two gamma distributions. In this representation, it looks as follows

√
θj |ξ2

j ∼ N
(

0, ξ2
j

)

, ξ2
j |aξ, κ2

j ∼ G
(

aξ,
aξκ2

j

2

)

, κ2
j |cξ, κ2

B ∼ G
(

cξ,
cξ

κ2
B

)

(4)

βj |τ2
j ∼ N

(

0, τ2
j

)

, τ2
j |aτ , λ2

j ∼ G
(

aτ ,
aτ λ2

j

2

)

λ2
j |cτ , λ2

B ∼ G
(

cτ ,
cτ

λ2
B

)

. (5)

Letting cξ and cτ go to infinity results in a normal-gamma (NG) prior (Griffin and Brown
2010) on the

√
θj ’s and βj ’s. It has a representation as a conditionally normal distribution,

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 5

with the component specific variance following a gamma distribution, that is

√
θj |ξ2

j ∼ N
(

0, ξ2
j

)

, ξ2
j |aξ, κ2

B ∼ G
(

aξ,
aξκ2

B

2

)

, (6)

βj |τ2
j ∼ N

(

0, τ2
j

)

, τ2
j |aτ , λ2

B ∼ G
(

aτ ,
aτ λ2

B

2

)

. (7)

From here, letting aξ and aτ go to infinity yields a normal prior with fixed variance, also
known as ridge regression:

√
θj |κ2

B ∼ N
(

0,
2

κ2
B

)

, (8)

βj |λ2
B ∼ N

(

0,
2

λ2
B

)

. (9)

We refer to aξ and aτ as the pole parameters, as marginally more mass is placed around zero
as they become smaller. cξ and cτ are referred to as the tail parameters, as they control
the amount of mass in the tails of the distribution, with smaller values equating to heavier
tails. Finally, the parameters κ2

B and λ2
B are dubbed the global shrinkage parameters, as they

influence how strongly all parameters are pulled to zero. The larger κ2
B and λ2

B, the stronger
this effect.

One of the key benefits of the NGG prior is that many interesting shrinkage priors are
contained within it as special or limiting cases. Beyond the NG prior mentioned above,
two such cases are the horseshoe prior (?) and the Bayesian Lasso (Park and Casella 2008).
The former results from an NGG prior with the pole and tail parameters equal to 0.5, while
the latter is a special case of the NG prior with a pole parameter fixed to one. As the
connection between the NGG prior and the horseshoe prior may not be entirely obvious from
the parameterization presented here, the interested reader is referred to Cadonna et al. (2020)
for details.

The parameters aξ, aτ , cξ, cτ , κ2
B and λ2

B can be learned from the data through appropriate
prior distributions. Results from Cadonna et al. (2020) motivate the use of different distribu-
tions for these parameters under the NGG and NG prior. In the NGG case, the scaled global
shrinkage parameters conditionally follow F distributions, depending on their respective pole
and tail parameters:

κ2
B

2
|aξ, cξ ∼ F (2aξ, 2cξ),

λ2
B

2
|aτ , cτ ∼ F (2aτ , 2cτ). (10)

The scaled tail and pole parameters, in turn, follow beta distributions:

2aξ ∼ B (αaξ , βaξ) , 2cξ ∼ B (αcξ , βcξ) , (11)

2aτ ∼ B (αaτ , βaτ) , 2cτ ∼ B (αcτ , βcτ) . (12)

These priors are chosen as they imply a uniform prior on a suitably defined model size, see
Cadonna et al. (2020) for details. In the NG case the global shrinkage parameters follow
independent gamma distributions:

κ2
B ∼ G(d1, d2), λ2

B ∼ G(e1, e2). (13)

6 Shrinkage for TVP Models Using shrinkTVP

In order to learn the pole parameters in the NG case, we generalize the approach taken in
Bitto and Frühwirth-Schnatter (2019) and place the following gamma distributions as priors:

aξ ∼ G(αaξ , αaξβaξ), aτ ∼ G(αaτ , αaτ βaτ), (14)

which correspond to the exponential priors used in Bitto and Frühwirth-Schnatter (2019)
when αaξ = 1 and αaτ = 1. The parameters αaξ and αaτ act as degrees of freedom and allow
the prior to be bounded away from zero.

Prior on the volatility parameter

In the homoscedastic case we employ a hierarchical prior, where the scale of an inverse gamma
prior for σ2 follows a gamma distribution, that is,

σ2|C0 ∼ G−1 (c0, C0) , C0 ∼ G (g0, G0) , (15)

with hyperparameters c0, g0, and G0.

In the case of stochastic volatility, the priors on the parameters µ, ϕ and σ2
η in Equation (3)

are chosen as in Kastner and Frühwirth-Schnatter (2014), that is

µ ∼ N (bµ, Bµ),
ϕ + 1

2
∼ B(aϕ, bϕ), σ2

η ∼ G(1/2, 1/2Bσ), (16)

with hyperparameters bµ, Bµ, aϕ, bϕ, and Bσ.

2.3. MCMC sampling algorithm

The package shrinkTVP implements an MCMC Gibbs sampling algorithm with Metropolis-
Hastings steps to obtain draws from the posterior distribution of the model parameters.
Here, we roughly sketch the sampling algorithm and refer the interested reader to Bitto and
Frühwirth-Schnatter (2019) and Cadonna et al. (2020) for further details.

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 7

Algorithm 1 Gibbs Sampling Algorithm

1. Sample the latent states β̃ = (β̃0, . . . , β̃T) in the non-centered parametrization from a
multivariate normal distribution;

2. Sample jointly β1, . . . , βd, and
√

θ1, . . . ,
√

θd in the non-centered parametrization from
a multivariate normal distribution;

3. Perform an ancillarity-sufficiency interweaving step and redraw each β1, . . . , βd from a
normal distribution and each θ1, . . . , θd from a generalized inverse Gaussian distribution
using GIGrvg (Leydold and Hörmann 2017);

4. Sample the prior variances ξ2
1 , . . . ξ2

d and τ2
1 , . . . τ2

d and the component specific hyper-
parameters. Sample (where required) the pole, tail and global shrinkage parameters.
In the NGG case, this is done by emplyoing steps (c) - (f) from Algorithm 1 in
Cadonna et al. (2020). In the NG case steps (d) and (e) from Algorithm 1 in
Bitto and Frühwirth-Schnatter (2019) are used. In the ridge regression case simply
set ξ2

j = 2/κ2
B and τ2

j = 2/λ2
B, for d = 1, . . . , d.

5. Sample the error variance σ2 from an inverse gamma distribution in the homoscedastic
case or, in the SV case, sample the level µ, the persistence ϕ, the volatility of the vola-
tility σ2

η and the log-volatilities h = (h0, . . . , hT) using stochvol (Kastner 2016).

Step 4 presents a fork in the algorithm, as different parameterizations are used in the NGG
and NG case, as to improve mixing. For details on the exact parameterization used in the
NGG case, see Cadonna et al. (2020). Additionally, not all sampling steps are performed in
all prior setups. If, for example, the user has defined that κ2

B should not be learned from the
data, then this step is not executed.

One key feature of the algorithm is the joint sampling of the time-varying parameters β̃t,
for t = 0, . . . , T in step 1 of Algorithm 1. We employ the procedure described in McCaus-
land, Miller, and Pelletier (2011) which exploits the sparse, block tri-diagonal structure of
the precision matrix of the full conditional distribution of β̃ = (β̃0, . . . , β̃T), to speed up
computations.

Moreover, as described in Bitto and Frühwirth-Schnatter (2019), in step 3 we make use of
the ancillarity-sufficiency interweaving strategy (ASIS) introduced by Yu and Meng (2011).
ASIS is well known to improve mixing by sampling certain parameters both in the centered
and non-centered parameterization. This strategy has been successfully applied to univariate
SV models (Kastner and Frühwirth-Schnatter 2014), multivariate factor SV models (Kast-
ner, Frühwirth-Schnatter, and Lopes 2017) and dynamic linear state space models (Simpson,
Niemi, and Roy 2017).

Adaptive Metropolis-within-Gibbs For the pole and tail parameters, no full condition-
als exist and a Metropolis-Hastings step has to be performed. To improve mixing, shrinkTVP

supports adaptive Metropolis-within-Gibbs as in ?. The algorithm works as follows. For each
parameter i that is being learned from the data, let si represent the standard deviation of
the proposal distribution. After the nth

i batch of mi iterations, update si according to the
following rule:

• increase the log of si by min(ci, n
1/2
i) if the acceptance rate of the previous batch was

above di or

8 Shrinkage for TVP Models Using shrinkTVP

• decrease the log of si by min(ci, n
1/2
i) if the acceptance rate of the previous batch was

below di.

The starting value of si, mi, ci and di can all be set by the user. Additionally, if adap-
tive Metropolis-within-Gibbs is not desired, it can be switched off and a simple Metropolis-
Hastings step will be performed.

3. The shrinkTVP package

3.1. Running the model

The core function of the package shrinkTVP is the function shrinkTVP, which serves as
an R-wrapper for the actual sampler coded in C++. The function works out-of-the-box,
meaning that estimation can be performed with minimal user input. With default settings,
the TVP model in Equation (1) is estimated in a Bayesian fashion with the NG prior defined
in equations (6), (7), (13) and (14) with the following choice for the hyperparameters: d1 =
d2 = e1 = e2 = 0.001, αaξ = αaτ = 5 and βaξ = βaτ = 10, implying a prior mean of
E(aξ) = E(aτ) = 0.1. The error is assumed to be homoscedastic, with prior defined in
Equation (15) and hyperparameters c0 = 2.5, g0 = 5, and G0 = g0/(c0 − 1).

The only compulsory argument is an object of class “formula”, which most users will be
familiar with (see, for example, the use in the function lm in the package stats (R Core Team
2017)). The second argument is an optional data frame, containing the response variable and
the covariates. Exemplary usage of this function is given in the code snippet below, along
with the default output. All code was on run on a personal computer with an Intel i5-8350U
CPU.

R> library("shrinkTVP")

R>

R> set.seed(123)

R> sim <- simTVP(theta = c(0.2, 0, 0), beta_mean = c(1.5, -0.3, 0))

R> data <- sim$data

R> res <- shrinkTVP(y ~ x1 + x2, data = data)

0% 10 20 30 40 50 60 70 80 90 100%

[----|----|----|----|----|----|----|----|----|----|

**|

Timing (elapsed): 3.403 seconds.

4408 iterations per second.

Converting results to coda objects and summarizing draws... Done!

Note that the data in the example is generated by the function simTVP, which can create
synthetic datasets of varying sizes for illustrative purposes. The inputs theta and beta can
be used to specify the true θ1, . . . , θd and β1, . . . , βd used in the data generating process, in
order to evaluate how well shrinkTVP recaptures these true values. The values correspond to
the ones used in the synthetic example of Bitto and Frühwirth-Schnatter (2019).

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 9

Shrinkage on
√

θj Shrinkage on βj

cξ aξ κ2

B
cτ aτ λ2

B

NGG prior

Fully hierarchical NGG B (αcξ , βcξ) B (αaξ , βaξ) F (2aξ, 2cξ) B (αcτ , βcτ) B (αaτ , βaτ) F (2aτ , 2cτ)

Hierarchical NGG fixed fixed F (2aξ, 2cξ) fixed fixed F (2aτ , 2cτ)

NGG fixed fixed fixed fixed fixed fixed

Hierarchical Horseshoe fixed at 0.5 fixed at 0.5 F (2aξ, 2cξ) fixed at 0.5 fixed at 0.5 F (2aτ , 2cτ)

Horseshoe fixed at 0.5 fixed at 0.5 fixed fixed at 0.5 fixed at 0.5 fixed

NG prior

Fully hierarchical NG - G(αaξ , αaξ βaξ) G(d1, d2) - G(αaτ , αaτ βaτ) G(e1, e2)

Hierarchical NG - fixed G(d1, d2) - fixed G(e1, e2)

NG - fixed fixed - fixed fixed

Bayesian Lasso - fixed at 1 fixed - fixed at 1 fixed

Ridge regression - - fixed - - fixed

Table 1: Overview of different possible model specifications. Note that in the NGG prior
case, the priors on the hyperparameters are scaled (e.g. 2aξ ∼ B(αaξ , βaξ)). These scalings
are omitted from this table for the sake of brevity. See Section 2.2 for details.

The user can specify the following MCMC algorithm parameters: niter, which determines
the number of MCMC iterations including the burn-in, nburn, which equals the number
of MCMC iterations discarded as burn-in, and nthin, indicating the thinning parameter,
meaning that every nthin-th draw is kept and returned. The default values are niter =

10000, nburn = round(niter/2) and nthin = 1.

The user is strongly encouraged to check convergence of the produced Markov chain, especially
for a large number of covariates. The output is made coda compatible, so that the user can
utilize the tools provided by the excellent R package to assess convergence.

3.2. Specifying the priors

More granular control over the prior setup can be exercised by passing additional arguments to
shrinkTVP. The most important argument in this regard is mod_type, which is used to specify
whether the normal-gamma-gamma (mod_type = "triple"), the normal-gamma (mod_type

= "double") or ridge regression (mod_type = "ridge") is used. Beyond this, the user can
specify the hyperparameters given in Section 2.2 and has the possibility to fix one or both
of the values of the global shrinkage parameters (κ2

B, λ2
B) and the pole and tail parameters

(aτ , aξ, cτ , cξ). By default, these parameters are learned from the data. The benefit of this
flexibility is twofold: on the one hand, desired degrees of sparsity and global shrinkage can be
achieved through fixing the hyperparameters; on the other hand, interesting special cases arise
from setting certain values of hyperparameters. Under an NGG prior, for example, setting the
pole and tail parameters equal to 1/2 results in a horseshoe prior on the

√
θj ’s and the βj ’s,

respectively. If the user desires a higher degree of sparsity, this can be achieved by setting
the pole parameters to a value closer to zero. Table 1 gives an overview of different model
specifications. Note that different hyperparameter values can be chosen for the variances and
the means of the initial values.

In the following, we give some examples of models that can be estimated with the shrinkTVP

10 Shrinkage for TVP Models Using shrinkTVP

package. In particular, we demonstrate how certain combinations of input arguments corre-
spond to different model specifications. If the learning of a parameter is deactivated and no
specific fixed value is provided, shrinkTVP will resort to default values. These equate to 0.1
for the pole and tail parameters and 20 for the global shrinkage parameters. Note that in the
following snippets of code, the argument display_progress is always set to FALSE, in order
to suppress the progress bar and other outputs.

Fixing the pole parameters It is possible to set the pole parameter aξ(aτ) to a fixed
value through the input argument a_xi (a_tau), after setting learn_a_xi (learn_a_tau) to
FALSE. As an example, we show how to fit a hierarchical Bayesian Lasso, both on the

√

θj ’s
and on the βj ’s:

R> res_hierlasso <- shrinkTVP(y ~ x1 + x2, data = data,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ a_xi = 1, a_tau = 1, display_progress = FALSE)

Fixing the global shrinkage parameters The user can choose to fix the value of κ2
B(λ2

B)
by specifying the argument kappa2_B (lambda2_B), after setting learn_kappa2_B (learn_lambda2_B)
to FALSE. In the code below, we give an example on how to fit a (non-hierarchical) Bayesian
Lasso on both

√

θj ’s and βj ’s, with corresponding global shrinkage parameters fixed both to
100:

R> res_lasso <- shrinkTVP(y ~ x1 + x2, data = data,

+ learn_a_xi = FALSE, learn_a_tau = FALSE, a_xi = 1, a_tau = 1,

+ learn_kappa2_B = FALSE, learn_lambda2_B = FALSE,

+ kappa2_B = 100, lambda2_B = 100,

+ display_progress = FALSE)

Changing the prior type To change the model type, the input argument mod_type has
to be supplied. It has to be a string equal to either "triple", "double" or "ridge". As an
example, we fit a hierarchical NGG prior, both on the

√

θj ’s and on the βj ’s:

R> res_tg <- shrinkTVP(y ~ x1 + x2, data = data,

+ mod_type = "triple",

+ display_progress = FALSE)

Fixing the tail parameters Much like the pole parameters, the tail parameter cξ (cτ)
can also be fixed to a value. This is done by setting learn_c_xi (learn_c_tau) to FALSE

and then supplying the input parameter c_xi (c_tau). As an example, the code below fits a
non-hierarchical horseshoe prior, both on the

√

θj ’s and on the βj ’s:

R> res_hs <- shrinkTVP(y ~ x1 + x2, data = data,

+ mod_type = "triple",

+ learn_a_xi = FALSE, learn_a_tau = FALSE, a_xi = 0.5, a_tau = 0.5,

+ learn_c_xi = FALSE, learn_c_tau = FALSE, c_xi = 0.5, c_tau = 0.5,

+ learn_kappa2_B = FALSE, learn_lambda2_B = FALSE,

+ display_progress = FALSE)

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 11

3.3. Stochastic volatility specification

The stochastic volatility specification defined in Equation (3) can be used by setting the
option sv to TRUE. This is made possible by a call to the update_sv function exposed by the
stochvol package. The code below fits a model with an NG prior in which all the parameters
are learned and the observation equation errors are modeled through stochastic volatility:

R> res_sv <- shrinkTVP(y ~ x1 + x2, data = data, sv = TRUE,

+ display_progress = FALSE)

The priors on the SV parameters are the ones defined in Equation (16), with hyperparameters
fixed to bµ = 0 , Bµ = 1, aϕ = 5, bϕ = 1.5 , and Bσ = 1.

3.4. Specifying the hyperparameters

Beyond simply switching off parts of the hierarchical structure of the prior setup, users can
also modify the hyperparameters governing the hyperprior distributions. This can be done
through the arguments hyperprior_param and sv_param, which both have to be named lists.
Hyperparameters not specified by the user will be set to default values, which can be found in
the help file of the shrinkTVP function. Note, however, that the dependence structure (e.g.
κ2

B depends on aξ and cξ in the NGG specification) can not be changed. As such, if the user
desires to change the hyperparameters of a prior that depends on other parameters, this can
only be achieved by deactivating the learning of the parameters higher up in the hierarchy
and fixing them to specific values. To demonstrate how to change specific hyperparameters,
the code below modifies those governing the prior on aξ:

R> res_hyp <- shrinkTVP(y ~ x1 + x2, data = data,

+ hyperprior_param = list(beta_a_xi = 5, alpha_a_xi = 10),

+ display_progress = FALSE)

3.5. Tuning the Metropolis-Hastings steps

The Metropolis-Hastings algorithm discussed in Section 2.3 can be tuned via the argument
MH_tuning. Similar to hyperprior_param and sv_param, it is a named list where values that
are not supplied are replaced by standard values. By default, adaptive Metropolis-within-
Gibbs is activated for all parameters learned from the data that requrire a Metropolis-Hastings
step. Below is an example where the adaptive Metropolis is deactivated for one of the pole
parameters and slightly tuned for the other:

R> res_MH <- shrinkTVP(y ~ x1 + x2, data = data,

+ MH_tuning = list(a_xi_adaptive = FALSE,

+ a_tau_max_adapt = 0.001,

+ a_tau_batch_size = 20),

+ display_progress = FALSE)

3.6. Posterior inference: Summarize and visualize the posterior distribution

The return value of shrinkTVP is an object of type shrinkTVP, which is a named list containing

12 Shrinkage for TVP Models Using shrinkTVP

a variable number of elements, depending on the prior specification. For the default NG prior,
the values are:

1. a list holding d mcmc.tvp objects (one for each βj = (βj0, . . . , βjT)) containing the
parameter draws in beta,

2. the parameter draws of β = (β1, . . . , βd) in beta_mean,

3. the parameter draws of (
√

θ1, . . . ,
√

θd) in theta_sr,

4. the parameter draws of τ2
1 , . . . , τ2

d in tau2,

5. the parameter draws of ξ2
1 , . . . , ξ2

d, in xi2,

6. the parameter draws of aξ in a_xi,

7. the parameter draws of aτ in a_tau,

8. the parameter draws for κ2
B in kappa2_B,

9. the parameter draws for λ2
B in lambda2_B,

10. the parameter draws of σ2 in sigma2,

11. the parameter draws of C0 in C0,

12. MH diagnostic values in MH_diag,

13. the prior hyperparameters in priorvals,

14. the design matrix, the response and the formula in model,

15. summary statistics for the parameter draws in summaries and objects required for the
LPDS function in internals.

When some parameters are fixed by the user, the corresponding output value is omitted.
Additionally, increasing or decreasing the amount of levels in the hierarchy of the prior also
changes which values are returned. For example, if mod_type is changed to "triple" and
the learning of the tail parameters cξ and cτ is not deactivated, then the output will also
contain the respective parameter draws in c_xi and c_tau. In the SV case, the draws for the
parameters of the SV model on the errors are contained in sv_mu, sv_phi and sv_sigma. For
details, see Kastner (2016).

The two main tools for summarizing the output of shrinkTVP are the summary and plot meth-
ods implemented for shrinkTVP objects. summary has two arguments beyond the shrinkTVP

object itself, namely digits and showprior, which control the output displayed. digits

indicates the number of decimal places to round the posterior summary statistics to, while
showprior determines whether or not to show the prior distributions resulting from the user
input. In the example below, the default digits value of 3 is used, while the prior specifi-
cation is omitted. The output of summary consists of the mean, standard deviation, median,
95% highest posterior density region and effective sample size (ESS) for the non time-varying
parameters.

R> summary(res, showprior = FALSE)

Summary of 5000 MCMC draws after burn-in of 5000.

Statistics of posterior draws of parameters (thinning = 1):

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 13

param mean sd median HPD 2.5% HPD 97.5% ESS

beta_mean_Intercept 0.164 0.432 0 -0.376 1.362 426

beta_mean_x1 -0.248 0.157 -0.274 -0.483 0.013 110

beta_mean_x2 -0.002 0.037 0 -0.105 0.069 3741

abs(theta_sr_Intercept) 0.423 0.064 0.418 0.307 0.551 345

abs(theta_sr_x1) 0.013 0.024 0 0 0.067 133

abs(theta_sr_x2) 0.002 0.007 0 0 0.013 598

tau2_Intercept 6.989 151.023 0.001 0 4.85 4799

tau2_x1 6.615 240.363 0.096 0 4.658 5000

tau2_x2 0.438 15.431 0 0 0.105 5000

xi2_Intercept 23.525 563.676 0.265 0.007 10.827 5000

xi2_x1 1.883 89.188 0 0 0.07 5000

xi2_x2 0.011 0.331 0 0 0.003 5000

a_xi 0.08 0.039 0.074 0.014 0.154 169

a_tau 0.091 0.041 0.085 0.025 0.176 452

kappa2_B 29.519 104.414 1.507 0 148.318 4205

lambda2_B 53.677 184.784 2.182 0 257.231 1102

sigma2 0.993 0.125 0.984 0.767 1.248 1622

C0 1.72 0.634 1.648 0.606 2.962 5000

The plot method can be used to visualize the posterior distribution estimated by shrinkTVP.
Aside from a shrinkTVP object, its main argument is pars, a character vector containing
the names of the parameters to visualize. plot will call either plot.mcmc.tvp from the
shrinkTVP package if the parameter is time-varying or plot.mcmc from the coda package,
if the parameter is non time-varying. The default value of pars is c("beta"), leading to
plot.mcmc.tvp being called on each of the βjt, for j = 1, . . . , d. See the code below for an
example and Figure 1 for the corresponding output.

R> plot(res)

The plot.mcmc.tvp method displays empirical posterior credible intervals of a time-varying
parameter over time, i.e., βjt, for j = 1, . . . , d and σ2

t in the case of stochastic volatility.
By default, the pointwise 95% and 50% posterior credible intervals are displayed as shaded
areas layered on top of one another, with the median represented by a black line, with an
additional grey, dashed line at zero. To ensure that users have flexiblity in the plots created,
a host of options are implemented for customisation. The bounds of the credible intervals can
be modified through the probs input, allowing for different levels of uncertainty visualization.

14 Shrinkage for TVP Models Using shrinkTVP

−
2

0
2

4
6

8
10

be
ta

 o
f I

nt
er

ce
pt

−
0.

6
−

0.
4

−
0.

2
0.

0
be

ta
 o

f x
1

0 50 100 150 200

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

be
ta

 o
f x

2

Figure 1: Visualization of the evolution of the time-varying parameter βj = (βj0, . . . , βjT), j =
1, 2, 3, over time t = 0, . . . , T , as provided by the plot method. plot is in turn calling
plot.mcmc.tvp on the individual mcmc.tvp objects. The median is displayed as a black line,
and the shaded areas indicate the pointwise 95% and 50% posterior credible intervals.

The arguments quantlines and shaded take boolean vectors as inputs, and determine if the
corresponding credible intervals will be displayed through shading and/or lines. The shaded
areas can be customised via the arguments shadecol and shadealpha, which determine
the color and the degree of transparency of the shaded areas. The lines representing the
quantiles can be adjusted through quantlty, quantcol and quantlwd, which modify the
line type, color and line width, respectively. In the spirit of R, all of these arguments are
vectorised and the supplied vectors are recycled in the typical R fashion if necessary. The first
element of these vectors is always applied to the outermost credible interval, the second to the

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 15

second outermost and so forth. The horizontal line at zero can be similarly adjusted through
zerolty, zerolwd and zerocol or entirely turned off by setting drawzero equal to FALSE.
All further arguments are passed on to the standard plot method, allowing for changes to the
line representing the median and other plot modifications that users of R are familiar with.
An example of possible customisation can be seen in the code below, with the corresponding
output being Figure 2.

R> library("RColorBrewer")

R> color <- brewer.pal(5, "RdBu")

R> plot(res, pars = "beta", xlim = c(100, 200),

+ probs = seq(0.1, 0.9, by = 0.1),

+ quantlines = T, quantcol = color[5:2], quantlty = 1,

+ quantlwd = 3, col = color[1], lwd = 3, shadecol = "gold1")

To visualize other parameters via the plot method, the user has to change the pars argument.
pars can either be set to a single character object or to a vector of characters containing the
names of the parameter draws to display. In the latter case, the plot method will display
groups of plots at a time, prompting the user to move on to the next series of plots, similarly
to how coda handles long plot outputs. Naturally, as all parameter draws are converted
to coda objects, any method from this package that users are familiar with (e.g., to check
convergence) can be applied to the parameter draws contained in a shrinkTVP object. An
example of this can be seen in Figure 3, where pars = "theta_sr", changes the output to a
graphical summary of the parameter draws of

√
θ1, . . . ,

√
θd, using coda’s plot.mcmc function.

To obtain Figure 3, one can run

R> plot(res, pars = "theta_sr")

4. Predictive performances and model comparison

Within a Bayesian framework, a natural way to predict a future observation is through its
posterior predictive density. For this reason, log-predictive density scores (LPDSs) provide
a means of assessing how well the model performs in terms of prediction on real data. The
log-predictive density score for time t0 + 1 is obtained by evaluating at yt0+1 the log of the
posterior predictive density obtained by fitting the model to the previous t0 data points.
Given the data up to time t0, the posterior predictive density at time t0 + 1 is given by

p(yt0+1|y1, . . . , yt0
,xt0+1) =

∫

p(yt0+1|xt0+1,ψ)p(ψ|y1, . . . , yt0
)dψ, (17)

where ψ is the set of model parameters and latent variables up to t0 + 1. For a TVP
model with homoscedastic errors, ψ = (β̃0, . . . β̃t0+1,

√
θ1, . . . ,

√
θd, β1, . . . , βd, σ2), whereas

for a TVP model with SV errors, ψ = (β̃0, . . . β̃t0+1,
√

θ1, . . . ,
√

θd, β1, . . . , βd, σ2
1, . . . , σ2

t0+1).
Given M samples from the posterior distribution of the parameters and latent variables,
p(ψ|y1, . . . , yt0

), Monte Carlo integration could be applied immediately to approximate (17).
However, Bitto and Frühwirth-Schnatter (2019) propose a more efficient approximation of the
predictive density, the so-called conditionally optimal Kalman mixture approximation which
is obtained by analytically integrating out β̃t0+1 from the likelihood at time t0 + 1.

16 Shrinkage for TVP Models Using shrinkTVP

−
2

0
2

4
6

8
10

be
ta

 o
f I

nt
er

ce
pt

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
be

ta
 o

f x
1

100 120 140 160 180 200

−
0.

06
−

0.
02

0.
00

0.
02

0.
04

be
ta

 o
f x

2

Figure 2: Visualization of the evolution of the time-varying parameter βt over time t =
100, . . . , 200 for j = 1, . . . , 3. In this example, the x-axis of the plot was restricted with xlim,
the color of the shaded areas was changed to yellow and colored solid lines have been added
to delimit the credible intervals. The colored lines represent the median and the pointwise
10%, 20%, 30% 40%, 60%, 70%, 80%, and 90% quantiles.

In the homoscedastic error case, given M samples from the posterior distribution of the pa-
rameters and the latent variables up to t0, Monte Carlo integration of the resulting predictive

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 17

0 1000 2000 3000 4000 5000

−
0.

5
0.

0
0.

5

Iterations

Trace of theta_sr_Intercept

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Density of theta_sr_Intercept

N = 5000 Bandwidth = 0.08253

0 1000 2000 3000 4000 5000

−
0.

15
0.

00
0.

15

Iterations

Trace of theta_sr_x1

−0.15 −0.05 0.00 0.05 0.10 0.15

0
40

0
80

0
12

00

Density of theta_sr_x1

N = 5000 Bandwidth = 0.0001195

0 1000 2000 3000 4000 5000

−
0.

05
0.

05

Iterations

Trace of theta_sr_x2

−0.05 0.00 0.05 0.10

0
20

00
50

00

Density of theta_sr_x2

N = 5000 Bandwidth = 2.269e−05

Figure 3: Trace plots (left column) and kernel density estimates of the posterior density (right
column) for the parameters

√
θ1, . . . ,

√
θ3, as provided by the plot method. plot is in turn

calling coda’s plot.mcmc.

density yields following mixture approximation,

p(yt0+1|y1, . . . , yt0
,xt0+1) ≈ 1

M

M
∑

m=1

fN (yt0+1; ŷ
(m)
t0+1, S

(m)
t0+1), (18)

ŷ
(m)
t0+1 = xt0+1β

(m) + F
(m)
t0+1m

(m)
t0

,

S
(m)
t0+1 = F

(m)
t0+1(Σ

(m)
t0

+ Id)(F
(m)
t0+1)⊤ + (σ2)(m),

where the conditional predictive densities are Gaussian and the conditional moments depend

on the MCMC draws. The mean ŷ
(m)
t0+1 and the variance S

(m)
t0+1 are computed for the mth

18 Shrinkage for TVP Models Using shrinkTVP

MCMC iteration from Ft0+1 = xt0+1Diag(
√

θ1, . . . ,
√

θd) and the mean mt0
and the covari-

ance matrix Σt0
of the posterior distribution of β̃t0

. These quantities can be obtained by
iteratively calculating Σt and mt up to time t0, as described in McCausland et al. (2011):

Σ1 = (Ω11)−1, m1 = Σ1c1,

Σt = (Ωtt − Ω⊤
t−1,tΣt−1Ωt−1,t)

−1, mt = Σt(ct − Ω⊤
t−1,tmt−1).

The quantities ct, Ωtt and Ωt−1,t for t = 1, . . . , t0 are given in Appendix A.

For the SV case, it is still possible to analytically integrate out β̃t0+1 from the likelihood at
time t0 + 1 conditional on a known value of σ2

t0+1, however it is not possible to integrate

the likelihood with respect to both latent variables β̃t0+1 and σ2
t0+1. Hence, at each MCMC

iteration a draw is taken from the predictive distribution of σ2
t0+1 = exp(ht0+1), derived

from Equation (3), and used to calculate the conditional predictive density of yt0+1. The
approximation of the one-step ahead predictive density can then be obtained through the
following steps:

1. for each MCMC draw of (µ, ϕ, σ2
η)(m) and h

(m)
t0

, obtain a draw of (σ2
t0+1)(m);

2. calculate the conditionally optimal Kalman mixture approximation as in (18) with fol-

lowing slightly different values S
(m)
t0+1:

S
(m)
t0+1 = F

(m)
t0+1(Σ

(m)
t0

+ Id)(F
(m)
t0+1)⊤ + (σ2

t0+1)(m),

where Ft0+1 and Σt0
are the same as defined above.

These calculations can be performed by the LPDS function, based on a fitted TVP model
resulting from a call to shrinkTVP. The function’s arguments are an object of class shrinkTVP

and data_test, a data frame with one row, containing covariates and response at time t0 +1.
The following snippet of code fits a shrinkTVP model to synthetic data up to T − 1, and then
calculates the LPDS at time T . The obtained LPDS score is then displayed. For an example
on how to calculate LPDSs for k points in time, please see Section 5.

R> res_LPDS <- shrinkTVP(y ~ x1 + x2, data = data[1:(nrow(data) - 1),],

+ display_progress = FALSE)

R> LPDS(res_LPDS, data[nrow(data),])

[1] -1.231744

An additional functionality provided by the package shrinkTVP is the evaluation of the one-
step ahead predictive density through the function

eval_pred_dens.

It takes as inputs an object of class shrinkTVP, a one row data frame containing xt0+1 and
a point, or vector of points, at which the predictive density is to be evaluated. It returns a
vector of the same length, containing the value of the density at the points the user supplied.
An example of this can be seen in the code below.

R> eval_pred_dens(1:3, res_LPDS, data[nrow(data),])

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 19

yt0+1

p
(y
t 0
+
1
｜y

1
,…
,
y
t 0
,
x
t 0
+
1
)

0 2 4 6 8 10 12

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

Figure 4: One-step ahead predictive density p(yt0+1|y1, . . . , yt0
,xt0+1) for a synthetic data

set. The black vertical line represents the true realisation of yt0+1.

[1] 0.0004023221 0.0043769491 0.0285444188

Thanks to its vectorised nature, eval_pred_dens can be plugged directly into functions that
expect an expression that evaluates to the length of the input, such as the curve function
from the graphics (R Core Team 2017) package. The following snippet of code exploits this
behaviour to plot the posterior predictive density. The result can be seen in Figure 4.

R> curve(eval_pred_dens(x, res_LPDS, data[nrow(data),]), to = 12,

+ ylab = bquote("p(" * y[t[0]+1] * "\uff5c" * y[1] * ","

+ * ldots * "," ~ y[t[0]] * "," ~ x[t[0]+1] * ")"),

+ xlab = expression(y[t[0]+1]), lwd = 2.5, col = "skyblue", axes = FALSE)

R> abline(v = data$y[nrow(data)])

R> axis(1)

R> axis(2)

5. Predictive exercise: usmacro dataset

In the following, we provide a brief demonstration on how to use the shrinkTVP package
on real data and compare different prior specifications via LPDSs. Specifically, we con-
sider the usmacro.update dataset from the bvarsv package (Krueger 2015). The dataset
usmacro.update contains the inflation rate, unemployment rate and treasury bill interest
rate for the United States, from 1953:Q1 to 2015:Q2, that is T = 250. The same dataset up
to 2001:Q3 was used by Primiceri (2005). The response variable is the inflation rate inf, while
the predictors are the lagged inflation rate inf_lag, the lagged unemployed rate une_lag and
the lagged treasury bill interest tbi_lag. We construct our dataset as follows:

R> library("bvarsv")

R> data("usmacro.update")

20 Shrinkage for TVP Models Using shrinkTVP

R>

R> # Create matrix of lags and create final data set

R> lags <- usmacro.update[1:(nrow(usmacro.update) - 1),]

R> colnames(lags) <- paste0(colnames(lags), "_lag")

R> us_data <- data.frame(inf = usmacro.update[2:nrow(usmacro.update), "inf"],

+ lags)

In the snippet of code below, we estimate a TVP model with a fully hierarchical NG prior for
60000 iterations, with a thinning of 10 and a burn-in of 10000, hence keeping 5000 posterior
draws.

R> us_res <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, us_data,

+ niter = 60000, nburn = 10000, nthin = 10,

+ display_progress = FALSE)

Once we have fit the model, we can perform posterior inference by using the summary and
plot methods. The summary is shown below, while Figure 5 shows the paths of βt evolving
over time, and Figure 6 displays the trace plots (left column) and posterior densities (right
column) of

√
θ1, . . . ,

√
θ4 obtained via the plot method.

R> summary(us_res, showprior = FALSE)

Summary of 50000 MCMC draws after burn-in of 10000.

Statistics of posterior draws of parameters (thinning = 10):

param mean sd median HPD 2.5% HPD 97.5% ESS

beta_mean_Intercept 0.415 0.436 0.326 -0.132 1.266 639

beta_mean_inf_lag 0.733 0.191 0.742 0.347 1.093 756

beta_mean_une_lag -0.144 0.059 -0.149 -0.234 0.002 345

beta_mean_tbi_lag 0.008 0.022 0 -0.02 0.065 661

abs(theta_sr_Intercept) 0.144 0.025 0.145 0.098 0.195 1003

abs(theta_sr_inf_lag) 0.044 0.006 0.044 0.031 0.056 2525

abs(theta_sr_une_lag) 0.003 0.005 0 0 0.014 117

abs(theta_sr_tbi_lag) 0.001 0.002 0 0 0.006 478

tau2_Intercept 354.575 24026.311 0.158 0 15.251 5000

tau2_inf_lag 325.535 15149.831 0.793 0 36.284 5000

tau2_une_lag 20.052 729.984 0.049 0 3.887 5000

tau2_tbi_lag 30.132 1447.597 0 0 0.057 5000

xi2_Intercept 1.546 30.218 0.032 0 0.986 5000

xi2_inf_lag 0.292 5.131 0.005 0 0.268 5000

xi2_une_lag 0.014 0.717 0 0 0.005 5000

xi2_tbi_lag 0.002 0.048 0 0 0.001 5000

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 21

a_xi 0.095 0.039 0.09 0.029 0.171 1242

a_tau 0.087 0.042 0.082 0.015 0.167 2290

kappa2_B 120.337 250.836 22.127 0 609.238 5000

lambda2_B 7.123 22.902 0.601 0 33.607 3324

sigma2 0.018 0.006 0.017 0.007 0.029 1140

C0 0.126 0.062 0.114 0.027 0.247 2360

It appears clear by looking at Figure 5 that the intercept and the parameter associated with
the lagged inflation rate are time-varying, while the parameters associated with the lagged
treasury bill interest rate and the lagged unemployment rate are relatively constant. This
can be confirmed by looking at the posterior distributions of the corresponding standard de-
viations, displayed in Figure 6. The posterior densities of the standard deviations associated
with the intercept and the lagged inflation are bimodal, with very little mass around zero.
This bimodality results from the non-identifiability of the sign of the standard deviation. As a
convenient side effect, noticeable bimodality in the density plots of the posterior distribution
p(

√
θj |y) of the standard deviations

√
θj is a strong indication of time variability in the asso-

ciated parameter βjt. Conversely, the posterior densities of the standard deviations associated
with the lagged unemployment and the lagged treasury bill interest rate have a pronounced
spike at zero, indicating strong model evidence in favor of constant parameters. Moreover,
the path of the parameter of the treasury bill interest rate is centered at zero, indicating that
this parameter is neither time-varying nor significant.

In order to compare the predictive performances of different shrinkage priors, we calculate one-
step ahead LPDSs for the last 50 points in time for eleven different prior choices: (1) the full
hierarchical NGG prior, (2) the hierarchical NGG prior with fixed aξ = aτ = cξ = cτ = 0.1,
(3) the NGG prior with aξ = aτ = cξ = cτ = 0.1 and κ2

B = λ2
B = 20, (4) the hierarchical

horseshoe prior, (5) the horseshoe prior κ2
B = λ2

B = 20, (6) the full hierarchical NG prior,
(7) the hierarchical NG prior with fixed aξ = aτ = 0.1, (8) the NG prior with aξ = aτ = 0.1
and κ2

B = λ2
B = 20, (9) the hierarchical Bayesian Lasso, and (10) the Bayesian Lasso with

κ2
B = λ2

B = 20 and (11) ridge regression with κ2
B = λ2

B = 20. Figure 7 shows the cumulative
LPDSs for the last 50 quarters of the usmacro.update dataset. The default prior, the fully
hierarchical NG prior on both the βj ’s and the

√

θj ’s, performs the best in terms of prediction.
In Appendix B we show how to obtain LPDSs for different models and points in time, using
the packages foreach (Microsoft and Weston 2017) and doParallel (Microsoft and Weston
2018).

6. Conclusions

The goal of this paper was to introduce the reader to the functionality of the R package shrink-

TVP (Knaus et al. 2020). This R package provides a fully Bayesian approach for statistical
inference in TVP models with shrinkage priors. On the one hand, the package provides an
easy entry point for users who want to pass on only their data in a first step of exploring

22 Shrinkage for TVP Models Using shrinkTVP

0
1

2
3

4
be

ta
 o

f I
nt

er
ce

pt
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
be

ta
 o

f i
nf

_l
ag

−
0.

30
−

0.
20

−
0.

10
0.

00
be

ta
 o

f u
ne

_l
ag

0 50 100 150 200 250

−
0.

04
0.

00
0.

04
0.

08
be

ta
 o

f t
bi

_l
ag

Figure 5: Visualization of the evolution of the time-varying parameter βj = (βj0, . . . , βjT)
over time t = 0, . . . , T for j = 1, . . . , 4 for the usmacro.update dataset. The median is
displayed as a black line, and the shaded areas indicate the pointwise 95% and 50% posterior
credible intervals.

TVP models for their specific application context. Running the function shrinkTVP under
the default model with a fully hierarchical NG shrinkage prior with predefined hyperparam-
eters, estimation of a TVP model becomes as easy as using the well-known function lm for a
standard linear regression model. On the other hand, exploiting numerous advanced options
of the package, the more experienced user can also explore alternative model specifications
such as the Bayesian Lasso or the horseshoe prior and use log-predictive density scores to
compare various model specifications.

Various examples of the usage of shrinkTVP were given, and the summary and plot methods

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 23

0 1000 2000 3000 4000 5000

−
0.

2
0.

1

Iterations

Trace of theta_sr_Intercept

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
2

4

Density of theta_sr_Intercept

N = 5000 Bandwidth = 0.02828

0 1000 2000 3000 4000 5000

−
0.

06
0.

04

Iterations

Trace of theta_sr_inf_lag

−0.10 −0.05 0.00 0.05 0.10

0
10

Density of theta_sr_inf_lag

N = 5000 Bandwidth = 0.008537

0 1000 2000 3000 4000 5000

−
0.

02
0.

02

Iterations

Trace of theta_sr_une_lag

−0.02 −0.01 0.00 0.01 0.02

0
60

0

Density of theta_sr_une_lag

N = 5000 Bandwidth = 0.0001409

0 1000 2000 3000 4000 5000

−
0.

02
0.

01

Iterations

Trace of theta_sr_tbi_lag

−0.02 −0.01 0.00 0.01 0.02

0
30

00

Density of theta_sr_tbi_lag

N = 5000 Bandwidth = 3.224e−05

Figure 6: Trace plots (left column) and kernel density estimates of the posterior density (right
column) for the parameters

√
θ1, . . . ,

√
θ4 for the usmacro.update dataset.

for straightforward posterior inference were illustrated. Furthermore, a predictive exercise
with the dataset usmacro.updade from the package bvarsv was performed, with a focus on
the calculation of LPDSs using shrinkTVP. The default model in shrinkTVP showed better
performance than its competitors in terms of cumulative LPDSs. While these examples were
confined to univariate responses, the package can also be applied in a multivariate context, for
instance to the sparse TVP Cholesky SV model considered in Bitto and Frühwirth-Schnatter
(2019), exploiting a representation of this model as a system of independent TVP models
with univariate responses.

24 Shrinkage for TVP Models Using shrinkTVP

−
10

−
8

−
6

−
4

−
2

0

C
um

ul
at

iv
e

LP
D

S

Ja
n

20
03

Ju
l 2

00
3

Ja
n

20
04

Ju
l 2

00
4

Ja
n

20
05

Ju
l 2

00
5

Ja
n

20
06

Ju
l 2

00
6

Ja
n

20
07

Ju
l 2

00
7

Ja
n

20
08

Ju
l 2

00
8

Ja
n

20
09

Ju
l 2

00
9

Ja
n

20
10

Ju
l 2

01
0

Ja
n

20
11

Ju
l 2

01
1

Ja
n

20
12

Ju
l 2

01
2

Ja
n

20
13

Ju
l 2

01
3

Ja
n

20
14

Ju
l 2

01
4

Ja
n

20
15

Fully hierarchical NGG
Hierarchical NGG
NGG
Hierarchical Horseshoe
Horseshoe
Fully hierarchical NG
Hierarchical NG
NG
Hierarchical Lasso
Lasso
Ridge

Figure 7: Cumulative LPDSs for the last 50 quarters of the usmacro.update dataset, for
eleven different shrinkage priors: (1) the full hierarchical NGG prior, (2) the hierarchical NGG
prior with fixed aξ = aτ = cξ = cτ = 0.1, (3) the NGG prior with aξ = aτ = cξ = cτ = 0.1 and
κ2

B = λ2
B = 20, (4) the hierarchical horseshoe prior, (5) the horseshoe prior κ2

B = λ2
B = 20,

(6) the full hierarchical NG prior, (7) the hierarchical NG prior with fixed aξ = aτ = 0.1, (8)
the NG prior with aξ = aτ = 0.1 and κ2

B = λ2
B = 20, (9) the hierarchical Bayesian Lasso, and

(10) the Bayesian Lasso with κ2
B = λ2

B = 20 and (11) ridge regression with κ2
B = λ2

B = 20.

A. Appendix: Full conditional distribution of the latent states

Let y⋆
t = yt − xtβ and Ft = xtDiag

(√
θ1, . . . ,

√
θd

)

for t = 1, . . . , T . Conditional on all other
variables, the joint density for the state process β̃ = (β̃0, β̃1, . . . , β̃T) is multivariate normal.
This distribution can be written in terms of the tri-diagonal precision matrix Ω and the mean
vector c (McCausland et al. 2011):

β̃|β, Q, σ2
1, . . . , σ2

T , y⋆
1, . . . y⋆

T ∼ N(T +1)d

(

Ω−1c, Ω−1
)

(19)

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 25

where:

Ω =





























Ω00 Ω01 0

Ω⊤
01 Ω11 Ω12 0 0

0 Ω⊤
12 Ω22 Ω23

. . .
...

0 Ω⊤
23

. . .
. . . 0

...
. . .

. . . ΩT −1,T −1 ΩT −1,T

0 . . . 0 Ω⊤
T −1,T ΩT T





























, c =





















c0

c1

c2

...

cT





















.

In this representation, each submatrix Ωts is a matrix of dimension d × d defined as

Ω00 = 2Id,

Ωtt = F⊤
t Ft/σ2

t + 2Id, t = 1, . . . , T − 1,

ΩT T = F⊤
T FT /σ2

T + Id,

Ωt−1,t = −Id, t = 1, . . . , T,

where Id is the d × d identity matrix and ct is a column vector of dimension d × 1, defined as

c0 = 0, ct = (F⊤
t /σ2

t)y⋆
t , t = 1, . . . , T.

In the homoscedastic case, σ2
1 = . . . = σ2

T = σ2.

B. Multicore LPDS calculation

In the code below, the following R packages are used: doParallel (Microsoft and Weston 2018),
foreach (Microsoft and Weston 2017), zoo (Zeileis and Grothendieck 2005), and RhpcBLASctl

(Nakano and Nakama 2018).

R> # Calculate LPDS in multicore

R> # Load libraries for multicore computations

R> library("doParallel")

R> library("foreach")

R>

R> # For manipulating dates

R> library("zoo")

R>

R> # Load library for controlling number of BLAS threads

R> library("RhpcBLASctl")

R>

R> # Define how many periods to calculate LPDS for

R> Tmax <- nrow(us_data) - 1

R> T0 <- Tmax - 49

R>

R> # Determine number of cores to be used and register parallel backend

R> ncores <- 4

R> cl <- makeCluster(ncores)

26 Shrinkage for TVP Models Using shrinkTVP

R> registerDoParallel(cl)

R>

R> lpds <- foreach(t = T0:Tmax, .combine = "cbind",

+ .packages = c("RhpcBLASctl", "shrinkTVP"),

+ .errorhandling = "pass") %dopar% {

+

+ set.seed(t)

+

+ niter <- 30000

+ nburn <- 15000

+ nthin <- 5

+

+ # Set number of BLAS threads, so they dont interfere with each other

+ blas_set_num_threads(1)

+

+ # Create data_t from all data up to time t and

+ # y_test and x_test from data at time t+1

+ data_test <- us_data[t+1,]

+ data_t <- us_data[1:t,]

+

+ # Run MCMC to calculate all LPDS

+ # Fully hierarchical triple gamma

+ res_FH_TG <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ mod_type = "triple", niter = niter, nburn = nburn, nthin = nthin)

+

+ # Hierarchical triple gamma

+ res_H_TG <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ mod_type = "triple", niter = niter, nburn = nburn, nthin = nthin,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ learn_c_xi = FALSE, learn_c_tau = FALSE)

+

+ # Non-hierarchical triple gamma

+ res_TG <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ mod_type = "triple", niter = niter, nburn = nburn, nthin = nthin,

+ learn_kappa2_B = FALSE, learn_lambda2_B = FALSE,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ learn_c_xi = FALSE, learn_c_tau = FALSE)

+

+ # Hierarchical horseshoe

+ res_H_HS <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ mod_type = "triple", niter = niter, nburn = nburn, nthin = nthin,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ learn_c_xi = FALSE, learn_c_tau = FALSE,

+ a_xi = 0.5, a_tau = 0.5, c_xi = 0.5, c_tau = 0.5)

+

+ # Non-hierarchical horseshoe

+ res_HS <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 27

+ mod_type = "triple", niter = niter, nburn = nburn, nthin = nthin,

+ learn_kappa2_B = FALSE, learn_lambda2_B = FALSE,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ learn_c_xi = FALSE, learn_c_tau = FALSE,

+ a_xi = 0.5, a_tau = 0.5, c_xi = 0.5, c_tau = 0.5)

+

+ # Fully hierarchical double gamma

+ res_FH_DG <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ niter = niter, nburn = nburn, nthin = nthin,

+ hyperprior_param = list(nu_tau = 1, nu_xi = 1))

+

+ # Hierarchical double gamma

+ res_H_DG <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ niter = niter, nburn = nburn, nthin = nthin,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ a_xi = 0.1, a_tau = 0.1)

+

+ # Non-hierarchical double gamma

+ res_DG <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ niter = niter, nburn = nburn, nthin = nthin,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ a_xi = 0.1, a_tau = 0.1,

+ learn_kappa2_B = FALSE, learn_lambda2_B = FALSE)

+

+ # Hierarchical Lasso

+ res_H_LS <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ niter = niter, nburn = nburn, nthin = nthin,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ a_xi = 1, a_tau = 1)

+

+ # Non-hierarchical Lasso

+ res_LS <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ niter = niter, nburn = nburn, nthin = nthin,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ a_xi = 1, a_tau = 1,

+ learn_kappa2_B = FALSE, learn_lambda2_B = FALSE)

+

+ # Ridge regression

+ res_FV <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,

+ mod_type = "ridge", niter = niter, nburn = nburn, nthin = nthin)

+

+

+ lpds_res <- c(LPDS(res_FH_TG, data_test),

+ LPDS(res_H_TG, data_test),

+ LPDS(res_TG, data_test),

+ LPDS(res_H_HS, data_test),

+ LPDS(res_HS, data_test),

28 Shrinkage for TVP Models Using shrinkTVP

+ LPDS(res_FH_DG, data_test),

+ LPDS(res_H_DG, data_test),

+ LPDS(res_DG, data_test),

+ LPDS(res_H_LS, data_test),

+ LPDS(res_LS, data_test),

+ LPDS(res_FV, data_test))

+

+ rm(list = ls()[!ls() %in% c("lpds_res", "us_data")])

+

+ return(lpds_res)

+ }

R> stopCluster(cl)

R>

R>

R> cumu_lpds <- apply(lpds, 1, cumsum)

R> color <- c(rep("cyan3", 3),

+ rep("firebrick3", 2),

+ rep("forestgreen", 3),

+ rep("yellow2", 2),

+ "black")

R> lty <- c(1:3, 1:2, 1:3, 1:2, 1)

R>

R> # Plot results

R> par(mar=c(6,4,1,1))

R> colnames(cumu_lpds) <- c("Fully hierarchical NGG",

+ "Hierarchical NGG",

+ "NGG",

+ "Hierarchical Horseshoe",

+ "Horseshoe",

+ "Fully hierarchical NG",

+ "Hierarchical NG",

+ "NG",

+ "Hierarchical Lasso",

+ "Lasso",

+ "Ridge Regression")

R>

R> matplot(cumu_lpds, type = "l", ylab = "Cumulative LPDS",

+ xaxt = "n", xlab = "", col = color, lty = lty, lwd = 1.5)

R>

R> # Extract labels from time series

R> labs = as.yearmon(time(usmacro.update))[T0:Tmax + 1][c(FALSE, TRUE)]

R>

R> # Create custom axis labels

R> axis(1, at = (1:length(T0:Tmax))[c(FALSE, TRUE)], labels = FALSE)

R> text(x=(1:length(T0:Tmax))[c(FALSE, TRUE)],

+ y=par()$usr[3]-0.05*(par()$usr[4]-par()$usr[3]),

+ labels=labs, srt=45, adj=1, xpd=TRUE)

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 29

R>

R> # Add legend

R> legend("topright", colnames(cumu_lpds), col = color,

+ lty = lty,lwd = 1.5, bty = "n", cex = 0.8)

References

Bai R, Ghosh M (2018). MBSP: Multivariate Bayesian Model with Shrinkage Priors. R
package version 1.0, URL https://CRAN.R-project.org/package=MBSP.

Bai R, Ghosh M (2019). NormalBetaPrime: Normal Beta Prime Prior. R package version
2.2, URL https://CRAN.R-project.org/package=NormalBetaPrime.

Belmonte MAG, Koop G, Korobolis D (2014). “Hierarchical Shrinkage in Time-Varying
Parameter Models.” Journal of Forecasting, 33, 80–94.

Bhadra A, Datta J, Polson N, Willard B (2017). “Lasso Meets Horsheshoe.”
https://arxiv.org/abs/1706.10179.

Bitto A, Frühwirth-Schnatter S (2019). “Achieving Shrinkage in a Time-Varying Parameter
Model Framework.” Journal of Econometrics, 210, 75–97.

Breheny P, Huang J (2011). “Coordinate Descent Algorithms for Nonconvex Penalized Re-
gression, with Applications to Biological Feature Selection.” Annals of Applied Statistics,
5(1), 232–253.

Cadonna A, Frühwirth-Schnatter S, Knaus P (2020). “Triple the Gamma—A Unifying Shrink-
age Prior for Variance and Variable Selection in Sparse State Space and TVP Models.”
Econometrics, 8(2), 20.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
statistical software, 76(1).

Casas I, Fernandez-Casal R (2019). tvReg: Time-Varying Coefficients Linear Regression
for Single and Multi-Equations. R package version 0.4.2, URL https://CRAN.R-project.

org/package=tvReg.

Dangl T, Halling M (2012). “Predictive Regressions with Time-Varying Coefficients.” Journal
of Financial Economics, 106, 157–181.

Del Negro M, Primiceri G (2015). “Time Varying Structural Vector Autoregressions and
Monetary Policy: A Corrigendum.” Review of Economic Studies, 82(4), 1342–1345. URL
https://EconPapers.repec.org/RePEc:oup:restud:v:82:y:2015:i:4:p:1342-1345.

Dunkler D, Sauerbrei W, Heinze G (2016). “Global, Parameterwise and Joint Shrinkage Factor
Estimation.” Journal of Statistical Software, 69(8), 1–19. doi:10.18637/jss.v069.i08.

https://CRAN.R-project.org/package=MBSP
https://CRAN.R-project.org/package=NormalBetaPrime
https://CRAN.R-project.org/package=tvReg
https://CRAN.R-project.org/package=tvReg
https://EconPapers.repec.org/RePEc:oup:restud:v:82:y:2015:i:4:p:1342-1345.
https://doi.org/10.18637/jss.v069.i08

30 Shrinkage for TVP Models Using shrinkTVP

Eddelbuettel D, Balamuta JJ (2017). “Extending extitR with extitC++: A Brief Introduc-
tion to extitRcpp.” PeerJ Preprints, 5, e3188v1. ISSN 2167-9843. doi:10.7287/peerj.

preprints.3188v1. URL https://doi.org/10.7287/peerj.preprints.3188v1.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R With High-
Performance C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–
1063. URL http://dx.doi.org/10.1016/j.csda.2013.02.005.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. URL https:

//www.jstatsoft.org/v33/i01/.

Frühwirth-Schnatter S, Wagner H (2010). “Stochastic Model Specification Search for Gaussian
and Partially Non-Gaussian State Space Models.” 154, 85–100.

Gramacy RB (2019). monomvn: Estimation for Multivariate Normal and Student-t Data
with Monotone Missingness. R package version 1.9-10, URL https://CRAN.R-project.

org/package=monomvn.

Griffin JE, Brown PJ (2010). “Inference with Normal-Gamma Prior Distributions in Regres-
sion Problems.” Bayesian Analysis, 5, 171–188.

Helske J (2019). walker: Bayesian Regression with Time-Varying Coefficients. R package
version 0.3.0, URL https://github.com/helske/walker.

Jacquier E, Polson NG, Rossi PE (1994). “Bayesian Analysis of Stochastic Volatility Models.”
12, 371–417.

Kastner G (2016). “Dealing with Stochastic Volatility in Time Series Using the R Package
stochvol.” Journal of Statistical Software, 69, 1–30.

Kastner G, Frühwirth-Schnatter S (2014). “Ancillarity-Sufficiency Interweaving Strategy
(ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models.” Computational
Statistics and Data Analysis, 76, 408–423.

Kastner G, Frühwirth-Schnatter S, Lopes HF (2017). “Efficient Bayesian Inference for Mul-
tivariate Factor Stochastic Volatility Models.” 26, 905–917.

Knaus P, Bitto-Nemling A, Cadonna A, Frühwirth-Schnatter S (2020). shrinkTVP: Efficient
Bayesian Inference for Time-Varying Parameter Models with Shrinkage. R package version
2.0, URL https://CRAN.R-project.org/package=shrinkTVP.

Krueger F (2015). bvarsv: Bayesian Analysis of a Vector Autoregressive Model with Stochastic
Volatility and Time-Varying Parameters. R package version 1.1, URL https://CRAN.

R-project.org/package=bvarsv.

Leydold J, Hörmann W (2017). GIGrvg: Random Variate Generator for the GIG Distribu-
tion. R package version 0.5, URL https://CRAN.R-project.org/package=GIGrvg.

McCausland WJ, Miller S, Pelletier D (2011). “Simulation Smoothing for State Space Models:
A Computational Efficiency Analysis.” 55, 199–212.

https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.7287/peerj.preprints.3188v1
https://doi.org/10.7287/peerj.preprints.3188v1
http://dx.doi.org/10.1016/j.csda.2013.02.005
https://www.jstatsoft.org/v33/i01/
https://www.jstatsoft.org/v33/i01/
https://CRAN.R-project.org/package=monomvn
https://CRAN.R-project.org/package=monomvn
https://github.com/helske/walker
https://CRAN.R-project.org/package=shrinkTVP
https://CRAN.R-project.org/package=bvarsv
https://CRAN.R-project.org/package=bvarsv
https://CRAN.R-project.org/package=GIGrvg

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter 31

Microsoft, Weston S (2017). foreach: Provides Foreach Looping Construct for R. R package
version 1.4.4, URL https://CRAN.R-project.org/package=foreach.

Microsoft, Weston S (2018). doParallel: Foreach Parallel Adaptor for the ’parallel’ Package.
R package version 1.0.14, URL https://CRAN.R-project.org/package=doParallel.

Nakajima J (2011). “Time-Varying Parameter VAR Model with Stochastic Volatility: An
Overview of Methodology and Empirical Applications.” Monetary and Economic Studies,
29, 107–142.

Nakano J, Nakama E (2018). RhpcBLASctl: Control the Number of Threads on ’BLAS’. R
package version 0.18-205, URL https://CRAN.R-project.org/package=RhpcBLASctl.

Park T, Casella G (2008). “The Bayesian Lasso.” 103, 681–686.

Petris G (2010). “An R Package for Dynamic Linear Models.” Journal of Statistical Software,
36(12), 1–16. URL https://www.jstatsoft.org/v36/i12/.

Petris G, Petrone S, Campagnoli P (2009). Dynamic Linear Models with R.

Plummer M, Best N, Cowles K, Vines K (2006). “CODA: Convergence Diagnosis and Out-
put Analysis for MCMC.” R News, 6(1), 7–11. URL https://journal.r-project.org/

index.html.

Primiceri G (2005). “Time Varying Structural Vector Autoregressions and Monetary Policy.”
72, 821–852.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryan JA, Ulrich JM (2018). xts: eXtensible Time Series. R package version 0.11-2, URL
https://CRAN.R-project.org/package=xts.

Scott SL (2019). bsts: Bayesian Structural Time Series. R package version 0.9.1, URL
https://CRAN.R-project.org/package=bsts.

Simpson M, Niemi J, Roy V (2017). “Interweaving Markov Chain Monte Carlo Strategies for
Efficient Estimation of Dynamic Linear Models.” Journal of Computational and Graphical
Statistics, 26(1), 152–159.

Sims CA (2001). “Evolving Post-World War II U.S. Inflation Dynamics: Comment.”
NBER Macroeconomics Annual, 16, 373–379. ISSN 08893365, 15372642. URL http:

//www.jstor.org/stable/3585376.

van der Pas S, Scott J, Chakraborty A, Bhattacharya A (2016). horseshoe: Implementation
of the Horseshoe Prior. R package version 0.1.0, URL https://CRAN.R-project.org/

package=horseshoe.

Vihola M, Helske J, Franks J (2017). “Importance Sampling Type Estimators Based on
Approximate Marginal MCMC.” ArXiv e-prints. URL https://arxiv.org/abs/1609.

02541.

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=RhpcBLASctl
https://www.jstatsoft.org/v36/i12/
https://journal.r-project.org/index.html
https://journal.r-project.org/index.html
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=bsts
http://www.jstor.org/stable/3585376
http://www.jstor.org/stable/3585376
https://CRAN.R-project.org/package=horseshoe
https://CRAN.R-project.org/package=horseshoe
https://arxiv.org/abs/1609.02541
https://arxiv.org/abs/1609.02541

32 Shrinkage for TVP Models Using shrinkTVP

Yu Y, Meng XL (2011). “To Center or Not to Center: That is Not the Question - An
Ancillarity-Suffiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency.” 20,
531–615.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. doi:10.18637/jss.v014.i06.

Zeng Y, Breheny P (2017). “The biglasso Package: A Memory- and Computation-Efficient
Solver for Lasso Model Fitting with Big Data in R.” ArXiv e-prints. URL https://arxiv.

org/abs/1701.05936.

Affiliation:

Peter Knaus
Institute for Statistics and Mathematics
Department of Finance, Accounting and Statistics
WU Vienna University of Economics and Business
Welthandelsplatz 1, Building D4, Entrance A, 3rd Floor
1020 Vienna, Austria
E-mail: peter.knaus@wu.ac.at URL: https://www.wu.ac.at/statmath/faculty-staff/

faculty/peter-knaus

https://doi.org/10.18637/jss.v014.i06
https://arxiv.org/abs/1701.05936
https://arxiv.org/abs/1701.05936
mailto:peter.knaus@wu.ac.at
https://www.wu.ac.at/statmath/faculty-staff/faculty/peter-knaus
https://www.wu.ac.at/statmath/faculty-staff/faculty/peter-knaus

	Introduction
	Model specification and estimation
	TVP models
	Prior Specification
	Shrinkage priors on variances and model parameters
	Prior on the volatility parameter

	MCMC sampling algorithm

	The shrinkTVP package
	Running the model
	Specifying the priors
	Stochastic volatility specification
	Specifying the hyperparameters
	Tuning the Metropolis-Hastings steps
	Posterior inference: Summarize and visualize the posterior distribution

	Predictive performances and model comparison
	Predictive exercise: usmacro dataset
	Conclusions
	Appendix: Full conditional distribution of the latent states
	Multicore LPDS calculation

