params <- list(family = "red") ## ----echo = FALSE, message = FALSE-------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") library(neuroim2) library(purrr) library(assertthat) ## ----------------------------------------------------------------------------- file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) # 4D NeuroVec reduce_ts_to_vol <- function(x, FUN) { dm <- dim(x) stopifnot(length(dm) == 4) mat <- as.matrix(x) # voxels × time vals <- apply(mat, 1, FUN) # one value per voxel NeuroVol(array(vals, dm[1:3]), drop_dim(space(x))) } # Example: temporal mean volume mean_vol <- reduce_ts_to_vol(vec, mean) mean_vol ## ----------------------------------------------------------------------------- space4 <- NeuroSpace(c(10, 10, 10, 9), c(1, 1, 1)) vec4d <- NeuroVec(array(rnorm(10 * 10 * 10 * 9), dim = c(10, 10, 10, 9)), space4) # Suppose timepoints 1–3 belong to block 1, 4–6 to block 2, 7–9 to block 3 block_idx <- c(1, 1, 1, 2, 2, 2, 3, 3, 3) idx_list <- split(seq_len(dim(vec4d)[4]), block_idx) blocks <- lapply(idx_list, function(ii) sub_vector(vec4d, ii)) length(blocks) # 3 blocks dim(blocks[[1]]) # first block: 10×10×10×3 dim(blocks[[2]]) # second block: 10×10×10×3 dim(blocks[[3]]) # third block: 10×10×10×3 ## ----------------------------------------------------------------------------- file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) # DenseNeuroVec in memory # Convert to a memory-mapped representation backed by a temporary .nii file mvec <- as_mmap(vec) mvec # Or explicitly choose an output file (must be uncompressed for mmap) tmp_nii <- tempfile(fileext = ".nii") mvec2 <- as_mmap(vec, file = tmp_nii, overwrite = TRUE) inherits(mvec2, "MappedNeuroVec") ## ----------------------------------------------------------------------------- bspace <- NeuroSpace(c(10, 10, 10), c(1, 1, 1)) vol <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), bspace) # Simple 3×3×3 mean kernel kern <- Kernel(c(3, 3, 3), vdim = c(3, 3, 3)) smoothed_vol <- mapf(vol, kern) smoothed_vol ## ----------------------------------------------------------------------------- file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) # Fake cluster labels over the full 3D grid n_vox <- prod(dim(vec)[1:3]) cl_lab <- sample(1:5, n_vox, replace = TRUE) roi_list <- split_clusters(vec, cl_lab) length(roi_list) # number of non-empty clusters roi_list[[1]] # ROIVec for cluster "1" coords(roi_list[[1]])[1:5, ] # first few voxel coordinates dim(values(roi_list[[1]])) # time × voxels in that cluster ## ----------------------------------------------------------------------------- file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") vec <- read_vec(file_name) n_vox <- prod(dim(vec)[1:3]) # Assign each voxel to one of three arbitrary groups fac <- factor(sample(1:3, n_vox, replace = TRUE)) # Default: mean over voxels in each group (per timepoint) group_ts <- split_reduce(vec, fac) dim(group_ts) # groups × timepoints rownames(group_ts) # "1", "2", "3" ## ----------------------------------------------------------------------------- sp3 <- NeuroSpace(c(10, 10, 10), c(1, 1, 1)) vol1 <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), sp3) vol2 <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), sp3) vol3 <- NeuroVol(array(rnorm(10 * 10 * 10), c(10, 10, 10)), sp3) # Concatenate volumes into a 4D NeuroVec (time dimension length 3) vec_3 <- concat(vol1, vol2, vol3) dim(vec_3) # 10 × 10 × 10 × 3 space(vec_3) # inherits spatial metadata from inputs ## ----------------------------------------------------------------------------- file_name <- system.file("extdata", "global_mask_v4.nii", package = "neuroim2") run1 <- read_vec(file_name) # 4D NeuroVec run2 <- read_vec(file_name) # same space and shape # Concatenate timepoints: result has dim(...)[4] = dim(run1)[4] + dim(run2)[4] run12 <- concat(run1, run2) dim(run1) dim(run2) dim(run12) ## ----------------------------------------------------------------------------- sp <- NeuroSpace(c(10, 10, 10), c(1, 1, 1)) arr <- array(0, c(10, 10, 10)) # Two small 2×2×2 clusters in opposite corners arr[1:2, 1:2, 1:2] <- 1 arr[8:9, 8:9, 8:9] <- 1 vol <- NeuroVol(arr, sp) # Find connected components above threshold 0 (26-connectivity by default) cc <- conn_comp(vol, threshold = 0) max(cc$index) # number of clusters (should be 2) cc$size[cc$size > 0] # cluster sizes in voxels ## ----------------------------------------------------------------------------- cc2 <- conn_comp(vol, threshold = 0, cluster_table = TRUE) head(cc2$cluster_table)