## ----setup, include=FALSE----------------------------------------------------- library(m61r) ## ----filter_eg---------------------------------------------------------------- tmp <- filter_(CO2, ~Plant == "Qn1") head(tmp) ## ----select_eg---------------------------------------------------------------- tmp <- select_(CO2, ~c(Plant, Type)) head(tmp, 2) ## ----mutate_eg---------------------------------------------------------------- tmp <- mutate_(CO2, z = ~conc / uptake) head(tmp, 2) ## ----summarise_eg------------------------------------------------------------- # Global summary summarise_(CO2, mean = ~mean(uptake), sd = ~sd(uptake)) # Grouped summary g_info <- get_group_indices_(CO2, ~c(Type, Treatment)) summarise_(CO2, group_info = g_info, mean = ~mean(uptake)) ## ----data_join, echo=FALSE---------------------------------------------------- authors <- data.frame( surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"), nationality = c("US", "Australia", "US", "UK", "Australia")) books <- data.frame( name = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"), title = c("EDA", "MASS", "LISP-STAT", "Spatial", "Interactive")) ## ----join_eg------------------------------------------------------------------ inner_join_(authors, books, by.x = "surname", by.y = "name") ## ----reshape_eg--------------------------------------------------------------- df3 <- data.frame(id = 1:2, age = c(40, 50), dose.a1 = c(1, 2), dose.a2 = c(2, 1)) df4 <- gather_(df3, pivot = c("id", "age")) df4