Title: Access Brazilian Public Health Data
Version: 0.2.0
Description: Provides easy access to Brazilian public health data from multiple sources including VIGITEL (Surveillance of Risk Factors for Chronic Diseases by Telephone Survey), PNS (National Health Survey), 'PNAD' Continua (Continuous National Household Sample Survey), 'POF' (Household Budget Survey with food security and consumption data), 'Censo Demografico' (population denominators via 'SIDRA' API), SIM (Mortality Information System), SINASC (Live Birth Information System), 'SIH' (Hospital Information System), 'SIA' (Outpatient Information System), 'SINAN' (Notifiable Diseases Surveillance), 'CNES' (National Health Facility Registry), 'SI-PNI' (National Immunization Program - aggregated 1994-2019 via FTP, individual-level 'microdata' 2020+ via 'OpenDataSUS' API), 'SISAB' (Primary Care Health Information System - coverage indicators via REST API), ANS ('Agencia Nacional de Saude Suplementar' - supplementary health beneficiaries, consumer complaints, and financial statements), 'ANVISA' ('Agencia Nacional de Vigilancia Sanitaria' - product registrations, 'pharmacovigilance', 'hemovigilance', 'technovigilance', and controlled substance sales via 'SNGPC'), and other health information systems. Data is downloaded from the Brazilian Ministry of Health and 'IBGE' repositories. Data is returned in tidy format following tidyverse conventions.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.3
Depends: R (≥ 4.2.0)
Imports: tibble, dplyr, curl, cli, rlang, stringr, purrr, readr, jsonlite, foreign
Suggests: testthat (≥ 3.1.5), knitr, rmarkdown, readxl, haven, furrr, future, arrow, dbplyr, duckdb, piggyback, survey, srvyr
Config/testthat/edition: 3
VignetteBuilder: knitr
URL: https://github.com/SidneyBissoli/healthbR, https://sidneybissoli.github.io/healthbR/
BugReports: https://github.com/SidneyBissoli/healthbR/issues
NeedsCompilation: yes
Packaged: 2026-02-15 21:11:54 UTC; SIDNEY
Author: Sidney Bissoli ORCID iD [aut, cre]
Maintainer: Sidney Bissoli <sbissoli76@gmail.com>
Repository: CRAN
Date/Publication: 2026-02-15 21:30:03 UTC

healthbR: Access Brazilian Public Health Data

Description

Provides easy access to Brazilian public health data from multiple sources including VIGITEL (Surveillance of Risk Factors for Chronic Diseases by Telephone Survey), PNS (National Health Survey), 'PNAD' Continua (Continuous National Household Sample Survey), 'POF' (Household Budget Survey with food security and consumption data), 'Censo Demografico' (population denominators via 'SIDRA' API), SIM (Mortality Information System), SINASC (Live Birth Information System), 'SIH' (Hospital Information System), 'SIA' (Outpatient Information System), 'SINAN' (Notifiable Diseases Surveillance), 'CNES' (National Health Facility Registry), 'SI-PNI' (National Immunization Program - aggregated 1994-2019 via FTP, individual-level 'microdata' 2020+ via 'OpenDataSUS' API), 'SISAB' (Primary Care Health Information System - coverage indicators via REST API), ANS ('Agencia Nacional de Saude Suplementar' - supplementary health beneficiaries, consumer complaints, and financial statements), 'ANVISA' ('Agencia Nacional de Vigilancia Sanitaria' - product registrations, 'pharmacovigilance', 'hemovigilance', 'technovigilance', and controlled substance sales via 'SNGPC'), and other health information systems. Data is downloaded from the Brazilian Ministry of Health and 'IBGE' repositories. Data is returned in tidy format following tidyverse conventions.

Author(s)

Maintainer: Sidney Bissoli sbissoli76@gmail.com (ORCID)

See Also

Useful links:


Show ANS Cache Status

Description

Shows information about cached ANS data files.

Usage

ans_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other ans: ans_clear_cache(), ans_data(), ans_info(), ans_operators(), ans_variables(), ans_years()

Examples

ans_cache_status()

Clear ANS Cache

Description

Deletes cached ANS data files.

Usage

ans_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other ans: ans_cache_status(), ans_data(), ans_info(), ans_operators(), ans_variables(), ans_years()

Examples


ans_clear_cache()


Download ANS Data

Description

Downloads and returns data from the ANS (Agencia Nacional de Saude Suplementar) open data portal. Supports three data types: beneficiary counts, consumer complaints (NIP), and financial statements.

Usage

ans_data(
  year,
  type = "beneficiaries",
  uf = NULL,
  month = NULL,
  quarter = NULL,
  vars = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

type

Character. Type of data. One of:

  • "beneficiaries": Consolidated beneficiary counts (default). Uses year, month, uf parameters.

  • "complaints": Consumer complaints via NIP. Uses year only (national data).

  • "financial": Financial statements. Uses year, quarter parameters.

uf

Character. Two-letter state abbreviation(s). Only used for type = "beneficiaries". Includes "XX" for unidentified beneficiaries. If NULL (default), downloads all 27 states.

month

Integer. Month(s) 1-12. Only used for type = "beneficiaries". If NULL (default), downloads all months. Note: 2019 starts at month 4 (April).

quarter

Integer. Quarter(s) 1-4. Only used for type = "financial". If NULL (default), downloads all 4 quarters.

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use ans_variables() to see available variables per type.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE.

Details

Data is downloaded from the ANS open data portal at ⁠https://dadosabertos.ans.gov.br/⁠.

Beneficiaries: Monthly per-state ZIP files containing CSV data with consolidated beneficiary counts by operator, plan type, sex, age group, and municipality. Available from April 2019.

Complaints: Annual national CSV files with consumer complaints filed through the NIP (Notificacao de Intermediacao Preliminar). Available from 2011.

Financial: Quarterly ZIP files with financial statements of health plan operators (balance sheets, income statements). Available from 2007.

Value

A tibble with ANS data. Includes partition columns: year (all types), month and uf_source (beneficiaries), quarter (financial).

See Also

ans_operators() for the operator registry, ans_variables() for variable descriptions.

Other ans: ans_cache_status(), ans_clear_cache(), ans_info(), ans_operators(), ans_variables(), ans_years()

Examples


# beneficiary counts for Acre, December 2023
ac <- ans_data(year = 2023, month = 12, uf = "AC")

# consumer complaints for 2022
nip <- ans_data(year = 2022, type = "complaints")

# financial statements Q1 2023
fin <- ans_data(year = 2023, type = "financial", quarter = 1)


ANS Module Information

Description

Displays information about the ANS (Agencia Nacional de Saude Suplementar) module, including data sources, available years, and usage guidance.

Usage

ans_info()

Value

A list with module information (invisibly).

See Also

Other ans: ans_cache_status(), ans_clear_cache(), ans_data(), ans_operators(), ans_variables(), ans_years()

Examples

ans_info()

Download ANS Operators Registry

Description

Downloads and returns the current registry of health plan operators from the ANS open data portal. This is a snapshot of the current operator status (not time-series data).

Usage

ans_operators(status = "active", vars = NULL, cache = TRUE, cache_dir = NULL)

Arguments

status

Character. Filter by operator status:

  • "active": Active operators only (default).

  • "cancelled": Cancelled operators only.

  • "all": Both active and cancelled.

vars

Character vector. Variables to keep. If NULL (default), returns all 20 variables. Use ans_variables(type = "operators") to see available variables.

cache

Logical. If TRUE (default), caches downloaded data.

cache_dir

Character. Directory for caching.

Value

A tibble with operator data. When status = "all", includes a status column indicating "active" or "cancelled".

See Also

Other ans: ans_cache_status(), ans_clear_cache(), ans_data(), ans_info(), ans_variables(), ans_years()

Examples


# active operators
ops <- ans_operators()

# all operators (active + cancelled)
all_ops <- ans_operators(status = "all")


List ANS Variables

Description

Returns a tibble with available variables in the ANS data, including descriptions and value types.

Usage

ans_variables(type = "beneficiaries", search = NULL)

Arguments

type

Character. Type of data. One of "beneficiaries" (default), "complaints", "financial", or "operators".

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other ans: ans_cache_status(), ans_clear_cache(), ans_data(), ans_info(), ans_operators(), ans_years()

Examples

ans_variables()
ans_variables(type = "complaints")
ans_variables(search = "operadora")

List Available ANS Years

Description

Returns an integer vector with years for which ANS data are available.

Usage

ans_years(type = "beneficiaries")

Arguments

type

Character. Type of data. One of:

  • "beneficiaries": Consolidated beneficiary counts (default).

  • "complaints": Consumer complaints (NIP).

  • "financial": Financial statements.

Value

An integer vector of available years.

See Also

Other ans: ans_cache_status(), ans_clear_cache(), ans_data(), ans_info(), ans_operators(), ans_variables()

Examples

ans_years()
ans_years(type = "complaints")
ans_years(type = "financial")

Show ANVISA Cache Status

Description

Shows information about cached ANVISA data files.

Usage

anvisa_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other anvisa: anvisa_clear_cache(), anvisa_data(), anvisa_info(), anvisa_types(), anvisa_variables()

Examples

anvisa_cache_status()

Clear ANVISA Cache

Description

Deletes cached ANVISA data files.

Usage

anvisa_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other anvisa: anvisa_cache_status(), anvisa_data(), anvisa_info(), anvisa_types(), anvisa_variables()

Examples


anvisa_clear_cache()


Download ANVISA Data

Description

Downloads and returns data from the ANVISA (Agencia Nacional de Vigilancia Sanitaria) open data portal. Supports 14 data types across 4 categories: product registrations, reference tables, post-market surveillance, and controlled substance sales (SNGPC).

Usage

anvisa_data(
  type = "medicines",
  year = NULL,
  month = NULL,
  vars = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

type

Character. Type of data to download. Default: "medicines". Use anvisa_types() to see all 14 available types.

Snapshot types (no year/month needed): "medicines", "medical_devices", "food", "cosmetics", "sanitizers", "tobacco", "pesticides", "hemovigilance", "technovigilance", "vigimed_notifications", "vigimed_medicines", "vigimed_reactions".

Time-series types (year required): "sngpc", "sngpc_compounded".

year

Integer. Year(s) of the data. Only used for SNGPC types (2014-2026). Ignored with a warning for snapshot types.

month

Integer. Month(s) 1-12. Only used for SNGPC types. If NULL (default), downloads all 12 months. Ignored with a warning for snapshot types.

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use anvisa_variables() to see available variables per type.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Only available for SNGPC types (partitioned cache). Requires the arrow package. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE.

Details

Data is downloaded from the ANVISA open data portal at ⁠https://dados.anvisa.gov.br/dados/⁠.

Snapshot types: Download a single CSV file representing the current state of the registry/database. No time dimension. Cached as flat files.

SNGPC types: Monthly CSV files with controlled substance sales data. Data available from January 2014 to October 2021, with new data from January 2026. Cached as Hive-style partitioned parquet datasets.

The three VigiMed types share the IDENTIFICACAO_NOTIFICACAO key for linking notifications, medicines, and reactions.

Value

A tibble with ANVISA data. SNGPC types include year and month partition columns.

See Also

anvisa_types() for available types, anvisa_variables() for variable descriptions.

Other anvisa: anvisa_cache_status(), anvisa_clear_cache(), anvisa_info(), anvisa_types(), anvisa_variables()

Examples


# registered medicines
med <- anvisa_data(type = "medicines")

# hemovigilance notifications
hemo <- anvisa_data(type = "hemovigilance")

# SNGPC controlled substance sales, Jan 2020
sngpc <- anvisa_data(type = "sngpc", year = 2020, month = 1)


ANVISA Module Information

Description

Displays information about the ANVISA (Agencia Nacional de Vigilancia Sanitaria) module, including data sources, available types, and usage guidance.

Usage

anvisa_info()

Value

A list with module information (invisibly).

See Also

Other anvisa: anvisa_cache_status(), anvisa_clear_cache(), anvisa_data(), anvisa_types(), anvisa_variables()

Examples

anvisa_info()

List ANVISA Data Types

Description

Returns a tibble with available ANVISA data types, their names, descriptions, and categories.

Usage

anvisa_types()

Value

A tibble with columns: code, name, description, category.

See Also

Other anvisa: anvisa_cache_status(), anvisa_clear_cache(), anvisa_data(), anvisa_info(), anvisa_variables()

Examples

anvisa_types()

List ANVISA Variables

Description

Returns a tibble with available variables for a given ANVISA data type, including descriptions.

Usage

anvisa_variables(type = "medicines", search = NULL)

Arguments

type

Character. ANVISA data type code. Default: "medicines". Use anvisa_types() to see all valid types.

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description.

See Also

Other anvisa: anvisa_cache_status(), anvisa_clear_cache(), anvisa_data(), anvisa_info(), anvisa_types()

Examples

anvisa_variables()
anvisa_variables(type = "hemovigilance")
anvisa_variables(search = "registro")

Get intercensitary population estimates

Description

Retrieves population estimates for intercensitary years (2001-2021) from SIDRA table 6579. These estimates provide population denominators for years between censuses.

Usage

censo_estimativa(
  year,
  territorial_level = "state",
  geo_code = "all",
  raw = FALSE
)

Arguments

year

Numeric or vector. Year(s) between 2001 and 2021.

territorial_level

Character. Geographic level: "brazil", "region", "state", or "municipality". Default is "state".

geo_code

Character. IBGE code(s) for specific localities. "all" returns all localities at the chosen level. Default is "all".

raw

Logical. If TRUE, returns raw API output without cleaning. Default is FALSE.

Details

Table 6579 provides total population estimates (no sex/age breakdown). These estimates are published annually by IBGE and are widely used as denominators for health indicator calculations.

For census years with full demographic breakdowns, use censo_populacao instead.

Value

A tibble with population estimates.

Data source

Data is retrieved from IBGE SIDRA API, table 6579: ⁠https://sidra.ibge.gov.br/tabela/6579⁠

Examples


# estimates for 2020 by state
censo_estimativa(year = 2020)

# estimates for multiple years, Brazil level
censo_estimativa(year = 2015:2020, territorial_level = "brazil")

# estimates by municipality
censo_estimativa(year = 2021, territorial_level = "municipality")


Census information

Description

Displays information about the Brazilian Census and returns metadata.

Usage

censo_info(year = NULL)

Arguments

year

Numeric. Year to get specific information about. NULL shows general info.

Value

Invisibly returns a list with Census metadata.

Examples

censo_info()
censo_info(2022)

Get Census population data

Description

Retrieves population data from the Brazilian Demographic Census via SIDRA API. Automatically selects the correct SIDRA table based on year and requested variables.

Usage

censo_populacao(
  year,
  variables = "total",
  territorial_level = "state",
  geo_code = "all",
  raw = FALSE
)

Arguments

year

Numeric. Census year (1970, 1980, 1991, 2000, 2010, or 2022).

variables

Character. Type of breakdown:

  • "total": Total population only

  • "sex": By sex (male/female)

  • "age": By age groups

  • "age_sex": By age groups and sex

  • "race": By race/color (only 2000, 2010, 2022)

  • "situation": By urban/rural situation

Default is "total".

territorial_level

Character. Geographic level: "brazil", "region", "state", or "municipality". Default is "state".

geo_code

Character. IBGE code(s) for specific localities. "all" returns all localities at the chosen level. Default is "all".

raw

Logical. If TRUE, returns raw API output without cleaning. Default is FALSE.

Details

This function provides an easy interface for the most common Census queries. It automatically resolves the correct SIDRA table:

For more flexibility, use censo_sidra_data to query any table with custom parameters.

Value

A tibble with population data.

Data source

Data is retrieved from IBGE SIDRA API: ⁠https://sidra.ibge.gov.br/⁠

Examples


# total population by state, 2022
censo_populacao(year = 2022)

# population by sex, Brazil level
censo_populacao(year = 2022, variables = "sex", territorial_level = "brazil")

# population by age and sex, 2010
censo_populacao(year = 2010, variables = "age_sex")

# population by race, 2022
censo_populacao(year = 2022, variables = "race")


Get Census data from SIDRA API

Description

Queries the IBGE SIDRA API to retrieve any Census table. This is the most flexible function, allowing full control over SIDRA query parameters.

Usage

censo_sidra_data(
  table,
  territorial_level = "brazil",
  geo_code = "all",
  year = NULL,
  variable = NULL,
  classifications = NULL,
  raw = FALSE
)

Arguments

table

Numeric or character. SIDRA table code. Use censo_sidra_tables or censo_sidra_search to find codes.

territorial_level

Character. Geographic level: "brazil" (N1), "region" (N2), "state" (N3), "municipality" (N6). Default "brazil".

geo_code

Character. IBGE code(s) for specific localities. "all" returns all localities at the chosen level. Default "all".

year

Numeric or character. Year(s) to query. NULL returns all available periods.

variable

Numeric or character. SIDRA variable ID(s). NULL returns all variables excluding metadata. Default NULL.

classifications

Named list. SIDRA classification filters. Example: list("2" = "allxt") for sex breakdown. NULL returns default aggregation. Default NULL.

raw

Logical. If TRUE, returns raw API output without cleaning. Default FALSE.

Value

A tibble with queried data.

Examples


# population by state from 2022 Census
censo_sidra_data(
  table = 9514,
  territorial_level = "state",
  year = 2022,
  variable = 93
)

# population by race, Brazil level
censo_sidra_data(
  table = 9605,
  territorial_level = "brazil",
  year = 2022,
  variable = 93,
  classifications = list("86" = "allxt")
)


Description

Searches Census SIDRA tables by keyword in the table name. Supports partial matching, case-insensitive, and accent-insensitive search.

Usage

censo_sidra_search(keyword, year = NULL)

Arguments

keyword

Character. Search term (minimum 2 characters).

year

Character or numeric. Filter tables containing data for this year. NULL returns all.

Value

A tibble with matching tables (same structure as censo_sidra_tables).

Examples

censo_sidra_search("deficiencia")
censo_sidra_search("raca")
censo_sidra_search("indigena")

List Census SIDRA tables

Description

Returns a catalog of available SIDRA tables for the Census, organized by theme.

Usage

censo_sidra_tables(theme = NULL, year = NULL)

Arguments

theme

Character. Filter by theme. NULL returns all themes. Available themes: "population", "race", "estimates", "literacy", "housing", "sanitation", "disability", "indigenous", "quilombola", "fertility", "education", "labor", "income", "age_sex", "urbanization".

year

Character or numeric. Filter tables that contain data for this year. NULL returns tables for all years.

Value

A tibble with columns: table_code, table_name, theme, years, territorial_levels.

Examples

# list all Census tables
censo_sidra_tables()

# filter by theme
censo_sidra_tables(theme = "population")

# tables with 2022 data
censo_sidra_tables(year = 2022)

List available Census years

Description

Returns a character vector with available Census years.

Usage

censo_years()

Value

A character vector of available years.

Examples

censo_years()

Show CNES Cache Status

Description

Shows information about cached CNES data files.

Usage

cnes_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other cnes: cnes_clear_cache(), cnes_data(), cnes_dictionary(), cnes_info(), cnes_variables(), cnes_years()

Examples

cnes_cache_status()

Clear CNES Cache

Description

Deletes cached CNES data files.

Usage

cnes_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other cnes: cnes_cache_status(), cnes_data(), cnes_dictionary(), cnes_info(), cnes_variables(), cnes_years()

Examples


cnes_clear_cache()


Download CNES Health Facility Registry Data

Description

Downloads and returns health facility registry data from DATASUS FTP. Each row represents one health facility record (for the ST type). Data is organized monthly – one .dbc file per type, state (UF), and month.

Usage

cnes_data(
  year,
  type = "ST",
  month = NULL,
  vars = NULL,
  uf = NULL,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

type

Character. File type to download. Default: "ST" (establishments). See cnes_info() for all 13 types.

month

Integer. Month(s) of the data (1-12). If NULL (default), downloads all 12 months. Example: 1 (January), 1:6 (first semester).

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use cnes_variables() to see available variables.

uf

Character. Two-letter state abbreviation(s) to download. If NULL (default), downloads all 27 states. Example: "SP", c("SP", "RJ").

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use cnes_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(COMPETEN = "character") to keep COMPETEN as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

Data is downloaded from DATASUS FTP as .dbc files (one per type/state/month). The .dbc format is decompressed internally using vendored C code from the blast library. No external dependencies are required.

CNES data is monthly, so downloading an entire year for all states requires 324 files (27 UFs x 12 months) per type. Use uf and month to limit downloads.

The CNES has 13 file types. The default "ST" (establishments) is the most commonly used. Use cnes_info() to see all types.

Value

A tibble with health facility data. Includes columns year, month, and uf_source to identify the source when multiple years/months/states are combined.

See Also

cnes_info() for file type descriptions, censo_populacao() for population denominators.

Other cnes: cnes_cache_status(), cnes_clear_cache(), cnes_dictionary(), cnes_info(), cnes_variables(), cnes_years()

Examples


# all establishments in Acre, January 2023
ac_jan <- cnes_data(year = 2023, month = 1, uf = "AC")

# only key variables
cnes_data(year = 2023, month = 1, uf = "AC",
          vars = c("CNES", "CODUFMUN", "TP_UNID", "VINC_SUS"))

# hospital beds
leitos <- cnes_data(year = 2023, month = 1, uf = "AC", type = "LT")

# health professionals
prof <- cnes_data(year = 2023, month = 1, uf = "AC", type = "PF")


CNES Data Dictionary

Description

Returns a tibble with the complete data dictionary for the CNES, including variable descriptions and category labels.

Usage

cnes_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Value

A tibble with columns: variable, description, code, label.

See Also

Other cnes: cnes_cache_status(), cnes_clear_cache(), cnes_data(), cnes_info(), cnes_variables(), cnes_years()

Examples

cnes_dictionary()
cnes_dictionary("TP_UNID")
cnes_dictionary("ESFERA_A")

CNES Module Information

Description

Displays information about the National Health Facility Registry (CNES), including data sources, available years, file types, and usage guidance.

Usage

cnes_info()

Value

A list with module information (invisibly).

See Also

Other cnes: cnes_cache_status(), cnes_clear_cache(), cnes_data(), cnes_dictionary(), cnes_variables(), cnes_years()

Examples

cnes_info()

List CNES Variables

Description

Returns a tibble with available variables in the CNES data (ST type), including descriptions and value types.

Usage

cnes_variables(type = "ST", search = NULL)

Arguments

type

Character. File type to show variables for. Currently only "ST" is fully documented. Default: "ST".

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other cnes: cnes_cache_status(), cnes_clear_cache(), cnes_data(), cnes_dictionary(), cnes_info(), cnes_years()

Examples

cnes_variables()
cnes_variables(search = "tipo")
cnes_variables(search = "gestao")

List Available CNES Years

Description

Returns an integer vector with years for which health facility registry data are available from DATASUS FTP.

Usage

cnes_years(status = "final")

Arguments

status

Character. Filter by data status. One of:

  • "final": Definitive data only (default).

  • "preliminary": Preliminary data only.

  • "all": All available data (definitive + preliminary).

Value

An integer vector of available years.

See Also

Other cnes: cnes_cache_status(), cnes_clear_cache(), cnes_data(), cnes_dictionary(), cnes_info(), cnes_variables()

Examples

cnes_years()
cnes_years(status = "all")

Create partitioned parquet cache

Description

Create partitioned parquet cache

Usage

create_partitioned_cache(df, cache_dir)

Arguments

df

A data frame with VIGITEL data

cache_dir

Character. Cache directory path.

Value

Invisible path to the parquet directory, or NULL if arrow not available.


Get all available columns from Arrow dataset

Description

Get all available columns from Arrow dataset

Usage

get_arrow_column_names(dataset)

Arguments

dataset

An Arrow Dataset

Value

Character vector of column names.


Check if partitioned cache exists

Description

Check if partitioned cache exists

Usage

has_partitioned_cache(cache_dir)

Arguments

cache_dir

Character. Cache directory path.

Value

Logical. TRUE if partitioned cache exists.


List Available Data Sources

Description

Returns information about all data sources available in healthbR.

Usage

list_sources()

Value

A tibble with columns:

Examples

list_sources()

Get PNADC cache status

Description

Shows cache status including downloaded files and their sizes.

Usage

pnadc_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

A tibble with cache information

Examples

pnadc_cache_status()

Clear PNADC cache

Description

Removes all cached PNADC data files.

Usage

pnadc_clear_cache(module = NULL, cache_dir = NULL)

Arguments

module

Character. Optional module to clear cache for. If NULL (default), clears cache for all modules.

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

NULL (invisibly)

Examples

pnadc_clear_cache()

Download PNADC microdata

Description

Downloads and returns PNADC microdata for the specified module and year(s) from the IBGE FTP. Data is cached locally to avoid repeated downloads. When the arrow package is installed, data is cached in parquet format for faster subsequent reads.

Usage

pnadc_data(
  module,
  year = NULL,
  vars = NULL,
  as_survey = FALSE,
  cache_dir = NULL,
  refresh = FALSE,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

module

Character. The module identifier. Use pnadc_modules to see available modules. Required.

year

Numeric or vector. Year(s) to download. Use NULL for all available years for the module. Default is NULL.

vars

Character vector. Variables to select. Use NULL for all variables. Survey design variables (UPA, Estrato, V1028) and key demographic variables are always included. Default is NULL.

as_survey

Logical. If TRUE, returns a survey design object (requires the srvyr package). Default is FALSE.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

PNAD Continua (Pesquisa Nacional por Amostra de Domicilios Continua) is a quarterly household survey conducted by IBGE. This function provides access to supplementary modules with health-related content.

Available modules

Survey design variables

For proper statistical analysis with complex survey design, the following variables are always included:

Use as_survey = TRUE to get a properly weighted survey design object for analysis with the srvyr package.

Value

A tibble with PNADC microdata, or a srvyr survey design object if as_survey = TRUE.

Data source

Data is downloaded from the IBGE FTP server: ⁠https://ftp.ibge.gov.br/Trabalho_e_Rendimento/Pesquisa_Nacional_por_Amostra_de_Domicilios_continua/⁠

Examples


# download deficiencia module for 2022
df <- pnadc_data(module = "deficiencia", year = 2022, cache_dir = tempdir())

# download with survey design
svy <- pnadc_data(
  module = "deficiencia",
  year = 2022,
  as_survey = TRUE,
  cache_dir = tempdir()
)

# select specific variables
df_subset <- pnadc_data(
  module = "deficiencia",
  year = 2022,
  vars = c("S11001", "S11002"),
  cache_dir = tempdir()
)


Download PNADC variable dictionary

Description

Downloads and returns the variable dictionary for PNADC microdata. The dictionary is cached locally to avoid repeated downloads.

Usage

pnadc_dictionaries(module, year = NULL, cache_dir = NULL, refresh = FALSE)

Arguments

module

Character. The module identifier (e.g., "deficiencia", "habitacao").

year

Numeric. Year to get dictionary for. Uses most recent year if NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Details

The dictionary includes variable names, positions, and widths from the IBGE input specification file. This is useful for understanding the structure of the data returned by pnadc_data.

Value

A tibble with variable definitions.

Data source

Dictionaries are downloaded from the IBGE FTP server.

Examples


# get dictionary for deficiencia module
dict <- pnadc_dictionaries(module = "deficiencia", cache_dir = tempdir())


PNADC survey information

Description

Displays information about PNAD Continua and returns metadata.

Usage

pnadc_info()

Value

Invisibly returns a list with survey metadata.

Examples

pnadc_info()

List available PNADC modules

Description

Returns information about the available supplementary modules in PNAD Continua that are supported by this package.

Usage

pnadc_modules()

Value

A tibble with module information including name, available years, and descriptions.

Examples

pnadc_modules()

List PNADC variables

Description

Returns a list of available variables in the PNADC microdata for a given module. This is a convenience wrapper around pnadc_dictionaries.

Usage

pnadc_variables(module, year = NULL, cache_dir = NULL, refresh = FALSE)

Arguments

module

Character. The module identifier (e.g., "deficiencia", "habitacao").

year

Numeric. Year to get variables for. Uses most recent year if NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Value

A character vector of variable names.

Examples


# list variables for deficiencia module
pnadc_variables(module = "deficiencia", cache_dir = tempdir())


List available years for a PNADC module

Description

Returns a vector of years for which data is available for the specified module.

Usage

pnadc_years(module)

Arguments

module

Character. The module identifier. Use pnadc_modules to see available modules.

Value

An integer vector of available years.

Examples

pnadc_years("deficiencia")
pnadc_years("habitacao")

Get PNS cache status

Description

Shows cache status including downloaded files and their sizes.

Usage

pns_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

A tibble with cache information

Examples

pns_cache_status()

Clear PNS cache

Description

Removes all cached PNS data files.

Usage

pns_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

NULL (invisibly)

Examples

pns_clear_cache()

Download PNS microdata

Description

Downloads and returns PNS microdata for specified years from the IBGE FTP. Data is cached locally to avoid repeated downloads. When the arrow package is installed, data is cached in parquet format for faster subsequent reads.

Usage

pns_data(
  year = NULL,
  vars = NULL,
  cache_dir = NULL,
  refresh = FALSE,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Numeric or vector. Year(s) to download (2013, 2019). Use NULL to download all available years. Default is NULL.

vars

Character vector. Variables to select. Use NULL for all variables. Default is NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

The PNS (Pesquisa Nacional de Saude) is a household survey conducted by IBGE in partnership with the Ministry of Health. It provides comprehensive data on health conditions, lifestyle, and healthcare access of the Brazilian population.

Survey design variables

For proper statistical analysis with complex survey design, use the following weight variables with the srvyr or survey packages:

Value

A tibble with PNS microdata.

Data source

Data is downloaded from the IBGE FTP server: ⁠https://ftp.ibge.gov.br/PNS/⁠

Examples


# download PNS 2019 data
df <- pns_data(year = 2019, cache_dir = tempdir())

# download all years
df_all <- pns_data(cache_dir = tempdir())

# select specific variables
df_subset <- pns_data(
  year = 2019,
  vars = c("V0001", "C006", "C008", "V0028"),
  cache_dir = tempdir()
)


Download PNS variable dictionary

Description

Downloads and returns the variable dictionary for PNS microdata. The dictionary is cached locally to avoid repeated downloads.

Usage

pns_dictionary(year = 2019, cache_dir = NULL, refresh = FALSE)

Arguments

year

Numeric. Year to get dictionary for (2013 or 2019). Default is 2019.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Details

The dictionary includes variable names, labels, and response categories for the PNS microdata. This is useful for understanding the structure of the data returned by pns_data.

Value

A tibble with variable definitions.

Data source

Dictionaries are downloaded from the IBGE FTP server: ⁠https://ftp.ibge.gov.br/PNS/⁠

Examples


# get dictionary for 2019
dict <- pns_dictionary(year = 2019, cache_dir = tempdir())

# get dictionary for 2013
dict_2013 <- pns_dictionary(year = 2013, cache_dir = tempdir())


PNS survey information

Description

Displays information about the PNS survey and returns metadata.

Usage

pns_info(year = NULL)

Arguments

year

Numeric. Year to get specific information about. NULL shows general info.

Value

Invisibly returns a list with survey metadata.

Examples

pns_info()
pns_info(2019)

List PNS survey modules

Description

Returns information about the questionnaire modules available in the PNS.

Usage

pns_modules(year = NULL)

Arguments

year

Numeric. Year to get modules for (2013 or 2019). NULL returns modules for all years. Default is NULL.

Value

A tibble with module codes, names, and descriptions.

Examples

pns_modules()
pns_modules(year = 2019)

Get PNS tabulated data from SIDRA API

Description

Queries the IBGE SIDRA API to retrieve tabulated PNS indicators. Returns pre-aggregated data (prevalences, means, proportions) with confidence intervals and coefficients of variation.

Usage

pns_sidra_data(
  table,
  territorial_level = "brazil",
  geo_code = "all",
  year = NULL,
  variable = NULL,
  classifications = NULL,
  raw = FALSE
)

Arguments

table

Numeric or character. SIDRA table code. Use pns_sidra_tables() or pns_sidra_search() to find codes.

territorial_level

Character. Geographic level: "brazil" (N1), "region" (N2), "state" (N3), "municipality" (N6). Default "brazil".

geo_code

Character. IBGE code(s) for specific localities. "all" returns all localities at the chosen level. Default "all".

year

Numeric. Year(s) to query. NULL returns all available periods.

variable

Numeric or character. SIDRA variable ID(s). NULL returns all variables excluding metadata. Default NULL.

classifications

Named list. SIDRA classification filters. Example: list("2" = "6794") for sex = total. NULL returns default aggregation. Default NULL.

raw

Logical. If TRUE, returns raw API output without cleaning. Default FALSE.

Value

A tibble with queried indicators.

Examples


# self-rated health by state, 2019
pns_sidra_data(
  table = 4751,
  territorial_level = "state",
  year = 2019
)

# same table, Brazil-level, both years
pns_sidra_data(
  table = 4751,
  territorial_level = "brazil",
  year = c(2013, 2019)
)

# hypertension data
pns_sidra_data(
  table = 4416,
  territorial_level = "brazil"
)


Description

Searches PNS SIDRA tables by keyword in the table name/description. Supports partial matching, case-insensitive, and accent-insensitive search.

Usage

pns_sidra_search(keyword, year = NULL)

Arguments

keyword

Character. Search term (minimum 2 characters).

year

Numeric. Filter tables containing data for this year. NULL returns all.

Value

A tibble with matching tables (same structure as pns_sidra_tables()).

Examples

pns_sidra_search("diabetes")
pns_sidra_search("hipertensao")
pns_sidra_search("fumante")

List PNS SIDRA tables

Description

Returns a catalog of available SIDRA tables for the PNS, organized by health theme.

Usage

pns_sidra_tables(theme = NULL, year = NULL)

Arguments

theme

Character. Filter by theme. NULL returns all themes. Available themes: "chronic_diseases", "lifestyle", "health_services", "health_perception", "womens_health", "accidents_violence", "oral_health", "anthropometry", "health_insurance", "disability", "elderly", "tobacco", "alcohol", "physical_activity", "nutrition", "medications", "mental_health", "work_health", "child_health".

year

Numeric. Filter tables that contain data for this year. NULL returns tables for all years.

Value

A tibble with columns: table_code, table_name, theme, theme_label, years, territorial_levels.

Examples

# list all tables
pns_sidra_tables()

# filter by theme
pns_sidra_tables(theme = "chronic_diseases")

# tables with 2013 data
pns_sidra_tables(year = 2013)

List PNS variables

Description

Returns a list of available variables in the PNS microdata with their labels. This is a convenience wrapper around pns_dictionary that returns only unique variable names and labels.

Usage

pns_variables(year = 2019, module = NULL, cache_dir = NULL, refresh = FALSE)

Arguments

year

Numeric. Year to get variables for (2013 or 2019). Default is 2019.

module

Character. Filter by module code (e.g., "J", "K", "L"). NULL returns all modules. Default is NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Value

A tibble with variable names and labels.

Examples


# list all variables for 2019
pns_variables(year = 2019, cache_dir = tempdir())

# list variables for a specific module
pns_variables(year = 2019, module = "J", cache_dir = tempdir())


List available PNS survey years

Description

Returns a character vector with available PNS survey years.

Usage

pns_years()

Value

A character vector of available years.

Examples

pns_years()

Get POF cache status

Description

Shows cache status including downloaded files and their sizes.

Usage

pof_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

A tibble with cache information

See Also

Other pof: pof_clear_cache(), pof_data(), pof_dictionary(), pof_info(), pof_registers(), pof_variables(), pof_years()

Examples

pof_cache_status()

Clear POF cache

Description

Removes all cached POF data files.

Usage

pof_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

NULL (invisibly)

See Also

Other pof: pof_cache_status(), pof_data(), pof_dictionary(), pof_info(), pof_registers(), pof_variables(), pof_years()

Examples

pof_clear_cache()

Download and import POF microdata

Description

Downloads POF microdata from IBGE FTP and returns as a tibble. Data is cached locally to avoid repeated downloads.

Usage

pof_data(
  year = "2017-2018",
  register = "morador",
  vars = NULL,
  cache_dir = NULL,
  as_survey = FALSE,
  refresh = FALSE,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Character. POF edition (e.g., "2017-2018"). Default is "2017-2018".

register

Character. Which register to download. Use pof_registers() to see available options. Default is "morador".

vars

Character vector. Optional: specific variables to select. If NULL, returns all variables from the register. Default is NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

as_survey

Logical. If TRUE, returns survey design object. Requires srvyr package. Default is FALSE.

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

The POF (Pesquisa de Orcamentos Familiares) is a household survey conducted by IBGE that investigates household budgets, living conditions, and nutritional profiles of the Brazilian population.

Health-related data

The POF contains several health-related modules:

Survey design

For proper statistical analysis with complex survey design, use as_survey = TRUE which creates a survey design object with:

Value

A tibble with microdata, or tbl_svy if as_survey = TRUE.

Data source

Data is downloaded from the IBGE FTP server: ⁠https://ftp.ibge.gov.br/Orcamentos_Familiares/⁠

See Also

pof_years, pof_info, pof_registers, pof_variables

Other pof: pof_cache_status(), pof_clear_cache(), pof_dictionary(), pof_info(), pof_registers(), pof_variables(), pof_years()

Examples


# basic usage - download morador register
morador <- pof_data("2017-2018", "morador", cache_dir = tempdir())

# download domicilio register (includes EBIA)
domicilio <- pof_data("2017-2018", "domicilio", cache_dir = tempdir())

# select specific variables
df <- pof_data(
  "2017-2018", "morador",
  vars = c("COD_UPA", "ESTRATO_POF", "PESO_FINAL", "V0403"),
  cache_dir = tempdir()
)

# with survey design (requires srvyr package)
morador_svy <- pof_data("2017-2018", "morador", as_survey = TRUE,
                         cache_dir = tempdir())


Get POF variable dictionary

Description

Downloads and returns the variable dictionary for POF microdata. The dictionary is cached locally to avoid repeated downloads.

Usage

pof_dictionary(
  year = "2017-2018",
  register = NULL,
  cache_dir = NULL,
  refresh = FALSE
)

Arguments

year

Character. POF edition (e.g., "2017-2018"). Default is "2017-2018".

register

Character. Register name. If NULL, returns all registers. Default is NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Value

A tibble with variable definitions including: variable, description, position, length, decimals, register.

See Also

pof_variables, pof_data

Other pof: pof_cache_status(), pof_clear_cache(), pof_data(), pof_info(), pof_registers(), pof_variables(), pof_years()

Examples


pof_dictionary("2017-2018", "morador", cache_dir = tempdir())


Get POF survey information

Description

Returns metadata about the POF survey edition including available health modules and sampling design information.

Usage

pof_info(year = "2017-2018")

Arguments

year

Character. POF edition (e.g., "2017-2018"). Default is "2017-2018".

Value

A list with survey metadata (invisibly).

See Also

pof_years, pof_data

Other pof: pof_cache_status(), pof_clear_cache(), pof_data(), pof_dictionary(), pof_registers(), pof_variables(), pof_years()

Examples

pof_info()
pof_info("2017-2018")
pof_info("2008-2009")

List POF registers

Description

Returns information about the data registers available in the POF.

Usage

pof_registers(year = "2017-2018", health_only = FALSE)

Arguments

year

Character. POF edition (e.g., "2017-2018"). Default is "2017-2018".

health_only

Logical. If TRUE, returns only health-related registers. Default is FALSE.

Value

A tibble with register names and descriptions.

See Also

Other pof: pof_cache_status(), pof_clear_cache(), pof_data(), pof_dictionary(), pof_info(), pof_variables(), pof_years()

Examples

pof_registers()
pof_registers("2017-2018", health_only = TRUE)

List POF variables

Description

Returns a list of available variables in the POF microdata with their labels. This is a convenience wrapper around pof_dictionary that returns a simplified view.

Usage

pof_variables(
  year = "2017-2018",
  register = NULL,
  search = NULL,
  cache_dir = NULL,
  refresh = FALSE
)

Arguments

year

Character. POF edition (e.g., "2017-2018"). Default is "2017-2018".

register

Character. Register name (e.g., "morador", "domicilio"). If NULL, returns variables from all registers. Default is NULL.

search

Character. Optional search term to filter variables by name or description. Default is NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

refresh

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Value

A tibble with columns: variable, description, position, length, register.

See Also

pof_dictionary, pof_data

Other pof: pof_cache_status(), pof_clear_cache(), pof_data(), pof_dictionary(), pof_info(), pof_registers(), pof_years()

Examples


pof_variables("2017-2018", "morador", cache_dir = tempdir())
pof_variables("2017-2018", "domicilio", search = "ebia", cache_dir = tempdir())


List available POF survey years

Description

Returns a character vector with available POF survey years.

Usage

pof_years()

Value

A character vector of available years in "YYYY-YYYY" format.

See Also

Other pof: pof_cache_status(), pof_clear_cache(), pof_data(), pof_dictionary(), pof_info(), pof_registers(), pof_variables()

Examples

pof_years()

Show SIA Cache Status

Description

Shows information about cached SIA data files.

Usage

sia_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sia: sia_clear_cache(), sia_data(), sia_dictionary(), sia_info(), sia_variables(), sia_years()

Examples

sia_cache_status()

Clear SIA Cache

Description

Deletes cached SIA data files.

Usage

sia_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sia: sia_cache_status(), sia_data(), sia_dictionary(), sia_info(), sia_variables(), sia_years()

Examples


sia_clear_cache()


Download SIA Outpatient Production Microdata

Description

Downloads and returns outpatient production microdata from DATASUS FTP. Each row represents one outpatient production record. Data is organized monthly – one .dbc file per type, state (UF), and month.

Usage

sia_data(
  year,
  type = "PA",
  month = NULL,
  vars = NULL,
  uf = NULL,
  procedure = NULL,
  diagnosis = NULL,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

type

Character. File type to download. Default: "PA" (outpatient production). See sia_info() for all 13 types.

month

Integer. Month(s) of the data (1-12). If NULL (default), downloads all 12 months. Example: 1 (January), 1:6 (first semester).

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sia_variables() to see available variables.

uf

Character. Two-letter state abbreviation(s) to download. If NULL (default), downloads all 27 states. Example: "SP", c("SP", "RJ").

procedure

Character. SIGTAP procedure code pattern(s) to filter by (PA_PROC_ID). Supports partial matching (prefix). If NULL (default), returns all procedures. Example: "0301" (consultations).

diagnosis

Character. CID-10 code pattern(s) to filter by principal diagnosis (PA_CIDPRI). Supports partial matching (prefix). If NULL (default), returns all diagnoses. Example: "J" (respiratory diseases).

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use sia_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(PA_VALAPR = "character") to keep PA_VALAPR as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

Data is downloaded from DATASUS FTP as .dbc files (one per type/state/month). The .dbc format is decompressed internally using vendored C code from the blast library. No external dependencies are required.

SIA data is monthly, so downloading an entire year for all states requires 324 files (27 UFs x 12 months) per type. Use uf and month to limit downloads.

The SIA has 13 file types. The default "PA" (outpatient production) is the most commonly used. Use sia_info() to see all types.

Value

A tibble with outpatient production microdata. Includes columns year, month, and uf_source to identify the source when multiple years/months/states are combined.

See Also

sia_info() for file type descriptions, censo_populacao() for population denominators.

Other sia: sia_cache_status(), sia_clear_cache(), sia_dictionary(), sia_info(), sia_variables(), sia_years()

Examples


# all outpatient production in Acre, January 2022
ac_jan <- sia_data(year = 2022, month = 1, uf = "AC")

# filter by procedure code
consult <- sia_data(year = 2022, month = 1, uf = "AC",
                    procedure = "0301")

# filter by diagnosis (CID-10)
resp <- sia_data(year = 2022, month = 1, uf = "AC",
                 diagnosis = "J")

# only key variables
sia_data(year = 2022, month = 1, uf = "AC",
         vars = c("PA_PROC_ID", "PA_CIDPRI", "PA_SEXO",
                  "PA_IDADE", "PA_VALAPR"))

# different file type (APAC Medicamentos)
med <- sia_data(year = 2022, month = 1, uf = "AC", type = "AM")


SIA Data Dictionary

Description

Returns a tibble with the complete data dictionary for the SIA, including variable descriptions and category labels.

Usage

sia_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Value

A tibble with columns: variable, description, code, label.

See Also

Other sia: sia_cache_status(), sia_clear_cache(), sia_data(), sia_info(), sia_variables(), sia_years()

Examples

sia_dictionary()
sia_dictionary("PA_SEXO")
sia_dictionary("PA_RACACOR")

SIA Module Information

Description

Displays information about the Outpatient Information System (SIA), including data sources, available years, file types, and usage guidance.

Usage

sia_info()

Value

A list with module information (invisibly).

See Also

Other sia: sia_cache_status(), sia_clear_cache(), sia_data(), sia_dictionary(), sia_variables(), sia_years()

Examples

sia_info()

List SIA Variables

Description

Returns a tibble with available variables in the SIA microdata (PA type), including descriptions and value types.

Usage

sia_variables(type = "PA", search = NULL)

Arguments

type

Character. File type to show variables for. Currently only "PA" is fully documented. Default: "PA".

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sia: sia_cache_status(), sia_clear_cache(), sia_data(), sia_dictionary(), sia_info(), sia_years()

Examples

sia_variables()
sia_variables(search = "sexo")
sia_variables(search = "procedimento")

List Available SIA Years

Description

Returns an integer vector with years for which outpatient production microdata are available from DATASUS FTP.

Usage

sia_years(status = "final")

Arguments

status

Character. Filter by data status. One of:

  • "final": Definitive data only (default).

  • "preliminary": Preliminary data only.

  • "all": All available data (definitive + preliminary).

Value

An integer vector of available years.

See Also

Other sia: sia_cache_status(), sia_clear_cache(), sia_data(), sia_dictionary(), sia_info(), sia_variables()

Examples

sia_years()
sia_years(status = "all")

Show SIH Cache Status

Description

Shows information about cached SIH data files.

Usage

sih_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sih: sih_clear_cache(), sih_data(), sih_dictionary(), sih_info(), sih_variables(), sih_years()

Examples

sih_cache_status()

Clear SIH Cache

Description

Deletes cached SIH data files.

Usage

sih_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sih: sih_cache_status(), sih_data(), sih_dictionary(), sih_info(), sih_variables(), sih_years()

Examples


sih_clear_cache()


Download SIH Hospital Admission Microdata

Description

Downloads and returns hospital admission microdata from DATASUS FTP. Each row represents one hospital admission record (AIH). Data is organized monthly – one .dbc file per state (UF) per month.

Usage

sih_data(
  year,
  month = NULL,
  vars = NULL,
  uf = NULL,
  diagnosis = NULL,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

month

Integer. Month(s) of the data (1-12). If NULL (default), downloads all 12 months. Example: 1 (January), 1:6 (first semester).

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sih_variables() to see available variables.

uf

Character. Two-letter state abbreviation(s) to download. If NULL (default), downloads all 27 states. Example: "SP", c("SP", "RJ").

diagnosis

Character. CID-10 code pattern(s) to filter by principal diagnosis (DIAG_PRINC). Supports partial matching (prefix). If NULL (default), returns all diagnoses. Example: "I21" (acute myocardial infarction), "J" (respiratory).

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use sih_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(VAL_TOT = "character") to keep VAL_TOT as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

Data is downloaded from DATASUS FTP as .dbc files (one per state per month). The .dbc format is decompressed internally using vendored C code from the blast library. No external dependencies are required.

SIH data is monthly, so downloading an entire year for all states requires 324 files (27 UFs x 12 months). Use uf and month to limit downloads.

Value

A tibble with hospital admission microdata. Includes columns year, month, and uf_source to identify the source when multiple years/months/states are combined.

See Also

censo_populacao() for population denominators to calculate hospitalization rates.

Other sih: sih_cache_status(), sih_clear_cache(), sih_dictionary(), sih_info(), sih_variables(), sih_years()

Examples


# all admissions in Acre, January 2022
ac_jan <- sih_data(year = 2022, month = 1, uf = "AC")

# heart attacks in Sao Paulo, first semester 2022
infarct_sp <- sih_data(year = 2022, month = 1:6, uf = "SP",
                        diagnosis = "I21")

# only key variables, Rio de Janeiro, March 2022
sih_data(year = 2022, month = 3, uf = "RJ",
         vars = c("DIAG_PRINC", "DT_INTER", "SEXO",
                  "IDADE", "MORTE", "VAL_TOT"))


SIH Data Dictionary

Description

Returns a tibble with the complete data dictionary for the SIH, including variable descriptions and category labels.

Usage

sih_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Value

A tibble with columns: variable, description, code, label.

See Also

Other sih: sih_cache_status(), sih_clear_cache(), sih_data(), sih_info(), sih_variables(), sih_years()

Examples

sih_dictionary()
sih_dictionary("SEXO")
sih_dictionary("CAR_INT")

SIH Module Information

Description

Displays information about the Hospital Information System (SIH), including data sources, available years, and usage guidance.

Usage

sih_info()

Value

A list with module information (invisibly).

See Also

Other sih: sih_cache_status(), sih_clear_cache(), sih_data(), sih_dictionary(), sih_variables(), sih_years()

Examples

sih_info()

List SIH Variables

Description

Returns a tibble with available variables in the SIH microdata, including descriptions and value types.

Usage

sih_variables(year = NULL, search = NULL)

Arguments

year

Integer. If provided, returns variables available for that specific year (reserved for future use). Default: NULL.

search

Character. Optional search term to filter variables by name or description. Case-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sih: sih_cache_status(), sih_clear_cache(), sih_data(), sih_dictionary(), sih_info(), sih_years()

Examples

sih_variables()
sih_variables(search = "diag")
sih_variables(search = "valor")

List Available SIH Years

Description

Returns an integer vector with years for which hospital admission microdata are available from DATASUS FTP.

Usage

sih_years(status = "final")

Arguments

status

Character. Filter by data status. One of:

  • "final": Definitive data only (default).

  • "preliminary": Preliminary data only.

  • "all": All available data (definitive + preliminary).

Value

An integer vector of available years.

See Also

Other sih: sih_cache_status(), sih_clear_cache(), sih_data(), sih_dictionary(), sih_info(), sih_variables()

Examples

sih_years()
sih_years(status = "all")

Show SIM Cache Status

Description

Shows information about cached SIM data files.

Usage

sim_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sim: sim_clear_cache(), sim_data(), sim_dictionary(), sim_info(), sim_variables(), sim_years()

Examples

sim_cache_status()

Clear SIM Cache

Description

Deletes cached SIM data files.

Usage

sim_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sim: sim_cache_status(), sim_data(), sim_dictionary(), sim_info(), sim_variables(), sim_years()

Examples


sim_clear_cache()


Download SIM Mortality Microdata

Description

Downloads and returns mortality microdata from DATASUS FTP. Each row represents one death record (Declaracao de Obito). Data is downloaded per state (UF) as compressed .dbc files, decompressed internally, and returned as a tibble.

Usage

sim_data(
  year,
  vars = NULL,
  uf = NULL,
  cause = NULL,
  decode_age = TRUE,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sim_variables() to see available variables.

uf

Character. Two-letter state abbreviation(s) to download. If NULL (default), downloads all 27 states. Example: "SP", c("SP", "RJ").

cause

Character. CID-10 code pattern(s) to filter by cause of death (CAUSABAS). Supports partial matching (prefix). If NULL (default), returns all causes. Example: "I21" (infarct), "C" (all neoplasms).

decode_age

Logical. If TRUE (default), adds a numeric column age_years with age in years decoded from the IDADE variable.

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use sim_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(PESO = "character") to keep PESO as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

Data is downloaded from DATASUS FTP as .dbc files (one per state per year). The .dbc format is decompressed internally using vendored C code from the blast library. No external dependencies are required.

When uf is specified, only the requested state(s) are downloaded, making the operation much faster than downloading the entire country.

Value

A tibble with mortality microdata. Includes columns year and uf_source to identify the source when multiple years/states are combined.

See Also

censo_populacao() for population denominators to calculate mortality rates.

Other sim: sim_cache_status(), sim_clear_cache(), sim_dictionary(), sim_info(), sim_variables(), sim_years()

Examples


# all deaths in Acre, 2022
ac_2022 <- sim_data(year = 2022, uf = "AC")

# deaths by infarct in Sao Paulo, 2020-2022
infarct_sp <- sim_data(year = 2020:2022, uf = "SP", cause = "I21")

# only key variables, Rio de Janeiro, 2022
sim_data(year = 2022, uf = "RJ",
         vars = c("DTOBITO", "SEXO", "IDADE",
                  "RACACOR", "CODMUNRES", "CAUSABAS"))


SIM Data Dictionary

Description

Returns a tibble with the complete data dictionary for the SIM, including variable descriptions and category labels.

Usage

sim_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Value

A tibble with columns: variable, description, code, label.

See Also

Other sim: sim_cache_status(), sim_clear_cache(), sim_data(), sim_info(), sim_variables(), sim_years()

Examples

sim_dictionary()
sim_dictionary("SEXO")
sim_dictionary("RACACOR")

SIM Module Information

Description

Displays information about the Mortality Information System (SIM), including data sources, available years, and usage guidance.

Usage

sim_info()

Value

A list with module information (invisibly).

See Also

Other sim: sim_cache_status(), sim_clear_cache(), sim_data(), sim_dictionary(), sim_variables(), sim_years()

Examples

sim_info()

List SIM Variables

Description

Returns a tibble with available variables in the SIM microdata, including descriptions and value types.

Usage

sim_variables(year = NULL, search = NULL)

Arguments

year

Integer. If provided, returns variables available for that specific year (reserved for future use). Default: NULL.

search

Character. Optional search term to filter variables by name or description. Case-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sim: sim_cache_status(), sim_clear_cache(), sim_data(), sim_dictionary(), sim_info(), sim_years()

Examples

sim_variables()
sim_variables(search = "causa")
sim_variables(search = "mae")

List Available SIM Years

Description

Returns an integer vector with years for which mortality microdata are available from DATASUS FTP.

Usage

sim_years(status = "final")

Arguments

status

Character. Filter by data status. One of:

  • "final": Definitive data only (default).

  • "preliminary": Preliminary data only.

  • "all": All available data (definitive + preliminary).

Value

An integer vector of available years.

See Also

Other sim: sim_cache_status(), sim_clear_cache(), sim_data(), sim_dictionary(), sim_info(), sim_variables()

Examples

sim_years()
sim_years(status = "all")

Show SINAN Cache Status

Description

Shows information about cached SINAN data files.

Usage

sinan_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sinan: sinan_clear_cache(), sinan_data(), sinan_dictionary(), sinan_diseases(), sinan_info(), sinan_variables(), sinan_years()

Examples

sinan_cache_status()

Clear SINAN Cache

Description

Deletes cached SINAN data files.

Usage

sinan_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sinan: sinan_cache_status(), sinan_data(), sinan_dictionary(), sinan_diseases(), sinan_info(), sinan_variables(), sinan_years()

Examples


sinan_clear_cache()


Download SINAN Notifiable Disease Microdata

Description

Downloads and returns notifiable disease microdata from DATASUS FTP. Each row represents one notification record (Ficha de Notificacao). Data is downloaded as national .dbc files (one file per disease per year), decompressed internally, and returned as a tibble.

Usage

sinan_data(
  year,
  disease = "DENG",
  vars = NULL,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

disease

Character. Disease code to download. Default: "DENG" (Dengue). Use sinan_diseases() to see all available codes.

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sinan_variables() to see available variables.

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use sinan_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(DT_NOTIFIC = "character") to keep DT_NOTIFIC as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

SINAN files are national (not per-state). Each file contains all notifications for a given disease in a given year across all of Brazil. To filter by state, use the SG_UF_NOT (UF of notification) or ID_MUNICIP (municipality code) columns after download.

Data is downloaded from DATASUS FTP as .dbc files. The .dbc format is decompressed internally using vendored C code from the blast library. No external dependencies are required.

Value

A tibble with notifiable disease microdata. Includes columns year and disease to identify the source when multiple years are combined.

See Also

Other sinan: sinan_cache_status(), sinan_clear_cache(), sinan_dictionary(), sinan_diseases(), sinan_info(), sinan_variables(), sinan_years()

Examples


# dengue notifications, 2022
dengue_2022 <- sinan_data(year = 2022)

# tuberculosis, 2020-2022
tb <- sinan_data(year = 2020:2022, disease = "TUBE")

# only key variables
sinan_data(year = 2022, disease = "DENG",
           vars = c("DT_NOTIFIC", "CS_SEXO", "NU_IDADE_N",
                    "CS_RACA", "ID_MUNICIP", "CLASSI_FIN"))


SINAN Data Dictionary

Description

Returns a tibble with the complete data dictionary for the SINAN, including variable descriptions and category labels.

Usage

sinan_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Value

A tibble with columns: variable, description, code, label.

See Also

Other sinan: sinan_cache_status(), sinan_clear_cache(), sinan_data(), sinan_diseases(), sinan_info(), sinan_variables(), sinan_years()

Examples

sinan_dictionary()
sinan_dictionary("CS_SEXO")
sinan_dictionary("EVOLUCAO")

List Available SINAN Diseases

Description

Returns a tibble with all notifiable diseases (agravos) available in SINAN, including codes, names, and descriptions.

Usage

sinan_diseases(search = NULL)

Arguments

search

Character. Optional search term to filter diseases by code, name, or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: code, name, description.

See Also

Other sinan: sinan_cache_status(), sinan_clear_cache(), sinan_data(), sinan_dictionary(), sinan_info(), sinan_variables(), sinan_years()

Examples

sinan_diseases()
sinan_diseases(search = "dengue")
sinan_diseases(search = "sifilis")

SINAN Module Information

Description

Displays information about the Notifiable Diseases Information System (SINAN), including data sources, available years, diseases, and usage guidance.

Usage

sinan_info()

Value

A list with module information (invisibly).

See Also

Other sinan: sinan_cache_status(), sinan_clear_cache(), sinan_data(), sinan_dictionary(), sinan_diseases(), sinan_variables(), sinan_years()

Examples

sinan_info()

List SINAN Variables

Description

Returns a tibble with available variables in the SINAN microdata, including descriptions and value types.

Usage

sinan_variables(disease = "DENG", search = NULL)

Arguments

disease

Character. Disease code (e.g., "DENG"). Currently not used for filtering but reserved for future disease-specific variables. Default: "DENG".

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sinan: sinan_cache_status(), sinan_clear_cache(), sinan_data(), sinan_dictionary(), sinan_diseases(), sinan_info(), sinan_years()

Examples

sinan_variables()
sinan_variables(search = "sexo")
sinan_variables(search = "municipio")

List Available SINAN Years

Description

Returns an integer vector with years for which notifiable diseases microdata are available from DATASUS FTP.

Usage

sinan_years(status = "final")

Arguments

status

Character. Filter by data status. One of:

  • "final": Definitive data only (default).

  • "preliminary": Preliminary data only.

  • "all": All available data (definitive + preliminary).

Value

An integer vector of available years.

See Also

Other sinan: sinan_cache_status(), sinan_clear_cache(), sinan_data(), sinan_dictionary(), sinan_diseases(), sinan_info(), sinan_variables()

Examples

sinan_years()
sinan_years(status = "all")

Show SINASC Cache Status

Description

Shows information about cached SINASC data files.

Usage

sinasc_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sinasc: sinasc_clear_cache(), sinasc_data(), sinasc_dictionary(), sinasc_info(), sinasc_variables(), sinasc_years()

Examples

sinasc_cache_status()

Clear SINASC Cache

Description

Deletes cached SINASC data files.

Usage

sinasc_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sinasc: sinasc_cache_status(), sinasc_data(), sinasc_dictionary(), sinasc_info(), sinasc_variables(), sinasc_years()

Examples


sinasc_clear_cache()


Download SINASC Live Birth Microdata

Description

Downloads and returns live birth microdata from DATASUS FTP. Each row represents one live birth record (Declaracao de Nascido Vivo). Data is downloaded per state (UF) as compressed .dbc files, decompressed internally, and returned as a tibble.

Usage

sinasc_data(
  year,
  vars = NULL,
  uf = NULL,
  anomaly = NULL,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sinasc_variables() to see available variables.

uf

Character. Two-letter state abbreviation(s) to download. If NULL (default), downloads all 27 states. Example: "SP", c("SP", "RJ").

anomaly

Character. CID-10 code pattern(s) to filter by congenital anomaly (CODANOMAL). Supports partial matching (prefix). If NULL (default), returns all records. Example: "Q90" (Down syndrome), "Q" (all anomalies).

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use sinasc_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(PESO = "character") to keep PESO as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

Data is downloaded from DATASUS FTP as .dbc files (one per state per year). The .dbc format is decompressed internally using vendored C code from the blast library. No external dependencies are required.

When uf is specified, only the requested state(s) are downloaded, making the operation much faster than downloading the entire country.

Value

A tibble with live birth microdata. Includes columns year and uf_source to identify the source when multiple years/states are combined.

See Also

censo_populacao() for population denominators to calculate birth rates.

Other sinasc: sinasc_cache_status(), sinasc_clear_cache(), sinasc_dictionary(), sinasc_info(), sinasc_variables(), sinasc_years()

Examples


# all births in Acre, 2022
ac_2022 <- sinasc_data(year = 2022, uf = "AC")

# births with anomalies in Sao Paulo, 2020-2022
anomalies_sp <- sinasc_data(year = 2020:2022, uf = "SP", anomaly = "Q")

# only key variables, Rio de Janeiro, 2022
sinasc_data(year = 2022, uf = "RJ",
            vars = c("DTNASC", "SEXO", "PESO",
                     "IDADEMAE", "PARTO", "CONSULTAS"))


SINASC Data Dictionary

Description

Returns a tibble with the complete data dictionary for the SINASC, including variable descriptions and category labels.

Usage

sinasc_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Value

A tibble with columns: variable, description, code, label.

See Also

Other sinasc: sinasc_cache_status(), sinasc_clear_cache(), sinasc_data(), sinasc_info(), sinasc_variables(), sinasc_years()

Examples

sinasc_dictionary()
sinasc_dictionary("SEXO")
sinasc_dictionary("PARTO")

SINASC Module Information

Description

Displays information about the Live Birth Information System (SINASC), including data sources, available years, and usage guidance.

Usage

sinasc_info()

Value

A list with module information (invisibly).

See Also

Other sinasc: sinasc_cache_status(), sinasc_clear_cache(), sinasc_data(), sinasc_dictionary(), sinasc_variables(), sinasc_years()

Examples

sinasc_info()

List SINASC Variables

Description

Returns a tibble with available variables in the SINASC microdata, including descriptions and value types.

Usage

sinasc_variables(year = NULL, search = NULL)

Arguments

year

Integer. If provided, returns variables available for that specific year (reserved for future use). Default: NULL.

search

Character. Optional search term to filter variables by name or description. Case-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sinasc: sinasc_cache_status(), sinasc_clear_cache(), sinasc_data(), sinasc_dictionary(), sinasc_info(), sinasc_years()

Examples

sinasc_variables()
sinasc_variables(search = "mae")
sinasc_variables(search = "parto")

List Available SINASC Years

Description

Returns an integer vector with years for which live birth microdata are available from DATASUS FTP.

Usage

sinasc_years(status = "final")

Arguments

status

Character. Filter by data status. One of:

  • "final": Definitive data only (default).

  • "preliminary": Preliminary data only.

  • "all": All available data (definitive + preliminary).

Value

An integer vector of available years.

See Also

Other sinasc: sinasc_cache_status(), sinasc_clear_cache(), sinasc_data(), sinasc_dictionary(), sinasc_info(), sinasc_variables()

Examples

sinasc_years()
sinasc_years(status = "all")

Show SI-PNI Cache Status

Description

Shows information about cached SI-PNI data files.

Usage

sipni_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sipni: sipni_clear_cache(), sipni_data(), sipni_dictionary(), sipni_info(), sipni_variables(), sipni_years()

Examples

sipni_cache_status()

Clear SI-PNI Cache

Description

Deletes cached SI-PNI data files.

Usage

sipni_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sipni: sipni_cache_status(), sipni_data(), sipni_dictionary(), sipni_info(), sipni_variables(), sipni_years()

Examples


sipni_clear_cache()


Download SI-PNI Vaccination Data

Description

Downloads and returns vaccination data from SI-PNI. For years 1994–2019, data is downloaded from DATASUS FTP (aggregated doses/coverage). For years 2020+, data is downloaded from OpenDataSUS as monthly CSV bulk files (individual-level microdata with one row per vaccination dose).

Usage

sipni_data(
  year,
  type = "DPNI",
  uf = NULL,
  month = NULL,
  vars = NULL,
  parse = TRUE,
  col_types = NULL,
  cache = TRUE,
  cache_dir = NULL,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer. Year(s) of the data. Required.

type

Character. File type for FTP data (1994–2019). Default: "DPNI" (doses applied). Use "CPNI" for vaccination coverage. Ignored for years >= 2020 (API data is always microdata).

uf

Character. Two-letter state abbreviation(s) to download. If NULL (default), downloads all 27 states. Example: "SP", c("SP", "RJ").

month

Integer. Month(s) to download (1–12). For years >= 2020 (CSV), selects which monthly CSV files to download. For years <= 2019 (FTP), this parameter is ignored (FTP files are annual). If NULL (default), downloads all 12 months.

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sipni_variables() to see available variables.

parse

Logical. If TRUE (default), converts columns to appropriate types (integer, double, Date) based on the variable metadata. Use sipni_variables() to see the target type for each variable. Set to FALSE for backward-compatible all-character output.

col_types

Named list. Override the default type for specific columns. Names are column names, values are type strings: "character", "integer", "double", "date_dmy", "date_ymd", "date_ym", "date". Example: list(QT_DOSE = "character") to keep QT_DOSE as character.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

FTP data (1994–2019): Downloaded as plain .DBF files. SI-PNI FTP data is aggregated (dose counts and coverage rates per municipality, vaccine, and age group). Two file types: DPNI (doses) and CPNI (coverage).

CSV data (2020+): Downloaded from OpenDataSUS as monthly CSV bulk files (national, semicolon-delimited, latin1 encoding). Each monthly ZIP is ~1.4 GB. This is individual-level microdata (one row per vaccination dose, ~47 fields per record). The type parameter is ignored for CSV years. Data is filtered by UF during chunked reading to avoid loading the full national file into memory.

Value

A tibble with vaccination data. Includes columns year and uf_source to identify the source when multiple years/states are combined.

Output differs by year range:

See Also

sipni_info() for type descriptions, censo_populacao() for population denominators.

Other sipni: sipni_cache_status(), sipni_clear_cache(), sipni_dictionary(), sipni_info(), sipni_variables(), sipni_years()

Examples


# FTP: doses applied in Acre, 2019
ac_doses <- sipni_data(year = 2019, uf = "AC")

# FTP: vaccination coverage in Acre, 2019
ac_cob <- sipni_data(year = 2019, type = "CPNI", uf = "AC")

# API: microdata for Acre, January 2024
ac_api <- sipni_data(year = 2024, uf = "AC", month = 1)

# API: select specific variables
sipni_data(year = 2024, uf = "AC", month = 1,
           vars = c("descricao_vacina", "tipo_sexo_paciente",
                    "data_vacina"))


SI-PNI Data Dictionary

Description

Returns a tibble with the data dictionary for the SI-PNI FTP data (1994–2019), including variable descriptions and category labels.

Usage

sipni_dictionary(variable = NULL)

Arguments

variable

Character. If provided, returns dictionary for a specific variable only. Default: NULL (returns all variables).

Details

The dictionary covers FTP data variables (DPNI/CPNI, 1994–2019). API microdata (2020+) has description fields embedded in the data itself (e.g., descricao_vacina, nome_raca_cor_paciente), so a separate dictionary is not needed.

Value

A tibble with columns: variable, description, code, label.

See Also

Other sipni: sipni_cache_status(), sipni_clear_cache(), sipni_data(), sipni_info(), sipni_variables(), sipni_years()

Examples

sipni_dictionary()
sipni_dictionary("IMUNO")
sipni_dictionary("DOSE")

SI-PNI Module Information

Description

Displays information about the National Immunization Program Information System (SI-PNI), including data sources, available years, file types, and usage guidance.

Usage

sipni_info()

Value

A list with module information (invisibly).

See Also

Other sipni: sipni_cache_status(), sipni_clear_cache(), sipni_data(), sipni_dictionary(), sipni_variables(), sipni_years()

Examples

sipni_info()

List SI-PNI Variables

Description

Returns a tibble with available variables in the SI-PNI data, including descriptions and value types.

Usage

sipni_variables(type = "DPNI", search = NULL)

Arguments

type

Character. File type to show variables for. "DPNI" (default) for doses applied (FTP, 1994-2019), "CPNI" for coverage (FTP, 1994-2019), or "API" for individual-level microdata (OpenDataSUS, 2020+).

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sipni: sipni_cache_status(), sipni_clear_cache(), sipni_data(), sipni_dictionary(), sipni_info(), sipni_years()

Examples

sipni_variables()
sipni_variables(type = "CPNI")
sipni_variables(type = "API")
sipni_variables(search = "dose")

List Available SI-PNI Years

Description

Returns an integer vector with years for which vaccination data are available.

Usage

sipni_years()

Details

SI-PNI data is available from two sources:

Value

An integer vector of available years (1994–2025).

See Also

Other sipni: sipni_cache_status(), sipni_clear_cache(), sipni_data(), sipni_dictionary(), sipni_info(), sipni_variables()

Examples

sipni_years()

Show SISAB Cache Status

Description

Shows information about cached SISAB data files.

Usage

sisab_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

A tibble with cache file information (invisibly).

See Also

Other sisab: sisab_clear_cache(), sisab_data(), sisab_info(), sisab_variables(), sisab_years()

Examples

sisab_cache_status()

Clear SISAB Cache

Description

Deletes cached SISAB data files.

Usage

sisab_clear_cache(cache_dir = NULL)

Arguments

cache_dir

Character. Cache directory path. Default: tools::R_user_dir("healthbR", "cache").

Value

Invisible NULL.

See Also

Other sisab: sisab_cache_status(), sisab_data(), sisab_info(), sisab_variables(), sisab_years()

Examples


sisab_clear_cache()


Download SISAB Coverage Data

Description

Downloads and returns primary care coverage data from the SISAB relatorioaps API. Data is aggregated (coverage indicators per geographic unit and period), not individual-level microdata.

Usage

sisab_data(
  year,
  type = "aps",
  level = "uf",
  month = NULL,
  uf = NULL,
  vars = NULL,
  cache = TRUE,
  cache_dir = NULL
)

Arguments

year

Integer. Year(s) of the data. Required.

type

Character. Report type to download. Default: "aps" (APS coverage). See sisab_info() for all types.

level

Character. Geographic aggregation level. Default: "uf". One of: "brazil", "region", "uf", "municipality".

month

Integer. Month(s) to download (1–12). If NULL (default), downloads all 12 months.

uf

Character. Two-letter state abbreviation to filter by when level is "uf" or "municipality". If NULL (default), returns all states. Example: "SP", c("SP", "RJ").

vars

Character vector. Variables to keep. If NULL (default), returns all available variables. Use sisab_variables() to see available variables.

cache

Logical. If TRUE (default), caches downloaded data for faster future access.

cache_dir

Character. Directory for caching. Default: tools::R_user_dir("healthbR", "cache").

Details

Data is fetched from the relatorioaps REST API (⁠https://relatorioaps.saude.gov.br⁠), the public reporting portal for primary care in Brazil.

Four report types are available:

For municipality-level data, it is recommended to filter by UF using the uf parameter to avoid large downloads.

Value

A tibble with coverage data. Includes columns year and type to identify the source when multiple years/types are combined. Column names are preserved from the API (camelCase).

See Also

sisab_info() for report type descriptions, censo_populacao() for population denominators.

Other sisab: sisab_cache_status(), sisab_clear_cache(), sisab_info(), sisab_variables(), sisab_years()

Examples


# APS coverage by state, January 2024
sisab_data(year = 2024, month = 1)

# National total, full year 2023
sisab_data(year = 2023, level = "brazil")

# Oral health coverage by UF
sisab_data(year = 2024, type = "sb", month = 6)

# Municipality level for Sao Paulo
sisab_data(year = 2024, level = "municipality", uf = "SP", month = 1)


SISAB Module Information

Description

Displays information about the Primary Care Health Information System (SISAB), including data sources, available report types, and usage guidance.

Usage

sisab_info()

Value

A list with module information (invisibly).

See Also

Other sisab: sisab_cache_status(), sisab_clear_cache(), sisab_data(), sisab_variables(), sisab_years()

Examples

sisab_info()

List SISAB Variables

Description

Returns a tibble with available variables in the SISAB coverage data, including descriptions and value types.

Usage

sisab_variables(type = "aps", search = NULL)

Arguments

type

Character. Report type to show variables for. "aps" (default), "sb", "acs", or "pns".

search

Character. Optional search term to filter variables by name or description. Case-insensitive and accent-insensitive.

Value

A tibble with columns: variable, description, type, section.

See Also

Other sisab: sisab_cache_status(), sisab_clear_cache(), sisab_data(), sisab_info(), sisab_years()

Examples

sisab_variables()
sisab_variables(type = "sb")
sisab_variables(search = "cobertura")

List Available SISAB Years

Description

Returns an integer vector with years for which SISAB coverage data are potentially available from the relatorioaps API. Actual availability depends on the report type.

Usage

sisab_years()

Details

Availability by report type:

Value

An integer vector of available years.

See Also

Other sisab: sisab_cache_status(), sisab_clear_cache(), sisab_data(), sisab_info(), sisab_variables()

Examples

sisab_years()

Utility Functions for healthbR

Description

Utility Functions for healthbR


Get VIGITEL base URL

Description

Get VIGITEL base URL

Usage

vigitel_base_url()

Value

Character string with base URL


Get VIGITEL cache directory

Description

Returns the path to the cache directory for VIGITEL data. Creates the directory if it doesn't exist.

Usage

vigitel_cache_dir(cache_dir = NULL)

Arguments

cache_dir

Optional custom cache directory. If NULL, uses default user cache directory.

Value

Path to cache directory


Get VIGITEL cache status

Description

Shows cache status including downloaded files and their sizes.

Usage

vigitel_cache_status(cache_dir = NULL)

Arguments

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

A tibble with cache information

Examples

# check cache status
vigitel_cache_status()

Clear VIGITEL cache

Description

Removes all cached VIGITEL data files.

Usage

vigitel_clear_cache(keep_parquet = FALSE, cache_dir = NULL)

Arguments

keep_parquet

Logical. If TRUE, keep parquet cache and only remove source files (ZIP, DTA, CSV). Default is FALSE (remove all).

cache_dir

Character. Optional custom cache directory. If NULL (default), uses the standard user cache directory.

Value

NULL (invisibly)

Examples

# remove all cached files from default cache
vigitel_clear_cache()

Download VIGITEL microdata

Description

Downloads and returns VIGITEL survey microdata from the Ministry of Health. Data is cached locally to avoid repeated downloads. When the arrow package is installed, data is cached in partitioned parquet format for faster subsequent reads.

Usage

vigitel_data(
  year = NULL,
  format = c("dta", "csv"),
  vars = NULL,
  cache_dir = NULL,
  force = FALSE,
  lazy = FALSE,
  backend = c("arrow", "duckdb")
)

Arguments

year

Integer or vector of integers. Years to return (2006-2024). Use NULL to return all years. Default is NULL.

format

Character. File format to download: "dta" (Stata, default) or "csv". Stata format preserves variable labels.

vars

Character vector. Variables to select. Use NULL for all variables. Default is NULL.

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

force

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

lazy

Logical. If TRUE, returns a lazy query object instead of a tibble. Requires the arrow package. The lazy object supports dplyr verbs (filter, select, mutate, etc.) which are pushed down to the query engine before collecting into memory. Call dplyr::collect() to materialize the result. Default: FALSE.

backend

Character. Backend for lazy evaluation: "arrow" (default) or "duckdb". Only used when lazy = TRUE. DuckDB backend requires the duckdb package.

Details

The VIGITEL survey (Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico) is conducted annually by the Brazilian Ministry of Health in all state capitals and the Federal District.

Data includes information on:

The survey uses post-stratification weights (variable pesorake) to produce population estimates. Always use these weights for statistical inference.

Performance

When the arrow package is installed, data is cached in partitioned parquet format. This allows the function to read only the requested years without loading the entire dataset into memory. If you frequently work with VIGITEL data, installing arrow is highly recommended:

install.packages("arrow")

Value

A tibble with VIGITEL microdata.

Data source

Data is downloaded from the Ministry of Health website: ⁠https://svs.aids.gov.br/daent/cgdnt/vigitel/⁠

Examples


# download all years (uses tempdir to avoid leaving files)
df <- vigitel_data(cache_dir = tempdir())

# download specific year
df_2024 <- vigitel_data(year = 2024, cache_dir = tempdir())

# download multiple years
df_recent <- vigitel_data(year = 2020:2024, cache_dir = tempdir())

# select specific variables
df_subset <- vigitel_data(
  year = 2024,
  vars = c("ano", "cidade", "sexo", "idade", "pesorake"),
  cache_dir = tempdir()
)


Get VIGITEL variable dictionary

Description

Downloads and returns the VIGITEL data dictionary containing variable descriptions, codes, and categories.

Usage

vigitel_dictionary(cache_dir = NULL, force = FALSE)

Arguments

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

force

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Value

A tibble with variable dictionary.

Examples


dict <- vigitel_dictionary(cache_dir = tempdir())
head(dict)


Download VIGITEL data file

Description

Download VIGITEL data file

Usage

vigitel_download_data(format, destfile)

Arguments

format

Character. "dta" or "csv".

destfile

Character. Destination path for the ZIP file.

Value

Invisible NULL. Called for side effect (file download).


Extract VIGITEL ZIP file

Description

Extract VIGITEL ZIP file

Usage

vigitel_extract_zip(zip_path, exdir)

Arguments

zip_path

Character. Path to the ZIP file.

exdir

Character. Directory to extract to.

Value

Character. Path to the extracted file.


Identify year column in VIGITEL data

Description

Identify year column in VIGITEL data

Usage

vigitel_identify_year_column(df)

Arguments

df

A data frame

Value

Character. Name of the year column.


Identify year column from Arrow schema

Description

Identify year column from Arrow schema

Usage

vigitel_identify_year_column_from_schema(dataset)

Arguments

dataset

An Arrow Dataset

Value

Character. Name of the year column.


Get VIGITEL survey information

Description

Returns metadata about the VIGITEL survey.

Usage

vigitel_info()

Value

A list with survey information

Examples

vigitel_info()

Read VIGITEL data file

Description

Read VIGITEL data file

Usage

vigitel_read_data(path, format)

Arguments

path

Character. Path to the data file (.dta or .csv).

format

Character. "dta" or "csv".

Value

A tibble.


List VIGITEL variables

Description

Returns a tibble with information about available variables in the VIGITEL dataset.

Usage

vigitel_variables(cache_dir = NULL, force = FALSE)

Arguments

cache_dir

Character. Directory for caching downloaded files. Default uses tools::R_user_dir("healthbR", "cache").

force

Logical. If TRUE, re-download even if file exists in cache. Default is FALSE.

Value

A tibble with variable information from the dictionary.

Examples


vars <- vigitel_variables(cache_dir = tempdir())
head(vars)


List available VIGITEL survey years

Description

Returns a vector of years for which VIGITEL microdata is available for download from the Ministry of Health website.

Usage

vigitel_years()

Value

An integer vector of available years (2006-2024).

Examples

vigitel_years()