## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=FALSE, out.width = '33%'-------------------------------------------- knitr::include_graphics("hex-hce.png") ## ----setup-------------------------------------------------------------------- library(hce) packageVersion("hce") ## ----------------------------------------------------------------------------- table(COVID19) ## ----------------------------------------------------------------------------- COVID19HCE <- hce(GROUP = COVID19$GROUP, TRTP = COVID19$TRTP) SUM0 <- summaryWO(COVID19HCE, ref = "Placebo") SUM <- SUM0$summary SUM$Ptie <- round(SUM$TIE/SUM$TOTAL, 2) SUM ## ----------------------------------------------------------------------------- WO <- calcWO(COVID19HCE, ref = "Placebo")[, c("WO", "LCL", "UCL")] round(WO, 2) ## ----------------------------------------------------------------------------- set.seed(1) n <- 100 dat0 <- data.frame(TRTP = rep(c("A", "P"), each = n), DEATH = c(rbinom(n = n, size = 1, prob = 0.6), rbinom(n = n, size = 1, prob = 0.8)), HOSP = c(rbinom(n = n, size = 1, prob = 0.5), rbinom(n = n, size = 1, prob = 0.8))) ## ----------------------------------------------------------------------------- dat1 <- dat0 dat1$AVAL <- ifelse(dat1$DEATH == 1, 1, ifelse(dat1$HOSP == 1, 2, 3)) dat1 <- as_hce(dat1) summaryWO(dat1)$summary ## ----------------------------------------------------------------------------- dat2 <- dat0 dat2$ORD <- 2*dat2$DEATH + dat2$HOSP unique(dat2[, c("DEATH", "HOSP", "ORD")]) ## ----------------------------------------------------------------------------- dat2$AVAL <- max(dat2$ORD) - dat2$ORD dat2 <- as_hce(dat2) unique(dat2[, c("DEATH", "HOSP", "ORD", "AVAL")]) summaryWO(dat2)$summary ## ----echo=FALSE--------------------------------------------------------------- HCE <- data.frame(Order = c("I", "II", "III", "IV", "V"), Category = c("Death", "More than one new or worsened organ dysfunction events", "One new or worsened organ dysfunction event", "Hospitalized at the end of follow-up (Day 30)", "Discharged from hospital before Day 30") ) HCE ## ----echo=FALSE--------------------------------------------------------------- HCE2 <- data.frame(Order = c("I", "II", "III", "IV", "V", "VI", "VII"), Category = c("Death", "Dialysis or kidney transplantation", "Sustained GFR < 15 ml/min per 1.73 m2", "Sustained GFR decline from baseline of >= 57%", "Sustained GFR decline from baseline of >= 50%", "Sustained GFR decline from baseline of >= 40%", "Individual GFR slope") ) HCE2 ## ----------------------------------------------------------------------------- dat <- KHCE Order <- c("Death (adj)", "Chronic dialysis (adj) >=90 days", "Sustained eGFR<15 (mL/min/1.73 m2)", "Sustained >=57% decline in eGFR", "Sustained >=50% decline in eGFR", "Sustained >=40% decline in eGFR", "eGFR slope") dat$GROUP <- factor(dat$GROUP, levels = Order) table(dat$GROUP, dat$TRTP) ## ----echo=FALSE--------------------------------------------------------------- HCE3 <- data.frame(Order = c("I", "II", "III", "IV"), Category = c("Cardiovascular death", "Total (first and recurrent) HF hospitalizations", "Total urgent HF visits", "Improvement/deterioration in KCCQ-TSS")) HCE3 ## ----------------------------------------------------------------------------- Rates_A <- c(10, 20) Rates_P <- c(20, 20) dat1 <- simHCE(n = 2500, TTE_A = Rates_A, TTE_P = Rates_P, CM_A = -3, CM_P = -6, CSD_A = 15, fixedfy = 3, theta = 1, seed = 1) dat2 <- simHCE(n = 2500, TTE_A = Rates_A, TTE_P = Rates_P, CM_A = -3, CM_P = -6, CSD_A = 15, fixedfy = 3, theta = 1.0001, seed = 1) dat3 <- simHCE(n = 2500, TTE_A = Rates_A, TTE_P = Rates_P, CM_A = -3, CM_P = -6, CSD_A = 15, fixedfy = 3, theta = 10, seed = 1) calcWO(dat1) calcWO(dat2) calcWO(dat3)