## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----install------------------------------------------------------------------ # library(devtools) # install_github("fusk-kpu/SRscore", build_vignettes = TRUE) library(SRscore) ## ----metadata----------------------------------------------------------------- library(tibble) data("MetadataABA") tibble(MetadataABA) ## ----transcriptome------------------------------------------------------------ data("TranscriptomeABA") tibble(TranscriptomeABA) ## ----srga--------------------------------------------------------------------- data("SRGA") tibble(SRGA) ## ----comparison--------------------------------------------------------------- grp <- "Series" var1 <- "control_sample" var2 <- "treated_sample" ebg <- expand_by_group( .data = MetadataABA, grp = grp, var1 = var1, var2 = var2 ) unique_series <- unique(MetadataABA$Series) unique_series lapply(unique_series, function(x) subset(ebg, Series == x)) ## ----SRratio------------------------------------------------------------------ SRratio <- calcSRratio( .data = TranscriptomeABA, var1 = var1, var2 = var2, pair = ebg, is.log2 = TRUE ) tibble(SRratio) ## ----conventional SRratio----------------------------------------------------- conventional_SRratio <- calcSRratio( TranscriptomeABA, var1 = var1, var2 = var2, pair = MetadataABA, is.log2 = TRUE ) tibble(conventional_SRratio) ## ----SRscore------------------------------------------------------------------ SRscore <- calcSRscore(SRratio, threshold = c(-2, 2)) head(SRscore) tibble(SRscore) ## ----------------------------------------------------------------------------- plot_SRscore_distr(SRscore) plot_SRscore_distr(SRscore, log = TRUE) ## ----------------------------------------------------------------------------- plot_SRscore_rank(SRscore) ## ----------------------------------------------------------------------------- plot_SRscore_top(SRscore) plot_SRscore_top(SRscore, top_n = 30) ## ----All in one--------------------------------------------------------------- res <- directly_calcSRscore( .data1 = MetadataABA, grp = grp, var1 = var1, var2 = var2, .data2 = TranscriptomeABA, is.log2 = TRUE, threshold = c(-2, 2) ) names(res) tibble(res$SRscore) ## ----find_diffexp1------------------------------------------------------------ set.seed(1) res <- find_diffexp( sample(SRratio$ensembl_gene_id, 1), SRratio, SRscore, MetadataABA ) tibble(res$result) tibble(res$SRscore) ## ----find_diffexp2------------------------------------------------------------ set.seed(1) res2 <- find_diffexp( sample(SRratio$ensembl_gene_id, 10), SRratio, SRscore, MetadataABA ) tibble(res2$result) tibble(res2$SRscore) ## ----ea, eval=FALSE----------------------------------------------------------- # library(clusterProfiler) # library(ggplot2) # # ego <- enrichGO( # gene = SRscore$ensembl_gene_id[SRscore$score >= 1], # OrgDb = "org.At.tair.db", # keyType = "TAIR", # ont = "BP", # maxGSSize = 2000 # ) # # dotplot(ego, showCategory = 5, font.size = 14) + # theme(text = element_text(size = 14)) ## ----heatmap------------------------------------------------------------------ library(ComplexHeatmap) library(RColorBrewer) cor_breaks <- seq(-2, 2, length.out = 51) cor_color <- colorRampPalette(c("blue", "white", "red"))(51) annotation_row <- res2$result[, c("treatment", "tissue")] pal_treatment <- brewer.pal(length(unique(annotation_row$treatment)), "Set1") pal_tissue <- brewer.pal(length(unique(annotation_row$tissue)), "Set2") names(pal_treatment) <- unique(annotation_row$treatment) names(pal_tissue) <- unique(annotation_row$tissue) ComplexHeatmap::pheatmap( as.matrix(res2$result[, sapply(res2$result, is.numeric)]), breaks = cor_breaks, color = cor_color, cluster_rows = FALSE, name = "SRratio", annotation_row = annotation_row, annotation_colors = list( treatment = pal_treatment, tissue = pal_tissue ) ) ## ----tm----------------------------------------------------------------------- library(genefilter) library(DT) cl <- colnames(Filter(is.numeric, SRGA)) df <- as.matrix(column_to_rownames(SRGA, var = "ensembl_gene_id")[cl]) template <- "AT1G09350" close_genes <- genefinder( df, ilist = template, numResults = 5, method = "euclidean" ) datatable( SRGA[SRGA$ensembl_gene_id == template, ], options = list(dom = "lrtBip"), rownames = FALSE ) datatable( SRGA[close_genes[[1]]$indices, ], options = list(dom = "lrtBip"), rownames = FALSE, ) ## ----session info------------------------------------------------------------- sessionInfo()