## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----core1, eval=FALSE-------------------------------------------------------- # # fits the individual SDTrees in parallel on 22 cores # fit <- SDForest(x = X, y = Y, mc.cores = 22) # # # predicts with the individual SDTrees in parallel # predict(fit, newdata = data.frame(X), mc.cores = 10) # # # evaluates different strengths of regularization in parallel # paths <- regPath(fit, mc.cores = 10) # # # predicts potential outcomes for different values of covariate one in parallel # pd <- partDependence(model, 1, mc.cores = 10) # # # performs cross validation in parallel # model <- SDAM(X, Y, cv_k = 5, mc.cores = 5) ## ----core2, eval=FALSE-------------------------------------------------------- # # predefined plan # future::plan(multisession, workers = 2) # # fits the individual SDTrees in parallel on 2 cores # fit <- SDForest(x = X, y = Y) ## ----candidates, eval=FALSE--------------------------------------------------- # # approximation of candidate splits # fit <- SDForest(x = X, y = Y, max_candidates = 100) # tree <- SDTree(x = X, y = Y, max_candidates = 50) ## ----subsample, eval=FALSE---------------------------------------------------- # # draws maximal 500 samples from the data for each tree # fit <- SDForest(x = X, y = Y, max_size = 500)