## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) is_cran <- identical(Sys.getenv("NOT_CRAN"), "false") if (Sys.getenv("NOT_CRAN") == "") is_cran <- TRUE library(RSTr) library(ggplot2) ## ----eval = !is_cran, results = "hide", fig.keep = "last"--------------------- # mod_mst <- mstcar(name = "my_test_model", data = miheart, adjacency = miadj, seed = 1234) ## ----eval = is_cran----------------------------------------------------------- # For computational reasons, full model fitting is not run during CRAN checks. # When building on CRAN, this vignette loads a pre-fitted example model included with the package. # The pkgdown website shows the full model-fitting workflow. example_dir <- system.file("extdata", package = "RSTr") mod_mst <- load_model("mstcar_example", example_dir) ## ----------------------------------------------------------------------------- samples <- load_samples(mod_mst, param = "lambda", burn = 2000) * 1e5 ## ----------------------------------------------------------------------------- dim(samples) ## ----------------------------------------------------------------------------- margin_time <- 3 pop <- mod_mst$data$n samples_7988 <- aggregate_samples(samples, pop, margin_time) ## ----------------------------------------------------------------------------- samples <- aggregate_samples(samples, pop, margin_time, bind_new = TRUE, new_name = "1979-1988") ## ----------------------------------------------------------------------------- age <- c("35-44", "45-54", "55-64") std_pop <- c(113154, 100640, 95799) ## ----------------------------------------------------------------------------- dim(samples) ## ----------------------------------------------------------------------------- margin_age <- 2 groups <- c("35-44", "45-54", "55-64") samples_3564 <- standardize_samples(samples, std_pop, margin_age, groups) ## ----------------------------------------------------------------------------- samples <- standardize_samples( samples, std_pop, margin_age, groups, bind_new = TRUE, new_name = "35-64" ) ## ----------------------------------------------------------------------------- medians <- get_medians(samples) ## ----------------------------------------------------------------------------- ci <- get_credible_interval(sample = samples, perc_ci = 0.95) rel_prec <- get_relative_precision(medians, ci) low_rel_prec <- rel_prec < 1 ## ----------------------------------------------------------------------------- pop <- aggregate_count(pop, margin_age, groups = 1:3, bind_new = TRUE, new_name = "35-64") pop <- aggregate_count(pop, margin_time, bind_new = TRUE, new_name = "1988-1988") low_population <- pop < 1000 medians_supp <- medians medians_supp[low_rel_prec | low_population] <- NA ## ----eval = !is_cran---------------------------------------------------------- # est_3544 <- medians_supp[, "35-44", "1988"] # # ggplot(mishp) + # geom_sf(aes(fill = est_3544)) + # labs( # title = "Smoothed Myocardial Infarction Death Rates in MI, Ages 35-44, 1988", # fill = "Deaths per 100,000" # ) + # scale_fill_viridis_c() + # theme_void() ## ----eval = is_cran, echo = FALSE--------------------------------------------- # Mapping examples are shown on the RSTr pkgdown website. NULL ## ----eval = !is_cran---------------------------------------------------------- # ci <- get_credible_interval(samples, 0.995) # rel_prec50 <- get_relative_precision(medians, ci) # low_rel_prec <- rel_prec50 < 1 # medians_supp <- medians # medians_supp[low_rel_prec | low_population] <- NA # # est_3544 <- medians_supp[, "35-44", "1988"] # # ggplot(mishp) + # geom_sf(aes(fill = est_3544)) + # labs( # title = "Smoothed Myocardial Infarction Death Rates in MI, 99.5% CI, Ages 35-44, 1988", # fill = "Deaths per 100,000" # ) + # scale_fill_viridis_c() + # theme_void() ## ----eval = is_cran, echo = FALSE--------------------------------------------- # Mapping examples are shown on the RSTr pkgdown website. NULL ## ----eval = !is_cran---------------------------------------------------------- # crude_3544 <- sum(mod_mst$data$Y[, "35-44", "1988"]) / sum(mod_mst$data$n[, "35-44", "1988"]) * 1e5 # sample_3544 <- samples[, "35-44", "1988", ] # p_higher <- apply(sample_3544, 1, \(county) mean(county > crude_3544)) * 100 # # ggplot(mishp) + # geom_sf(aes(fill = p_higher)) + # labs( # title = "Probability that County Rate > State Rate MI, Ages 35-44, 1988", # fill = "Probability" # ) + # scale_fill_continuous(palette = "RdBu", trans = "reverse") + # theme_void() ## ----eval = is_cran, echo = FALSE--------------------------------------------- # Mapping examples are shown on the RSTr pkgdown website. NULL