--- title: "Appendix A: The CAR Hierarchical Models" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Appendix A: The CAR Hierarchical Models} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Overview In this vignette, we outline the hierarchical models used in the RSTr package, along with the full-conditional distributions used for each update. ## The CAR Hierarchical Model The CAR model used by RSTr is based on the model developed by [Besag, York, and MolliƩ (1991)](https://doi.org/10.1007/BF00116466) with modifications using inverse transform sampling for restricted informativeness based on [Quick, et al. (2021)](https://doi.org/10.1016/j.sste.2021.100420): For models using `method = "binomial"`, $$ \begin{split} Y_{i} &\sim \text{Binomial}(n_{i}, \lambda_{i}) \\ \theta_{i} &= \text{Logit}(\lambda_{i}) \\ \end{split} $$ For models using `method = "poisson"`, $$ \begin{split} Y_{i} &\sim \text{Poisson}(n_{i} \lambda_{i}) \\ \theta_{i} &= \text{Log}(\lambda_{i}) \\ \end{split} $$ For both models, $$ \begin{split} \theta_{i} &\sim \text{Normal}(\beta_{j} + Z_{i}, \tau^2), \\ i &=\{1,...,N_{s}\},\ j =\{1,...,N_{is}\} \\ p(\beta_{j}) &\propto 1 \\ Z &\sim \text{CAR}(\sigma^2) \\ \sigma^2 &\sim \text{InvGamma}(a_\sigma,b_\sigma) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} $$ ## The MCAR Hierarchical Model The MCAR model used by RSTr is based on the model developed by [Gelfand and Vounatsou (2003)](https://doi.org/10.1093/biostatistics/4.1.11): For models using `method = "binomial"`, $$ \begin{split} Y_{ik} &\sim \text{Binomial}(n_{ik}, \lambda_{ik}) \\ \theta_{ik} &= \text{Logit}(\lambda_{ik}) \\ \end{split} $$ For models using `method = "poisson"`, $$ \begin{split} Y_{ik} &\sim \text{Poisson}(n_{ik}, \lambda_{ik}) \\ \theta_{ik} &= \text{Log}(\lambda_{ik}) \\ \end{split} $$ For both models, $$ \begin{split} \theta_{ik} &\sim \text{Normal}(\beta_{jk} + Z_{ik}, \tau_k^2), \\ i &=\{1,...,N_s\}, k =\{1,...,N_{g}\}, j=\{1,...,N_{is}\} \\ p(\beta_{jk}) &\propto 1 \\ Z &\sim \text{CAR}(G) \\ G &\sim \text{InvWishart}(\nu,G_0) \\ \tau^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} $$ ## The MSTCAR Hierarchical Model The MSTCAR model used by RSTr is based on the model developed by [Quick, et al. (2017)](https://doi.org/10.1214/17-AOAS1068): For models using `method = "binomial"`, $$ \begin{split} Y_{ikt} &\sim \text{Binomial}(n_{ikt}, \lambda_{ikt}) \\ \theta_{ikt} &= \text{Logit}(\lambda_{ikt}) \\ \end{split} $$ For models using `method = "poisson"`, $$ \begin{split} Y_{ikt} &\sim \text{Poisson}(n_{ikt} \lambda_{ikt}) \\ \theta_{ikt} &= \text{Log}(\lambda_{ikt}) \\ \end{split} $$ For both models, $$ \begin{split} \theta_{ikt} &\sim \text{Normal}(\beta_{jkt} + Z_{ikt}, \tau_k^2), \\ i &=\{1,...,N_s\},\ k =\{1,...,N_g\},\ t=\{1,...,N_t\},\ j=\{1,...,N_{is}\} \\ p(\beta_{j}) &\propto 1 \\ Z &\sim \text{MSTCAR}(\mathcal{G}, \mathcal{R}), \ \mathcal{G}=\{G_1,...,G_{N_t}\}, \ \mathcal{R}=\{R_1,...,R_{N_g}\} \\ G_t &\sim \text{InvWishart}(A_G, \nu) \\ A_G &\sim \text{Wishart}(A_{G_0}, \nu_0) \\ R_k &= \text{AR}(1,\rho_k) \\ \rho_k &\sim \text{Beta}(a_{\rho}, b_{\rho}) \\ \tau_k^2 &\sim \text{InvGamma}(a_\tau,b_\tau) \end{split} $$